txx9ndfmc.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. /*
  2. * TXx9 NAND flash memory controller driver
  3. * Based on RBTX49xx patch from CELF patch archive.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. *
  9. * (C) Copyright TOSHIBA CORPORATION 2004-2007
  10. * All Rights Reserved.
  11. */
  12. #include <linux/init.h>
  13. #include <linux/slab.h>
  14. #include <linux/module.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/delay.h>
  17. #include <linux/mtd/mtd.h>
  18. #include <linux/mtd/nand.h>
  19. #include <linux/mtd/nand_ecc.h>
  20. #include <linux/mtd/partitions.h>
  21. #include <linux/io.h>
  22. #include <asm/txx9/ndfmc.h>
  23. /* TXX9 NDFMC Registers */
  24. #define TXX9_NDFDTR 0x00
  25. #define TXX9_NDFMCR 0x04
  26. #define TXX9_NDFSR 0x08
  27. #define TXX9_NDFISR 0x0c
  28. #define TXX9_NDFIMR 0x10
  29. #define TXX9_NDFSPR 0x14
  30. #define TXX9_NDFRSTR 0x18 /* not TX4939 */
  31. /* NDFMCR : NDFMC Mode Control */
  32. #define TXX9_NDFMCR_WE 0x80
  33. #define TXX9_NDFMCR_ECC_ALL 0x60
  34. #define TXX9_NDFMCR_ECC_RESET 0x60
  35. #define TXX9_NDFMCR_ECC_READ 0x40
  36. #define TXX9_NDFMCR_ECC_ON 0x20
  37. #define TXX9_NDFMCR_ECC_OFF 0x00
  38. #define TXX9_NDFMCR_CE 0x10
  39. #define TXX9_NDFMCR_BSPRT 0x04 /* TX4925/TX4926 only */
  40. #define TXX9_NDFMCR_ALE 0x02
  41. #define TXX9_NDFMCR_CLE 0x01
  42. /* TX4939 only */
  43. #define TXX9_NDFMCR_X16 0x0400
  44. #define TXX9_NDFMCR_DMAREQ_MASK 0x0300
  45. #define TXX9_NDFMCR_DMAREQ_NODMA 0x0000
  46. #define TXX9_NDFMCR_DMAREQ_128 0x0100
  47. #define TXX9_NDFMCR_DMAREQ_256 0x0200
  48. #define TXX9_NDFMCR_DMAREQ_512 0x0300
  49. #define TXX9_NDFMCR_CS_MASK 0x0c
  50. #define TXX9_NDFMCR_CS(ch) ((ch) << 2)
  51. /* NDFMCR : NDFMC Status */
  52. #define TXX9_NDFSR_BUSY 0x80
  53. /* TX4939 only */
  54. #define TXX9_NDFSR_DMARUN 0x40
  55. /* NDFMCR : NDFMC Reset */
  56. #define TXX9_NDFRSTR_RST 0x01
  57. struct txx9ndfmc_priv {
  58. struct platform_device *dev;
  59. struct nand_chip chip;
  60. struct mtd_info mtd;
  61. int cs;
  62. const char *mtdname;
  63. };
  64. #define MAX_TXX9NDFMC_DEV 4
  65. struct txx9ndfmc_drvdata {
  66. struct mtd_info *mtds[MAX_TXX9NDFMC_DEV];
  67. void __iomem *base;
  68. unsigned char hold; /* in gbusclock */
  69. unsigned char spw; /* in gbusclock */
  70. struct nand_hw_control hw_control;
  71. };
  72. static struct platform_device *mtd_to_platdev(struct mtd_info *mtd)
  73. {
  74. struct nand_chip *chip = mtd->priv;
  75. struct txx9ndfmc_priv *txx9_priv = chip->priv;
  76. return txx9_priv->dev;
  77. }
  78. static void __iomem *ndregaddr(struct platform_device *dev, unsigned int reg)
  79. {
  80. struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev);
  81. struct txx9ndfmc_platform_data *plat = dev->dev.platform_data;
  82. return drvdata->base + (reg << plat->shift);
  83. }
  84. static u32 txx9ndfmc_read(struct platform_device *dev, unsigned int reg)
  85. {
  86. return __raw_readl(ndregaddr(dev, reg));
  87. }
  88. static void txx9ndfmc_write(struct platform_device *dev,
  89. u32 val, unsigned int reg)
  90. {
  91. __raw_writel(val, ndregaddr(dev, reg));
  92. }
  93. static uint8_t txx9ndfmc_read_byte(struct mtd_info *mtd)
  94. {
  95. struct platform_device *dev = mtd_to_platdev(mtd);
  96. return txx9ndfmc_read(dev, TXX9_NDFDTR);
  97. }
  98. static void txx9ndfmc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
  99. int len)
  100. {
  101. struct platform_device *dev = mtd_to_platdev(mtd);
  102. void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR);
  103. u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR);
  104. txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_WE, TXX9_NDFMCR);
  105. while (len--)
  106. __raw_writel(*buf++, ndfdtr);
  107. txx9ndfmc_write(dev, mcr, TXX9_NDFMCR);
  108. }
  109. static void txx9ndfmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
  110. {
  111. struct platform_device *dev = mtd_to_platdev(mtd);
  112. void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR);
  113. while (len--)
  114. *buf++ = __raw_readl(ndfdtr);
  115. }
  116. static int txx9ndfmc_verify_buf(struct mtd_info *mtd, const uint8_t *buf,
  117. int len)
  118. {
  119. struct platform_device *dev = mtd_to_platdev(mtd);
  120. void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR);
  121. while (len--)
  122. if (*buf++ != (uint8_t)__raw_readl(ndfdtr))
  123. return -EFAULT;
  124. return 0;
  125. }
  126. static void txx9ndfmc_cmd_ctrl(struct mtd_info *mtd, int cmd,
  127. unsigned int ctrl)
  128. {
  129. struct nand_chip *chip = mtd->priv;
  130. struct txx9ndfmc_priv *txx9_priv = chip->priv;
  131. struct platform_device *dev = txx9_priv->dev;
  132. struct txx9ndfmc_platform_data *plat = dev->dev.platform_data;
  133. if (ctrl & NAND_CTRL_CHANGE) {
  134. u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR);
  135. mcr &= ~(TXX9_NDFMCR_CLE | TXX9_NDFMCR_ALE | TXX9_NDFMCR_CE);
  136. mcr |= ctrl & NAND_CLE ? TXX9_NDFMCR_CLE : 0;
  137. mcr |= ctrl & NAND_ALE ? TXX9_NDFMCR_ALE : 0;
  138. /* TXX9_NDFMCR_CE bit is 0:high 1:low */
  139. mcr |= ctrl & NAND_NCE ? TXX9_NDFMCR_CE : 0;
  140. if (txx9_priv->cs >= 0 && (ctrl & NAND_NCE)) {
  141. mcr &= ~TXX9_NDFMCR_CS_MASK;
  142. mcr |= TXX9_NDFMCR_CS(txx9_priv->cs);
  143. }
  144. txx9ndfmc_write(dev, mcr, TXX9_NDFMCR);
  145. }
  146. if (cmd != NAND_CMD_NONE)
  147. txx9ndfmc_write(dev, cmd & 0xff, TXX9_NDFDTR);
  148. if (plat->flags & NDFMC_PLAT_FLAG_DUMMYWRITE) {
  149. /* dummy write to update external latch */
  150. if ((ctrl & NAND_CTRL_CHANGE) && cmd == NAND_CMD_NONE)
  151. txx9ndfmc_write(dev, 0, TXX9_NDFDTR);
  152. }
  153. mmiowb();
  154. }
  155. static int txx9ndfmc_dev_ready(struct mtd_info *mtd)
  156. {
  157. struct platform_device *dev = mtd_to_platdev(mtd);
  158. return !(txx9ndfmc_read(dev, TXX9_NDFSR) & TXX9_NDFSR_BUSY);
  159. }
  160. static int txx9ndfmc_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
  161. uint8_t *ecc_code)
  162. {
  163. struct platform_device *dev = mtd_to_platdev(mtd);
  164. struct nand_chip *chip = mtd->priv;
  165. int eccbytes;
  166. u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR);
  167. mcr &= ~TXX9_NDFMCR_ECC_ALL;
  168. txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR);
  169. txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_READ, TXX9_NDFMCR);
  170. for (eccbytes = chip->ecc.bytes; eccbytes > 0; eccbytes -= 3) {
  171. ecc_code[1] = txx9ndfmc_read(dev, TXX9_NDFDTR);
  172. ecc_code[0] = txx9ndfmc_read(dev, TXX9_NDFDTR);
  173. ecc_code[2] = txx9ndfmc_read(dev, TXX9_NDFDTR);
  174. ecc_code += 3;
  175. }
  176. txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR);
  177. return 0;
  178. }
  179. static int txx9ndfmc_correct_data(struct mtd_info *mtd, unsigned char *buf,
  180. unsigned char *read_ecc, unsigned char *calc_ecc)
  181. {
  182. struct nand_chip *chip = mtd->priv;
  183. int eccsize;
  184. int corrected = 0;
  185. int stat;
  186. for (eccsize = chip->ecc.size; eccsize > 0; eccsize -= 256) {
  187. stat = __nand_correct_data(buf, read_ecc, calc_ecc, 256);
  188. if (stat < 0)
  189. return stat;
  190. corrected += stat;
  191. buf += 256;
  192. read_ecc += 3;
  193. calc_ecc += 3;
  194. }
  195. return corrected;
  196. }
  197. static void txx9ndfmc_enable_hwecc(struct mtd_info *mtd, int mode)
  198. {
  199. struct platform_device *dev = mtd_to_platdev(mtd);
  200. u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR);
  201. mcr &= ~TXX9_NDFMCR_ECC_ALL;
  202. txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_RESET, TXX9_NDFMCR);
  203. txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR);
  204. txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_ON, TXX9_NDFMCR);
  205. }
  206. static void txx9ndfmc_initialize(struct platform_device *dev)
  207. {
  208. struct txx9ndfmc_platform_data *plat = dev->dev.platform_data;
  209. struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev);
  210. int tmout = 100;
  211. if (plat->flags & NDFMC_PLAT_FLAG_NO_RSTR)
  212. ; /* no NDFRSTR. Write to NDFSPR resets the NDFMC. */
  213. else {
  214. /* reset NDFMC */
  215. txx9ndfmc_write(dev,
  216. txx9ndfmc_read(dev, TXX9_NDFRSTR) |
  217. TXX9_NDFRSTR_RST,
  218. TXX9_NDFRSTR);
  219. while (txx9ndfmc_read(dev, TXX9_NDFRSTR) & TXX9_NDFRSTR_RST) {
  220. if (--tmout == 0) {
  221. dev_err(&dev->dev, "reset failed.\n");
  222. break;
  223. }
  224. udelay(1);
  225. }
  226. }
  227. /* setup Hold Time, Strobe Pulse Width */
  228. txx9ndfmc_write(dev, (drvdata->hold << 4) | drvdata->spw, TXX9_NDFSPR);
  229. txx9ndfmc_write(dev,
  230. (plat->flags & NDFMC_PLAT_FLAG_USE_BSPRT) ?
  231. TXX9_NDFMCR_BSPRT : 0, TXX9_NDFMCR);
  232. }
  233. #define TXX9NDFMC_NS_TO_CYC(gbusclk, ns) \
  234. DIV_ROUND_UP((ns) * DIV_ROUND_UP(gbusclk, 1000), 1000000)
  235. static int txx9ndfmc_nand_scan(struct mtd_info *mtd)
  236. {
  237. struct nand_chip *chip = mtd->priv;
  238. int ret;
  239. ret = nand_scan_ident(mtd, 1, NULL);
  240. if (!ret) {
  241. if (mtd->writesize >= 512) {
  242. /* Hardware ECC 6 byte ECC per 512 Byte data */
  243. chip->ecc.size = 512;
  244. chip->ecc.bytes = 6;
  245. }
  246. ret = nand_scan_tail(mtd);
  247. }
  248. return ret;
  249. }
  250. static int __init txx9ndfmc_probe(struct platform_device *dev)
  251. {
  252. struct txx9ndfmc_platform_data *plat = dev->dev.platform_data;
  253. int hold, spw;
  254. int i;
  255. struct txx9ndfmc_drvdata *drvdata;
  256. unsigned long gbusclk = plat->gbus_clock;
  257. struct resource *res;
  258. res = platform_get_resource(dev, IORESOURCE_MEM, 0);
  259. if (!res)
  260. return -ENODEV;
  261. drvdata = devm_kzalloc(&dev->dev, sizeof(*drvdata), GFP_KERNEL);
  262. if (!drvdata)
  263. return -ENOMEM;
  264. drvdata->base = devm_request_and_ioremap(&dev->dev, res);
  265. if (!drvdata->base)
  266. return -EBUSY;
  267. hold = plat->hold ?: 20; /* tDH */
  268. spw = plat->spw ?: 90; /* max(tREADID, tWP, tRP) */
  269. hold = TXX9NDFMC_NS_TO_CYC(gbusclk, hold);
  270. spw = TXX9NDFMC_NS_TO_CYC(gbusclk, spw);
  271. if (plat->flags & NDFMC_PLAT_FLAG_HOLDADD)
  272. hold -= 2; /* actual hold time : (HOLD + 2) BUSCLK */
  273. spw -= 1; /* actual wait time : (SPW + 1) BUSCLK */
  274. hold = clamp(hold, 1, 15);
  275. drvdata->hold = hold;
  276. spw = clamp(spw, 1, 15);
  277. drvdata->spw = spw;
  278. dev_info(&dev->dev, "CLK:%ldMHz HOLD:%d SPW:%d\n",
  279. (gbusclk + 500000) / 1000000, hold, spw);
  280. spin_lock_init(&drvdata->hw_control.lock);
  281. init_waitqueue_head(&drvdata->hw_control.wq);
  282. platform_set_drvdata(dev, drvdata);
  283. txx9ndfmc_initialize(dev);
  284. for (i = 0; i < MAX_TXX9NDFMC_DEV; i++) {
  285. struct txx9ndfmc_priv *txx9_priv;
  286. struct nand_chip *chip;
  287. struct mtd_info *mtd;
  288. if (!(plat->ch_mask & (1 << i)))
  289. continue;
  290. txx9_priv = kzalloc(sizeof(struct txx9ndfmc_priv),
  291. GFP_KERNEL);
  292. if (!txx9_priv) {
  293. dev_err(&dev->dev, "Unable to allocate "
  294. "TXx9 NDFMC MTD device structure.\n");
  295. continue;
  296. }
  297. chip = &txx9_priv->chip;
  298. mtd = &txx9_priv->mtd;
  299. mtd->owner = THIS_MODULE;
  300. mtd->priv = chip;
  301. chip->read_byte = txx9ndfmc_read_byte;
  302. chip->read_buf = txx9ndfmc_read_buf;
  303. chip->write_buf = txx9ndfmc_write_buf;
  304. chip->verify_buf = txx9ndfmc_verify_buf;
  305. chip->cmd_ctrl = txx9ndfmc_cmd_ctrl;
  306. chip->dev_ready = txx9ndfmc_dev_ready;
  307. chip->ecc.calculate = txx9ndfmc_calculate_ecc;
  308. chip->ecc.correct = txx9ndfmc_correct_data;
  309. chip->ecc.hwctl = txx9ndfmc_enable_hwecc;
  310. chip->ecc.mode = NAND_ECC_HW;
  311. /* txx9ndfmc_nand_scan will overwrite ecc.size and ecc.bytes */
  312. chip->ecc.size = 256;
  313. chip->ecc.bytes = 3;
  314. chip->ecc.strength = 1;
  315. chip->chip_delay = 100;
  316. chip->controller = &drvdata->hw_control;
  317. chip->priv = txx9_priv;
  318. txx9_priv->dev = dev;
  319. if (plat->ch_mask != 1) {
  320. txx9_priv->cs = i;
  321. txx9_priv->mtdname = kasprintf(GFP_KERNEL, "%s.%u",
  322. dev_name(&dev->dev), i);
  323. } else {
  324. txx9_priv->cs = -1;
  325. txx9_priv->mtdname = kstrdup(dev_name(&dev->dev),
  326. GFP_KERNEL);
  327. }
  328. if (!txx9_priv->mtdname) {
  329. kfree(txx9_priv);
  330. dev_err(&dev->dev, "Unable to allocate MTD name.\n");
  331. continue;
  332. }
  333. if (plat->wide_mask & (1 << i))
  334. chip->options |= NAND_BUSWIDTH_16;
  335. if (txx9ndfmc_nand_scan(mtd)) {
  336. kfree(txx9_priv->mtdname);
  337. kfree(txx9_priv);
  338. continue;
  339. }
  340. mtd->name = txx9_priv->mtdname;
  341. mtd_device_parse_register(mtd, NULL, NULL, NULL, 0);
  342. drvdata->mtds[i] = mtd;
  343. }
  344. return 0;
  345. }
  346. static int __exit txx9ndfmc_remove(struct platform_device *dev)
  347. {
  348. struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev);
  349. int i;
  350. platform_set_drvdata(dev, NULL);
  351. if (!drvdata)
  352. return 0;
  353. for (i = 0; i < MAX_TXX9NDFMC_DEV; i++) {
  354. struct mtd_info *mtd = drvdata->mtds[i];
  355. struct nand_chip *chip;
  356. struct txx9ndfmc_priv *txx9_priv;
  357. if (!mtd)
  358. continue;
  359. chip = mtd->priv;
  360. txx9_priv = chip->priv;
  361. nand_release(mtd);
  362. kfree(txx9_priv->mtdname);
  363. kfree(txx9_priv);
  364. }
  365. return 0;
  366. }
  367. #ifdef CONFIG_PM
  368. static int txx9ndfmc_resume(struct platform_device *dev)
  369. {
  370. if (platform_get_drvdata(dev))
  371. txx9ndfmc_initialize(dev);
  372. return 0;
  373. }
  374. #else
  375. #define txx9ndfmc_resume NULL
  376. #endif
  377. static struct platform_driver txx9ndfmc_driver = {
  378. .remove = __exit_p(txx9ndfmc_remove),
  379. .resume = txx9ndfmc_resume,
  380. .driver = {
  381. .name = "txx9ndfmc",
  382. .owner = THIS_MODULE,
  383. },
  384. };
  385. static int __init txx9ndfmc_init(void)
  386. {
  387. return platform_driver_probe(&txx9ndfmc_driver, txx9ndfmc_probe);
  388. }
  389. static void __exit txx9ndfmc_exit(void)
  390. {
  391. platform_driver_unregister(&txx9ndfmc_driver);
  392. }
  393. module_init(txx9ndfmc_init);
  394. module_exit(txx9ndfmc_exit);
  395. MODULE_LICENSE("GPL");
  396. MODULE_DESCRIPTION("TXx9 SoC NAND flash controller driver");
  397. MODULE_ALIAS("platform:txx9ndfmc");