mxc_nand.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298
  1. /*
  2. * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
  3. * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
  17. * MA 02110-1301, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/slab.h>
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/mtd/mtd.h>
  24. #include <linux/mtd/nand.h>
  25. #include <linux/mtd/partitions.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/clk.h>
  30. #include <linux/err.h>
  31. #include <linux/io.h>
  32. #include <linux/irq.h>
  33. #include <linux/completion.h>
  34. #include <asm/mach/flash.h>
  35. #include <mach/mxc_nand.h>
  36. #include <mach/hardware.h>
  37. #define DRIVER_NAME "mxc_nand"
  38. #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35())
  39. #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
  40. #define nfc_is_v3_2() (cpu_is_mx51() || cpu_is_mx53())
  41. #define nfc_is_v3() nfc_is_v3_2()
  42. /* Addresses for NFC registers */
  43. #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
  44. #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
  45. #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
  46. #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
  47. #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
  48. #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
  49. #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
  50. #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
  51. #define NFC_V1_V2_WRPROT (host->regs + 0x12)
  52. #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
  53. #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
  54. #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
  55. #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
  56. #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
  57. #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
  58. #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
  59. #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
  60. #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
  61. #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
  62. #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
  63. #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
  64. #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
  65. #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
  66. #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
  67. #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
  68. #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
  69. #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
  70. #define NFC_V1_V2_CONFIG1_RST (1 << 6)
  71. #define NFC_V1_V2_CONFIG1_CE (1 << 7)
  72. #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
  73. #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
  74. #define NFC_V2_CONFIG1_FP_INT (1 << 11)
  75. #define NFC_V1_V2_CONFIG2_INT (1 << 15)
  76. /*
  77. * Operation modes for the NFC. Valid for v1, v2 and v3
  78. * type controllers.
  79. */
  80. #define NFC_CMD (1 << 0)
  81. #define NFC_ADDR (1 << 1)
  82. #define NFC_INPUT (1 << 2)
  83. #define NFC_OUTPUT (1 << 3)
  84. #define NFC_ID (1 << 4)
  85. #define NFC_STATUS (1 << 5)
  86. #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
  87. #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
  88. #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
  89. #define NFC_V3_CONFIG1_SP_EN (1 << 0)
  90. #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
  91. #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
  92. #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
  93. #define NFC_V3_WRPROT (host->regs_ip + 0x0)
  94. #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
  95. #define NFC_V3_WRPROT_LOCK (1 << 1)
  96. #define NFC_V3_WRPROT_UNLOCK (1 << 2)
  97. #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
  98. #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
  99. #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
  100. #define NFC_V3_CONFIG2_PS_512 (0 << 0)
  101. #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
  102. #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
  103. #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
  104. #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
  105. #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
  106. #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
  107. #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
  108. #define NFC_V3_CONFIG2_PPB(x) (((x) & 0x3) << 7)
  109. #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
  110. #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
  111. #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
  112. #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
  113. #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
  114. #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
  115. #define NFC_V3_CONFIG3_FW8 (1 << 3)
  116. #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
  117. #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
  118. #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
  119. #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
  120. #define NFC_V3_IPC (host->regs_ip + 0x2C)
  121. #define NFC_V3_IPC_CREQ (1 << 0)
  122. #define NFC_V3_IPC_INT (1 << 31)
  123. #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
  124. struct mxc_nand_host {
  125. struct mtd_info mtd;
  126. struct nand_chip nand;
  127. struct device *dev;
  128. void *spare0;
  129. void *main_area0;
  130. void __iomem *base;
  131. void __iomem *regs;
  132. void __iomem *regs_axi;
  133. void __iomem *regs_ip;
  134. int status_request;
  135. struct clk *clk;
  136. int clk_act;
  137. int irq;
  138. int eccsize;
  139. int active_cs;
  140. struct completion op_completion;
  141. uint8_t *data_buf;
  142. unsigned int buf_start;
  143. int spare_len;
  144. void (*preset)(struct mtd_info *);
  145. void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
  146. void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
  147. void (*send_page)(struct mtd_info *, unsigned int);
  148. void (*send_read_id)(struct mxc_nand_host *);
  149. uint16_t (*get_dev_status)(struct mxc_nand_host *);
  150. int (*check_int)(struct mxc_nand_host *);
  151. void (*irq_control)(struct mxc_nand_host *, int);
  152. };
  153. /* OOB placement block for use with hardware ecc generation */
  154. static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
  155. .eccbytes = 5,
  156. .eccpos = {6, 7, 8, 9, 10},
  157. .oobfree = {{0, 5}, {12, 4}, }
  158. };
  159. static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
  160. .eccbytes = 20,
  161. .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
  162. 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
  163. .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
  164. };
  165. /* OOB description for 512 byte pages with 16 byte OOB */
  166. static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
  167. .eccbytes = 1 * 9,
  168. .eccpos = {
  169. 7, 8, 9, 10, 11, 12, 13, 14, 15
  170. },
  171. .oobfree = {
  172. {.offset = 0, .length = 5}
  173. }
  174. };
  175. /* OOB description for 2048 byte pages with 64 byte OOB */
  176. static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
  177. .eccbytes = 4 * 9,
  178. .eccpos = {
  179. 7, 8, 9, 10, 11, 12, 13, 14, 15,
  180. 23, 24, 25, 26, 27, 28, 29, 30, 31,
  181. 39, 40, 41, 42, 43, 44, 45, 46, 47,
  182. 55, 56, 57, 58, 59, 60, 61, 62, 63
  183. },
  184. .oobfree = {
  185. {.offset = 2, .length = 4},
  186. {.offset = 16, .length = 7},
  187. {.offset = 32, .length = 7},
  188. {.offset = 48, .length = 7}
  189. }
  190. };
  191. /* OOB description for 4096 byte pages with 128 byte OOB */
  192. static struct nand_ecclayout nandv2_hw_eccoob_4k = {
  193. .eccbytes = 8 * 9,
  194. .eccpos = {
  195. 7, 8, 9, 10, 11, 12, 13, 14, 15,
  196. 23, 24, 25, 26, 27, 28, 29, 30, 31,
  197. 39, 40, 41, 42, 43, 44, 45, 46, 47,
  198. 55, 56, 57, 58, 59, 60, 61, 62, 63,
  199. 71, 72, 73, 74, 75, 76, 77, 78, 79,
  200. 87, 88, 89, 90, 91, 92, 93, 94, 95,
  201. 103, 104, 105, 106, 107, 108, 109, 110, 111,
  202. 119, 120, 121, 122, 123, 124, 125, 126, 127,
  203. },
  204. .oobfree = {
  205. {.offset = 2, .length = 4},
  206. {.offset = 16, .length = 7},
  207. {.offset = 32, .length = 7},
  208. {.offset = 48, .length = 7},
  209. {.offset = 64, .length = 7},
  210. {.offset = 80, .length = 7},
  211. {.offset = 96, .length = 7},
  212. {.offset = 112, .length = 7},
  213. }
  214. };
  215. static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
  216. static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
  217. {
  218. struct mxc_nand_host *host = dev_id;
  219. if (!host->check_int(host))
  220. return IRQ_NONE;
  221. host->irq_control(host, 0);
  222. complete(&host->op_completion);
  223. return IRQ_HANDLED;
  224. }
  225. static int check_int_v3(struct mxc_nand_host *host)
  226. {
  227. uint32_t tmp;
  228. tmp = readl(NFC_V3_IPC);
  229. if (!(tmp & NFC_V3_IPC_INT))
  230. return 0;
  231. tmp &= ~NFC_V3_IPC_INT;
  232. writel(tmp, NFC_V3_IPC);
  233. return 1;
  234. }
  235. static int check_int_v1_v2(struct mxc_nand_host *host)
  236. {
  237. uint32_t tmp;
  238. tmp = readw(NFC_V1_V2_CONFIG2);
  239. if (!(tmp & NFC_V1_V2_CONFIG2_INT))
  240. return 0;
  241. if (!cpu_is_mx21())
  242. writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
  243. return 1;
  244. }
  245. /*
  246. * It has been observed that the i.MX21 cannot read the CONFIG2:INT bit
  247. * if interrupts are masked (CONFIG1:INT_MSK is set). To handle this, the
  248. * driver can enable/disable the irq line rather than simply masking the
  249. * interrupts.
  250. */
  251. static void irq_control_mx21(struct mxc_nand_host *host, int activate)
  252. {
  253. if (activate)
  254. enable_irq(host->irq);
  255. else
  256. disable_irq_nosync(host->irq);
  257. }
  258. static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
  259. {
  260. uint16_t tmp;
  261. tmp = readw(NFC_V1_V2_CONFIG1);
  262. if (activate)
  263. tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
  264. else
  265. tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
  266. writew(tmp, NFC_V1_V2_CONFIG1);
  267. }
  268. static void irq_control_v3(struct mxc_nand_host *host, int activate)
  269. {
  270. uint32_t tmp;
  271. tmp = readl(NFC_V3_CONFIG2);
  272. if (activate)
  273. tmp &= ~NFC_V3_CONFIG2_INT_MSK;
  274. else
  275. tmp |= NFC_V3_CONFIG2_INT_MSK;
  276. writel(tmp, NFC_V3_CONFIG2);
  277. }
  278. /* This function polls the NANDFC to wait for the basic operation to
  279. * complete by checking the INT bit of config2 register.
  280. */
  281. static void wait_op_done(struct mxc_nand_host *host, int useirq)
  282. {
  283. int max_retries = 8000;
  284. if (useirq) {
  285. if (!host->check_int(host)) {
  286. INIT_COMPLETION(host->op_completion);
  287. host->irq_control(host, 1);
  288. wait_for_completion(&host->op_completion);
  289. }
  290. } else {
  291. while (max_retries-- > 0) {
  292. if (host->check_int(host))
  293. break;
  294. udelay(1);
  295. }
  296. if (max_retries < 0)
  297. pr_debug("%s: INT not set\n", __func__);
  298. }
  299. }
  300. static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
  301. {
  302. /* fill command */
  303. writel(cmd, NFC_V3_FLASH_CMD);
  304. /* send out command */
  305. writel(NFC_CMD, NFC_V3_LAUNCH);
  306. /* Wait for operation to complete */
  307. wait_op_done(host, useirq);
  308. }
  309. /* This function issues the specified command to the NAND device and
  310. * waits for completion. */
  311. static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
  312. {
  313. pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
  314. writew(cmd, NFC_V1_V2_FLASH_CMD);
  315. writew(NFC_CMD, NFC_V1_V2_CONFIG2);
  316. if (cpu_is_mx21() && (cmd == NAND_CMD_RESET)) {
  317. int max_retries = 100;
  318. /* Reset completion is indicated by NFC_CONFIG2 */
  319. /* being set to 0 */
  320. while (max_retries-- > 0) {
  321. if (readw(NFC_V1_V2_CONFIG2) == 0) {
  322. break;
  323. }
  324. udelay(1);
  325. }
  326. if (max_retries < 0)
  327. pr_debug("%s: RESET failed\n", __func__);
  328. } else {
  329. /* Wait for operation to complete */
  330. wait_op_done(host, useirq);
  331. }
  332. }
  333. static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
  334. {
  335. /* fill address */
  336. writel(addr, NFC_V3_FLASH_ADDR0);
  337. /* send out address */
  338. writel(NFC_ADDR, NFC_V3_LAUNCH);
  339. wait_op_done(host, 0);
  340. }
  341. /* This function sends an address (or partial address) to the
  342. * NAND device. The address is used to select the source/destination for
  343. * a NAND command. */
  344. static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
  345. {
  346. pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
  347. writew(addr, NFC_V1_V2_FLASH_ADDR);
  348. writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
  349. /* Wait for operation to complete */
  350. wait_op_done(host, islast);
  351. }
  352. static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
  353. {
  354. struct nand_chip *nand_chip = mtd->priv;
  355. struct mxc_nand_host *host = nand_chip->priv;
  356. uint32_t tmp;
  357. tmp = readl(NFC_V3_CONFIG1);
  358. tmp &= ~(7 << 4);
  359. writel(tmp, NFC_V3_CONFIG1);
  360. /* transfer data from NFC ram to nand */
  361. writel(ops, NFC_V3_LAUNCH);
  362. wait_op_done(host, false);
  363. }
  364. static void send_page_v1_v2(struct mtd_info *mtd, unsigned int ops)
  365. {
  366. struct nand_chip *nand_chip = mtd->priv;
  367. struct mxc_nand_host *host = nand_chip->priv;
  368. int bufs, i;
  369. if (nfc_is_v1() && mtd->writesize > 512)
  370. bufs = 4;
  371. else
  372. bufs = 1;
  373. for (i = 0; i < bufs; i++) {
  374. /* NANDFC buffer 0 is used for page read/write */
  375. writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
  376. writew(ops, NFC_V1_V2_CONFIG2);
  377. /* Wait for operation to complete */
  378. wait_op_done(host, true);
  379. }
  380. }
  381. static void send_read_id_v3(struct mxc_nand_host *host)
  382. {
  383. /* Read ID into main buffer */
  384. writel(NFC_ID, NFC_V3_LAUNCH);
  385. wait_op_done(host, true);
  386. memcpy(host->data_buf, host->main_area0, 16);
  387. }
  388. /* Request the NANDFC to perform a read of the NAND device ID. */
  389. static void send_read_id_v1_v2(struct mxc_nand_host *host)
  390. {
  391. struct nand_chip *this = &host->nand;
  392. /* NANDFC buffer 0 is used for device ID output */
  393. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  394. writew(NFC_ID, NFC_V1_V2_CONFIG2);
  395. /* Wait for operation to complete */
  396. wait_op_done(host, true);
  397. memcpy(host->data_buf, host->main_area0, 16);
  398. if (this->options & NAND_BUSWIDTH_16) {
  399. /* compress the ID info */
  400. host->data_buf[1] = host->data_buf[2];
  401. host->data_buf[2] = host->data_buf[4];
  402. host->data_buf[3] = host->data_buf[6];
  403. host->data_buf[4] = host->data_buf[8];
  404. host->data_buf[5] = host->data_buf[10];
  405. }
  406. }
  407. static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
  408. {
  409. writew(NFC_STATUS, NFC_V3_LAUNCH);
  410. wait_op_done(host, true);
  411. return readl(NFC_V3_CONFIG1) >> 16;
  412. }
  413. /* This function requests the NANDFC to perform a read of the
  414. * NAND device status and returns the current status. */
  415. static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
  416. {
  417. void __iomem *main_buf = host->main_area0;
  418. uint32_t store;
  419. uint16_t ret;
  420. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  421. /*
  422. * The device status is stored in main_area0. To
  423. * prevent corruption of the buffer save the value
  424. * and restore it afterwards.
  425. */
  426. store = readl(main_buf);
  427. writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
  428. wait_op_done(host, true);
  429. ret = readw(main_buf);
  430. writel(store, main_buf);
  431. return ret;
  432. }
  433. /* This functions is used by upper layer to checks if device is ready */
  434. static int mxc_nand_dev_ready(struct mtd_info *mtd)
  435. {
  436. /*
  437. * NFC handles R/B internally. Therefore, this function
  438. * always returns status as ready.
  439. */
  440. return 1;
  441. }
  442. static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
  443. {
  444. /*
  445. * If HW ECC is enabled, we turn it on during init. There is
  446. * no need to enable again here.
  447. */
  448. }
  449. static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
  450. u_char *read_ecc, u_char *calc_ecc)
  451. {
  452. struct nand_chip *nand_chip = mtd->priv;
  453. struct mxc_nand_host *host = nand_chip->priv;
  454. /*
  455. * 1-Bit errors are automatically corrected in HW. No need for
  456. * additional correction. 2-Bit errors cannot be corrected by
  457. * HW ECC, so we need to return failure
  458. */
  459. uint16_t ecc_status = readw(NFC_V1_V2_ECC_STATUS_RESULT);
  460. if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
  461. pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
  462. return -1;
  463. }
  464. return 0;
  465. }
  466. static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
  467. u_char *read_ecc, u_char *calc_ecc)
  468. {
  469. struct nand_chip *nand_chip = mtd->priv;
  470. struct mxc_nand_host *host = nand_chip->priv;
  471. u32 ecc_stat, err;
  472. int no_subpages = 1;
  473. int ret = 0;
  474. u8 ecc_bit_mask, err_limit;
  475. ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
  476. err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
  477. no_subpages = mtd->writesize >> 9;
  478. if (nfc_is_v21())
  479. ecc_stat = readl(NFC_V1_V2_ECC_STATUS_RESULT);
  480. else
  481. ecc_stat = readl(NFC_V3_ECC_STATUS_RESULT);
  482. do {
  483. err = ecc_stat & ecc_bit_mask;
  484. if (err > err_limit) {
  485. printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
  486. return -1;
  487. } else {
  488. ret += err;
  489. }
  490. ecc_stat >>= 4;
  491. } while (--no_subpages);
  492. pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
  493. return ret;
  494. }
  495. static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
  496. u_char *ecc_code)
  497. {
  498. return 0;
  499. }
  500. static u_char mxc_nand_read_byte(struct mtd_info *mtd)
  501. {
  502. struct nand_chip *nand_chip = mtd->priv;
  503. struct mxc_nand_host *host = nand_chip->priv;
  504. uint8_t ret;
  505. /* Check for status request */
  506. if (host->status_request)
  507. return host->get_dev_status(host) & 0xFF;
  508. ret = *(uint8_t *)(host->data_buf + host->buf_start);
  509. host->buf_start++;
  510. return ret;
  511. }
  512. static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
  513. {
  514. struct nand_chip *nand_chip = mtd->priv;
  515. struct mxc_nand_host *host = nand_chip->priv;
  516. uint16_t ret;
  517. ret = *(uint16_t *)(host->data_buf + host->buf_start);
  518. host->buf_start += 2;
  519. return ret;
  520. }
  521. /* Write data of length len to buffer buf. The data to be
  522. * written on NAND Flash is first copied to RAMbuffer. After the Data Input
  523. * Operation by the NFC, the data is written to NAND Flash */
  524. static void mxc_nand_write_buf(struct mtd_info *mtd,
  525. const u_char *buf, int len)
  526. {
  527. struct nand_chip *nand_chip = mtd->priv;
  528. struct mxc_nand_host *host = nand_chip->priv;
  529. u16 col = host->buf_start;
  530. int n = mtd->oobsize + mtd->writesize - col;
  531. n = min(n, len);
  532. memcpy(host->data_buf + col, buf, n);
  533. host->buf_start += n;
  534. }
  535. /* Read the data buffer from the NAND Flash. To read the data from NAND
  536. * Flash first the data output cycle is initiated by the NFC, which copies
  537. * the data to RAMbuffer. This data of length len is then copied to buffer buf.
  538. */
  539. static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
  540. {
  541. struct nand_chip *nand_chip = mtd->priv;
  542. struct mxc_nand_host *host = nand_chip->priv;
  543. u16 col = host->buf_start;
  544. int n = mtd->oobsize + mtd->writesize - col;
  545. n = min(n, len);
  546. memcpy(buf, host->data_buf + col, n);
  547. host->buf_start += n;
  548. }
  549. /* Used by the upper layer to verify the data in NAND Flash
  550. * with the data in the buf. */
  551. static int mxc_nand_verify_buf(struct mtd_info *mtd,
  552. const u_char *buf, int len)
  553. {
  554. return -EFAULT;
  555. }
  556. /* This function is used by upper layer for select and
  557. * deselect of the NAND chip */
  558. static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
  559. {
  560. struct nand_chip *nand_chip = mtd->priv;
  561. struct mxc_nand_host *host = nand_chip->priv;
  562. if (chip == -1) {
  563. /* Disable the NFC clock */
  564. if (host->clk_act) {
  565. clk_disable(host->clk);
  566. host->clk_act = 0;
  567. }
  568. return;
  569. }
  570. if (!host->clk_act) {
  571. /* Enable the NFC clock */
  572. clk_enable(host->clk);
  573. host->clk_act = 1;
  574. }
  575. if (nfc_is_v21()) {
  576. host->active_cs = chip;
  577. writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
  578. }
  579. }
  580. /*
  581. * Function to transfer data to/from spare area.
  582. */
  583. static void copy_spare(struct mtd_info *mtd, bool bfrom)
  584. {
  585. struct nand_chip *this = mtd->priv;
  586. struct mxc_nand_host *host = this->priv;
  587. u16 i, j;
  588. u16 n = mtd->writesize >> 9;
  589. u8 *d = host->data_buf + mtd->writesize;
  590. u8 *s = host->spare0;
  591. u16 t = host->spare_len;
  592. j = (mtd->oobsize / n >> 1) << 1;
  593. if (bfrom) {
  594. for (i = 0; i < n - 1; i++)
  595. memcpy(d + i * j, s + i * t, j);
  596. /* the last section */
  597. memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
  598. } else {
  599. for (i = 0; i < n - 1; i++)
  600. memcpy(&s[i * t], &d[i * j], j);
  601. /* the last section */
  602. memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
  603. }
  604. }
  605. static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
  606. {
  607. struct nand_chip *nand_chip = mtd->priv;
  608. struct mxc_nand_host *host = nand_chip->priv;
  609. /* Write out column address, if necessary */
  610. if (column != -1) {
  611. /*
  612. * MXC NANDFC can only perform full page+spare or
  613. * spare-only read/write. When the upper layers
  614. * perform a read/write buf operation, the saved column
  615. * address is used to index into the full page.
  616. */
  617. host->send_addr(host, 0, page_addr == -1);
  618. if (mtd->writesize > 512)
  619. /* another col addr cycle for 2k page */
  620. host->send_addr(host, 0, false);
  621. }
  622. /* Write out page address, if necessary */
  623. if (page_addr != -1) {
  624. /* paddr_0 - p_addr_7 */
  625. host->send_addr(host, (page_addr & 0xff), false);
  626. if (mtd->writesize > 512) {
  627. if (mtd->size >= 0x10000000) {
  628. /* paddr_8 - paddr_15 */
  629. host->send_addr(host, (page_addr >> 8) & 0xff, false);
  630. host->send_addr(host, (page_addr >> 16) & 0xff, true);
  631. } else
  632. /* paddr_8 - paddr_15 */
  633. host->send_addr(host, (page_addr >> 8) & 0xff, true);
  634. } else {
  635. /* One more address cycle for higher density devices */
  636. if (mtd->size >= 0x4000000) {
  637. /* paddr_8 - paddr_15 */
  638. host->send_addr(host, (page_addr >> 8) & 0xff, false);
  639. host->send_addr(host, (page_addr >> 16) & 0xff, true);
  640. } else
  641. /* paddr_8 - paddr_15 */
  642. host->send_addr(host, (page_addr >> 8) & 0xff, true);
  643. }
  644. }
  645. }
  646. /*
  647. * v2 and v3 type controllers can do 4bit or 8bit ecc depending
  648. * on how much oob the nand chip has. For 8bit ecc we need at least
  649. * 26 bytes of oob data per 512 byte block.
  650. */
  651. static int get_eccsize(struct mtd_info *mtd)
  652. {
  653. int oobbytes_per_512 = 0;
  654. oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
  655. if (oobbytes_per_512 < 26)
  656. return 4;
  657. else
  658. return 8;
  659. }
  660. static void preset_v1_v2(struct mtd_info *mtd)
  661. {
  662. struct nand_chip *nand_chip = mtd->priv;
  663. struct mxc_nand_host *host = nand_chip->priv;
  664. uint16_t config1 = 0;
  665. if (nand_chip->ecc.mode == NAND_ECC_HW)
  666. config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
  667. if (nfc_is_v21())
  668. config1 |= NFC_V2_CONFIG1_FP_INT;
  669. if (!cpu_is_mx21())
  670. config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
  671. if (nfc_is_v21() && mtd->writesize) {
  672. uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
  673. host->eccsize = get_eccsize(mtd);
  674. if (host->eccsize == 4)
  675. config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
  676. config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
  677. } else {
  678. host->eccsize = 1;
  679. }
  680. writew(config1, NFC_V1_V2_CONFIG1);
  681. /* preset operation */
  682. /* Unlock the internal RAM Buffer */
  683. writew(0x2, NFC_V1_V2_CONFIG);
  684. /* Blocks to be unlocked */
  685. if (nfc_is_v21()) {
  686. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
  687. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
  688. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
  689. writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
  690. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
  691. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
  692. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
  693. writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
  694. } else if (nfc_is_v1()) {
  695. writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
  696. writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
  697. } else
  698. BUG();
  699. /* Unlock Block Command for given address range */
  700. writew(0x4, NFC_V1_V2_WRPROT);
  701. }
  702. static void preset_v3(struct mtd_info *mtd)
  703. {
  704. struct nand_chip *chip = mtd->priv;
  705. struct mxc_nand_host *host = chip->priv;
  706. uint32_t config2, config3;
  707. int i, addr_phases;
  708. writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
  709. writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
  710. /* Unlock the internal RAM Buffer */
  711. writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
  712. NFC_V3_WRPROT);
  713. /* Blocks to be unlocked */
  714. for (i = 0; i < NAND_MAX_CHIPS; i++)
  715. writel(0x0 | (0xffff << 16),
  716. NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
  717. writel(0, NFC_V3_IPC);
  718. config2 = NFC_V3_CONFIG2_ONE_CYCLE |
  719. NFC_V3_CONFIG2_2CMD_PHASES |
  720. NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
  721. NFC_V3_CONFIG2_ST_CMD(0x70) |
  722. NFC_V3_CONFIG2_INT_MSK |
  723. NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
  724. if (chip->ecc.mode == NAND_ECC_HW)
  725. config2 |= NFC_V3_CONFIG2_ECC_EN;
  726. addr_phases = fls(chip->pagemask) >> 3;
  727. if (mtd->writesize == 2048) {
  728. config2 |= NFC_V3_CONFIG2_PS_2048;
  729. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
  730. } else if (mtd->writesize == 4096) {
  731. config2 |= NFC_V3_CONFIG2_PS_4096;
  732. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
  733. } else {
  734. config2 |= NFC_V3_CONFIG2_PS_512;
  735. config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
  736. }
  737. if (mtd->writesize) {
  738. config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6);
  739. host->eccsize = get_eccsize(mtd);
  740. if (host->eccsize == 8)
  741. config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
  742. }
  743. writel(config2, NFC_V3_CONFIG2);
  744. config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
  745. NFC_V3_CONFIG3_NO_SDMA |
  746. NFC_V3_CONFIG3_RBB_MODE |
  747. NFC_V3_CONFIG3_SBB(6) | /* Reset default */
  748. NFC_V3_CONFIG3_ADD_OP(0);
  749. if (!(chip->options & NAND_BUSWIDTH_16))
  750. config3 |= NFC_V3_CONFIG3_FW8;
  751. writel(config3, NFC_V3_CONFIG3);
  752. writel(0, NFC_V3_DELAY_LINE);
  753. }
  754. /* Used by the upper layer to write command to NAND Flash for
  755. * different operations to be carried out on NAND Flash */
  756. static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
  757. int column, int page_addr)
  758. {
  759. struct nand_chip *nand_chip = mtd->priv;
  760. struct mxc_nand_host *host = nand_chip->priv;
  761. pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
  762. command, column, page_addr);
  763. /* Reset command state information */
  764. host->status_request = false;
  765. /* Command pre-processing step */
  766. switch (command) {
  767. case NAND_CMD_RESET:
  768. host->preset(mtd);
  769. host->send_cmd(host, command, false);
  770. break;
  771. case NAND_CMD_STATUS:
  772. host->buf_start = 0;
  773. host->status_request = true;
  774. host->send_cmd(host, command, true);
  775. mxc_do_addr_cycle(mtd, column, page_addr);
  776. break;
  777. case NAND_CMD_READ0:
  778. case NAND_CMD_READOOB:
  779. if (command == NAND_CMD_READ0)
  780. host->buf_start = column;
  781. else
  782. host->buf_start = column + mtd->writesize;
  783. command = NAND_CMD_READ0; /* only READ0 is valid */
  784. host->send_cmd(host, command, false);
  785. mxc_do_addr_cycle(mtd, column, page_addr);
  786. if (mtd->writesize > 512)
  787. host->send_cmd(host, NAND_CMD_READSTART, true);
  788. host->send_page(mtd, NFC_OUTPUT);
  789. memcpy(host->data_buf, host->main_area0, mtd->writesize);
  790. copy_spare(mtd, true);
  791. break;
  792. case NAND_CMD_SEQIN:
  793. if (column >= mtd->writesize)
  794. /* call ourself to read a page */
  795. mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
  796. host->buf_start = column;
  797. host->send_cmd(host, command, false);
  798. mxc_do_addr_cycle(mtd, column, page_addr);
  799. break;
  800. case NAND_CMD_PAGEPROG:
  801. memcpy(host->main_area0, host->data_buf, mtd->writesize);
  802. copy_spare(mtd, false);
  803. host->send_page(mtd, NFC_INPUT);
  804. host->send_cmd(host, command, true);
  805. mxc_do_addr_cycle(mtd, column, page_addr);
  806. break;
  807. case NAND_CMD_READID:
  808. host->send_cmd(host, command, true);
  809. mxc_do_addr_cycle(mtd, column, page_addr);
  810. host->send_read_id(host);
  811. host->buf_start = column;
  812. break;
  813. case NAND_CMD_ERASE1:
  814. case NAND_CMD_ERASE2:
  815. host->send_cmd(host, command, false);
  816. mxc_do_addr_cycle(mtd, column, page_addr);
  817. break;
  818. }
  819. }
  820. /*
  821. * The generic flash bbt decriptors overlap with our ecc
  822. * hardware, so define some i.MX specific ones.
  823. */
  824. static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
  825. static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
  826. static struct nand_bbt_descr bbt_main_descr = {
  827. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  828. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  829. .offs = 0,
  830. .len = 4,
  831. .veroffs = 4,
  832. .maxblocks = 4,
  833. .pattern = bbt_pattern,
  834. };
  835. static struct nand_bbt_descr bbt_mirror_descr = {
  836. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  837. | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
  838. .offs = 0,
  839. .len = 4,
  840. .veroffs = 4,
  841. .maxblocks = 4,
  842. .pattern = mirror_pattern,
  843. };
  844. static int __init mxcnd_probe(struct platform_device *pdev)
  845. {
  846. struct nand_chip *this;
  847. struct mtd_info *mtd;
  848. struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
  849. struct mxc_nand_host *host;
  850. struct resource *res;
  851. int err = 0;
  852. struct nand_ecclayout *oob_smallpage, *oob_largepage;
  853. /* Allocate memory for MTD device structure and private data */
  854. host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
  855. NAND_MAX_OOBSIZE, GFP_KERNEL);
  856. if (!host)
  857. return -ENOMEM;
  858. host->data_buf = (uint8_t *)(host + 1);
  859. host->dev = &pdev->dev;
  860. /* structures must be linked */
  861. this = &host->nand;
  862. mtd = &host->mtd;
  863. mtd->priv = this;
  864. mtd->owner = THIS_MODULE;
  865. mtd->dev.parent = &pdev->dev;
  866. mtd->name = DRIVER_NAME;
  867. /* 50 us command delay time */
  868. this->chip_delay = 5;
  869. this->priv = host;
  870. this->dev_ready = mxc_nand_dev_ready;
  871. this->cmdfunc = mxc_nand_command;
  872. this->select_chip = mxc_nand_select_chip;
  873. this->read_byte = mxc_nand_read_byte;
  874. this->read_word = mxc_nand_read_word;
  875. this->write_buf = mxc_nand_write_buf;
  876. this->read_buf = mxc_nand_read_buf;
  877. this->verify_buf = mxc_nand_verify_buf;
  878. host->clk = clk_get(&pdev->dev, "nfc");
  879. if (IS_ERR(host->clk)) {
  880. err = PTR_ERR(host->clk);
  881. goto eclk;
  882. }
  883. clk_enable(host->clk);
  884. host->clk_act = 1;
  885. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  886. if (!res) {
  887. err = -ENODEV;
  888. goto eres;
  889. }
  890. host->base = ioremap(res->start, resource_size(res));
  891. if (!host->base) {
  892. err = -ENOMEM;
  893. goto eres;
  894. }
  895. host->main_area0 = host->base;
  896. if (nfc_is_v1() || nfc_is_v21()) {
  897. host->preset = preset_v1_v2;
  898. host->send_cmd = send_cmd_v1_v2;
  899. host->send_addr = send_addr_v1_v2;
  900. host->send_page = send_page_v1_v2;
  901. host->send_read_id = send_read_id_v1_v2;
  902. host->get_dev_status = get_dev_status_v1_v2;
  903. host->check_int = check_int_v1_v2;
  904. if (cpu_is_mx21())
  905. host->irq_control = irq_control_mx21;
  906. else
  907. host->irq_control = irq_control_v1_v2;
  908. }
  909. if (nfc_is_v21()) {
  910. host->regs = host->base + 0x1e00;
  911. host->spare0 = host->base + 0x1000;
  912. host->spare_len = 64;
  913. oob_smallpage = &nandv2_hw_eccoob_smallpage;
  914. oob_largepage = &nandv2_hw_eccoob_largepage;
  915. this->ecc.bytes = 9;
  916. } else if (nfc_is_v1()) {
  917. host->regs = host->base + 0xe00;
  918. host->spare0 = host->base + 0x800;
  919. host->spare_len = 16;
  920. oob_smallpage = &nandv1_hw_eccoob_smallpage;
  921. oob_largepage = &nandv1_hw_eccoob_largepage;
  922. this->ecc.bytes = 3;
  923. host->eccsize = 1;
  924. } else if (nfc_is_v3_2()) {
  925. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  926. if (!res) {
  927. err = -ENODEV;
  928. goto eirq;
  929. }
  930. host->regs_ip = ioremap(res->start, resource_size(res));
  931. if (!host->regs_ip) {
  932. err = -ENOMEM;
  933. goto eirq;
  934. }
  935. host->regs_axi = host->base + 0x1e00;
  936. host->spare0 = host->base + 0x1000;
  937. host->spare_len = 64;
  938. host->preset = preset_v3;
  939. host->send_cmd = send_cmd_v3;
  940. host->send_addr = send_addr_v3;
  941. host->send_page = send_page_v3;
  942. host->send_read_id = send_read_id_v3;
  943. host->check_int = check_int_v3;
  944. host->get_dev_status = get_dev_status_v3;
  945. host->irq_control = irq_control_v3;
  946. oob_smallpage = &nandv2_hw_eccoob_smallpage;
  947. oob_largepage = &nandv2_hw_eccoob_largepage;
  948. } else
  949. BUG();
  950. this->ecc.size = 512;
  951. this->ecc.layout = oob_smallpage;
  952. if (pdata->hw_ecc) {
  953. this->ecc.calculate = mxc_nand_calculate_ecc;
  954. this->ecc.hwctl = mxc_nand_enable_hwecc;
  955. if (nfc_is_v1())
  956. this->ecc.correct = mxc_nand_correct_data_v1;
  957. else
  958. this->ecc.correct = mxc_nand_correct_data_v2_v3;
  959. this->ecc.mode = NAND_ECC_HW;
  960. } else {
  961. this->ecc.mode = NAND_ECC_SOFT;
  962. }
  963. /* NAND bus width determines access funtions used by upper layer */
  964. if (pdata->width == 2)
  965. this->options |= NAND_BUSWIDTH_16;
  966. if (pdata->flash_bbt) {
  967. this->bbt_td = &bbt_main_descr;
  968. this->bbt_md = &bbt_mirror_descr;
  969. /* update flash based bbt */
  970. this->bbt_options |= NAND_BBT_USE_FLASH;
  971. }
  972. init_completion(&host->op_completion);
  973. host->irq = platform_get_irq(pdev, 0);
  974. /*
  975. * mask the interrupt. For i.MX21 explicitely call
  976. * irq_control_v1_v2 to use the mask bit. We can't call
  977. * disable_irq_nosync() for an interrupt we do not own yet.
  978. */
  979. if (cpu_is_mx21())
  980. irq_control_v1_v2(host, 0);
  981. else
  982. host->irq_control(host, 0);
  983. err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
  984. if (err)
  985. goto eirq;
  986. host->irq_control(host, 0);
  987. /*
  988. * Now that the interrupt is disabled make sure the interrupt
  989. * mask bit is cleared on i.MX21. Otherwise we can't read
  990. * the interrupt status bit on this machine.
  991. */
  992. if (cpu_is_mx21())
  993. irq_control_v1_v2(host, 1);
  994. /* first scan to find the device and get the page size */
  995. if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) {
  996. err = -ENXIO;
  997. goto escan;
  998. }
  999. /* Call preset again, with correct writesize this time */
  1000. host->preset(mtd);
  1001. if (mtd->writesize == 2048)
  1002. this->ecc.layout = oob_largepage;
  1003. if (nfc_is_v21() && mtd->writesize == 4096)
  1004. this->ecc.layout = &nandv2_hw_eccoob_4k;
  1005. if (this->ecc.mode == NAND_ECC_HW) {
  1006. if (nfc_is_v1())
  1007. this->ecc.strength = 1;
  1008. else
  1009. this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
  1010. }
  1011. /* second phase scan */
  1012. if (nand_scan_tail(mtd)) {
  1013. err = -ENXIO;
  1014. goto escan;
  1015. }
  1016. /* Register the partitions */
  1017. mtd_device_parse_register(mtd, part_probes, NULL, pdata->parts,
  1018. pdata->nr_parts);
  1019. platform_set_drvdata(pdev, host);
  1020. return 0;
  1021. escan:
  1022. free_irq(host->irq, host);
  1023. eirq:
  1024. if (host->regs_ip)
  1025. iounmap(host->regs_ip);
  1026. iounmap(host->base);
  1027. eres:
  1028. clk_put(host->clk);
  1029. eclk:
  1030. kfree(host);
  1031. return err;
  1032. }
  1033. static int __devexit mxcnd_remove(struct platform_device *pdev)
  1034. {
  1035. struct mxc_nand_host *host = platform_get_drvdata(pdev);
  1036. clk_put(host->clk);
  1037. platform_set_drvdata(pdev, NULL);
  1038. nand_release(&host->mtd);
  1039. free_irq(host->irq, host);
  1040. if (host->regs_ip)
  1041. iounmap(host->regs_ip);
  1042. iounmap(host->base);
  1043. kfree(host);
  1044. return 0;
  1045. }
  1046. static struct platform_driver mxcnd_driver = {
  1047. .driver = {
  1048. .name = DRIVER_NAME,
  1049. },
  1050. .remove = __devexit_p(mxcnd_remove),
  1051. };
  1052. static int __init mxc_nd_init(void)
  1053. {
  1054. return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
  1055. }
  1056. static void __exit mxc_nd_cleanup(void)
  1057. {
  1058. /* Unregister the device structure */
  1059. platform_driver_unregister(&mxcnd_driver);
  1060. }
  1061. module_init(mxc_nd_init);
  1062. module_exit(mxc_nd_cleanup);
  1063. MODULE_AUTHOR("Freescale Semiconductor, Inc.");
  1064. MODULE_DESCRIPTION("MXC NAND MTD driver");
  1065. MODULE_LICENSE("GPL");