1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621 |
- /*
- * Freescale GPMI NAND Flash Driver
- *
- * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
- * Copyright (C) 2008 Embedded Alley Solutions, Inc.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- */
- #include <linux/clk.h>
- #include <linux/slab.h>
- #include <linux/interrupt.h>
- #include <linux/module.h>
- #include <linux/mtd/gpmi-nand.h>
- #include <linux/mtd/partitions.h>
- #include "gpmi-nand.h"
- /* add our owner bbt descriptor */
- static uint8_t scan_ff_pattern[] = { 0xff };
- static struct nand_bbt_descr gpmi_bbt_descr = {
- .options = 0,
- .offs = 0,
- .len = 1,
- .pattern = scan_ff_pattern
- };
- /* We will use all the (page + OOB). */
- static struct nand_ecclayout gpmi_hw_ecclayout = {
- .eccbytes = 0,
- .eccpos = { 0, },
- .oobfree = { {.offset = 0, .length = 0} }
- };
- static irqreturn_t bch_irq(int irq, void *cookie)
- {
- struct gpmi_nand_data *this = cookie;
- gpmi_clear_bch(this);
- complete(&this->bch_done);
- return IRQ_HANDLED;
- }
- /*
- * Calculate the ECC strength by hand:
- * E : The ECC strength.
- * G : the length of Galois Field.
- * N : The chunk count of per page.
- * O : the oobsize of the NAND chip.
- * M : the metasize of per page.
- *
- * The formula is :
- * E * G * N
- * ------------ <= (O - M)
- * 8
- *
- * So, we get E by:
- * (O - M) * 8
- * E <= -------------
- * G * N
- */
- static inline int get_ecc_strength(struct gpmi_nand_data *this)
- {
- struct bch_geometry *geo = &this->bch_geometry;
- struct mtd_info *mtd = &this->mtd;
- int ecc_strength;
- ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
- / (geo->gf_len * geo->ecc_chunk_count);
- /* We need the minor even number. */
- return round_down(ecc_strength, 2);
- }
- int common_nfc_set_geometry(struct gpmi_nand_data *this)
- {
- struct bch_geometry *geo = &this->bch_geometry;
- struct mtd_info *mtd = &this->mtd;
- unsigned int metadata_size;
- unsigned int status_size;
- unsigned int block_mark_bit_offset;
- /*
- * The size of the metadata can be changed, though we set it to 10
- * bytes now. But it can't be too large, because we have to save
- * enough space for BCH.
- */
- geo->metadata_size = 10;
- /* The default for the length of Galois Field. */
- geo->gf_len = 13;
- /* The default for chunk size. There is no oobsize greater then 512. */
- geo->ecc_chunk_size = 512;
- while (geo->ecc_chunk_size < mtd->oobsize)
- geo->ecc_chunk_size *= 2; /* keep C >= O */
- geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
- /* We use the same ECC strength for all chunks. */
- geo->ecc_strength = get_ecc_strength(this);
- if (!geo->ecc_strength) {
- pr_err("We get a wrong ECC strength.\n");
- return -EINVAL;
- }
- geo->page_size = mtd->writesize + mtd->oobsize;
- geo->payload_size = mtd->writesize;
- /*
- * The auxiliary buffer contains the metadata and the ECC status. The
- * metadata is padded to the nearest 32-bit boundary. The ECC status
- * contains one byte for every ECC chunk, and is also padded to the
- * nearest 32-bit boundary.
- */
- metadata_size = ALIGN(geo->metadata_size, 4);
- status_size = ALIGN(geo->ecc_chunk_count, 4);
- geo->auxiliary_size = metadata_size + status_size;
- geo->auxiliary_status_offset = metadata_size;
- if (!this->swap_block_mark)
- return 0;
- /*
- * We need to compute the byte and bit offsets of
- * the physical block mark within the ECC-based view of the page.
- *
- * NAND chip with 2K page shows below:
- * (Block Mark)
- * | |
- * | D |
- * |<---->|
- * V V
- * +---+----------+-+----------+-+----------+-+----------+-+
- * | M | data |E| data |E| data |E| data |E|
- * +---+----------+-+----------+-+----------+-+----------+-+
- *
- * The position of block mark moves forward in the ECC-based view
- * of page, and the delta is:
- *
- * E * G * (N - 1)
- * D = (---------------- + M)
- * 8
- *
- * With the formula to compute the ECC strength, and the condition
- * : C >= O (C is the ecc chunk size)
- *
- * It's easy to deduce to the following result:
- *
- * E * G (O - M) C - M C - M
- * ----------- <= ------- <= -------- < ---------
- * 8 N N (N - 1)
- *
- * So, we get:
- *
- * E * G * (N - 1)
- * D = (---------------- + M) < C
- * 8
- *
- * The above inequality means the position of block mark
- * within the ECC-based view of the page is still in the data chunk,
- * and it's NOT in the ECC bits of the chunk.
- *
- * Use the following to compute the bit position of the
- * physical block mark within the ECC-based view of the page:
- * (page_size - D) * 8
- *
- * --Huang Shijie
- */
- block_mark_bit_offset = mtd->writesize * 8 -
- (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
- + geo->metadata_size * 8);
- geo->block_mark_byte_offset = block_mark_bit_offset / 8;
- geo->block_mark_bit_offset = block_mark_bit_offset % 8;
- return 0;
- }
- struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
- {
- int chipnr = this->current_chip;
- return this->dma_chans[chipnr];
- }
- /* Can we use the upper's buffer directly for DMA? */
- void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
- {
- struct scatterlist *sgl = &this->data_sgl;
- int ret;
- this->direct_dma_map_ok = true;
- /* first try to map the upper buffer directly */
- sg_init_one(sgl, this->upper_buf, this->upper_len);
- ret = dma_map_sg(this->dev, sgl, 1, dr);
- if (ret == 0) {
- /* We have to use our own DMA buffer. */
- sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
- if (dr == DMA_TO_DEVICE)
- memcpy(this->data_buffer_dma, this->upper_buf,
- this->upper_len);
- ret = dma_map_sg(this->dev, sgl, 1, dr);
- if (ret == 0)
- pr_err("map failed.\n");
- this->direct_dma_map_ok = false;
- }
- }
- /* This will be called after the DMA operation is finished. */
- static void dma_irq_callback(void *param)
- {
- struct gpmi_nand_data *this = param;
- struct completion *dma_c = &this->dma_done;
- switch (this->dma_type) {
- case DMA_FOR_COMMAND:
- dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
- break;
- case DMA_FOR_READ_DATA:
- dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
- if (this->direct_dma_map_ok == false)
- memcpy(this->upper_buf, this->data_buffer_dma,
- this->upper_len);
- break;
- case DMA_FOR_WRITE_DATA:
- dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
- break;
- case DMA_FOR_READ_ECC_PAGE:
- case DMA_FOR_WRITE_ECC_PAGE:
- /* We have to wait the BCH interrupt to finish. */
- break;
- default:
- pr_err("in wrong DMA operation.\n");
- }
- complete(dma_c);
- }
- int start_dma_without_bch_irq(struct gpmi_nand_data *this,
- struct dma_async_tx_descriptor *desc)
- {
- struct completion *dma_c = &this->dma_done;
- int err;
- init_completion(dma_c);
- desc->callback = dma_irq_callback;
- desc->callback_param = this;
- dmaengine_submit(desc);
- dma_async_issue_pending(get_dma_chan(this));
- /* Wait for the interrupt from the DMA block. */
- err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
- if (!err) {
- pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
- gpmi_dump_info(this);
- return -ETIMEDOUT;
- }
- return 0;
- }
- /*
- * This function is used in BCH reading or BCH writing pages.
- * It will wait for the BCH interrupt as long as ONE second.
- * Actually, we must wait for two interrupts :
- * [1] firstly the DMA interrupt and
- * [2] secondly the BCH interrupt.
- */
- int start_dma_with_bch_irq(struct gpmi_nand_data *this,
- struct dma_async_tx_descriptor *desc)
- {
- struct completion *bch_c = &this->bch_done;
- int err;
- /* Prepare to receive an interrupt from the BCH block. */
- init_completion(bch_c);
- /* start the DMA */
- start_dma_without_bch_irq(this, desc);
- /* Wait for the interrupt from the BCH block. */
- err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
- if (!err) {
- pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
- gpmi_dump_info(this);
- return -ETIMEDOUT;
- }
- return 0;
- }
- static int __devinit
- acquire_register_block(struct gpmi_nand_data *this, const char *res_name)
- {
- struct platform_device *pdev = this->pdev;
- struct resources *res = &this->resources;
- struct resource *r;
- void *p;
- r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
- if (!r) {
- pr_err("Can't get resource for %s\n", res_name);
- return -ENXIO;
- }
- p = ioremap(r->start, resource_size(r));
- if (!p) {
- pr_err("Can't remap %s\n", res_name);
- return -ENOMEM;
- }
- if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
- res->gpmi_regs = p;
- else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
- res->bch_regs = p;
- else
- pr_err("unknown resource name : %s\n", res_name);
- return 0;
- }
- static void release_register_block(struct gpmi_nand_data *this)
- {
- struct resources *res = &this->resources;
- if (res->gpmi_regs)
- iounmap(res->gpmi_regs);
- if (res->bch_regs)
- iounmap(res->bch_regs);
- res->gpmi_regs = NULL;
- res->bch_regs = NULL;
- }
- static int __devinit
- acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
- {
- struct platform_device *pdev = this->pdev;
- struct resources *res = &this->resources;
- const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
- struct resource *r;
- int err;
- r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
- if (!r) {
- pr_err("Can't get resource for %s\n", res_name);
- return -ENXIO;
- }
- err = request_irq(r->start, irq_h, 0, res_name, this);
- if (err) {
- pr_err("Can't own %s\n", res_name);
- return err;
- }
- res->bch_low_interrupt = r->start;
- res->bch_high_interrupt = r->end;
- return 0;
- }
- static void release_bch_irq(struct gpmi_nand_data *this)
- {
- struct resources *res = &this->resources;
- int i = res->bch_low_interrupt;
- for (; i <= res->bch_high_interrupt; i++)
- free_irq(i, this);
- }
- static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
- {
- struct gpmi_nand_data *this = param;
- struct resource *r = this->private;
- if (!mxs_dma_is_apbh(chan))
- return false;
- /*
- * only catch the GPMI dma channels :
- * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
- * (These four channels share the same IRQ!)
- *
- * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
- * (These eight channels share the same IRQ!)
- */
- if (r->start <= chan->chan_id && chan->chan_id <= r->end) {
- chan->private = &this->dma_data;
- return true;
- }
- return false;
- }
- static void release_dma_channels(struct gpmi_nand_data *this)
- {
- unsigned int i;
- for (i = 0; i < DMA_CHANS; i++)
- if (this->dma_chans[i]) {
- dma_release_channel(this->dma_chans[i]);
- this->dma_chans[i] = NULL;
- }
- }
- static int __devinit acquire_dma_channels(struct gpmi_nand_data *this)
- {
- struct platform_device *pdev = this->pdev;
- struct gpmi_nand_platform_data *pdata = this->pdata;
- struct resources *res = &this->resources;
- struct resource *r, *r_dma;
- unsigned int i;
- r = platform_get_resource_byname(pdev, IORESOURCE_DMA,
- GPMI_NAND_DMA_CHANNELS_RES_NAME);
- r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
- GPMI_NAND_DMA_INTERRUPT_RES_NAME);
- if (!r || !r_dma) {
- pr_err("Can't get resource for DMA\n");
- return -ENXIO;
- }
- /* used in gpmi_dma_filter() */
- this->private = r;
- for (i = r->start; i <= r->end; i++) {
- struct dma_chan *dma_chan;
- dma_cap_mask_t mask;
- if (i - r->start >= pdata->max_chip_count)
- break;
- dma_cap_zero(mask);
- dma_cap_set(DMA_SLAVE, mask);
- /* get the DMA interrupt */
- if (r_dma->start == r_dma->end) {
- /* only register the first. */
- if (i == r->start)
- this->dma_data.chan_irq = r_dma->start;
- else
- this->dma_data.chan_irq = NO_IRQ;
- } else
- this->dma_data.chan_irq = r_dma->start + (i - r->start);
- dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
- if (!dma_chan)
- goto acquire_err;
- /* fill the first empty item */
- this->dma_chans[i - r->start] = dma_chan;
- }
- res->dma_low_channel = r->start;
- res->dma_high_channel = i;
- return 0;
- acquire_err:
- pr_err("Can't acquire DMA channel %u\n", i);
- release_dma_channels(this);
- return -EINVAL;
- }
- static int __devinit acquire_resources(struct gpmi_nand_data *this)
- {
- struct resources *res = &this->resources;
- int ret;
- ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
- if (ret)
- goto exit_regs;
- ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
- if (ret)
- goto exit_regs;
- ret = acquire_bch_irq(this, bch_irq);
- if (ret)
- goto exit_regs;
- ret = acquire_dma_channels(this);
- if (ret)
- goto exit_dma_channels;
- res->clock = clk_get(&this->pdev->dev, NULL);
- if (IS_ERR(res->clock)) {
- pr_err("can not get the clock\n");
- ret = -ENOENT;
- goto exit_clock;
- }
- return 0;
- exit_clock:
- release_dma_channels(this);
- exit_dma_channels:
- release_bch_irq(this);
- exit_regs:
- release_register_block(this);
- return ret;
- }
- static void release_resources(struct gpmi_nand_data *this)
- {
- struct resources *r = &this->resources;
- clk_put(r->clock);
- release_register_block(this);
- release_bch_irq(this);
- release_dma_channels(this);
- }
- static int __devinit init_hardware(struct gpmi_nand_data *this)
- {
- int ret;
- /*
- * This structure contains the "safe" GPMI timing that should succeed
- * with any NAND Flash device
- * (although, with less-than-optimal performance).
- */
- struct nand_timing safe_timing = {
- .data_setup_in_ns = 80,
- .data_hold_in_ns = 60,
- .address_setup_in_ns = 25,
- .gpmi_sample_delay_in_ns = 6,
- .tREA_in_ns = -1,
- .tRLOH_in_ns = -1,
- .tRHOH_in_ns = -1,
- };
- /* Initialize the hardwares. */
- ret = gpmi_init(this);
- if (ret)
- return ret;
- this->timing = safe_timing;
- return 0;
- }
- static int read_page_prepare(struct gpmi_nand_data *this,
- void *destination, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- void **use_virt, dma_addr_t *use_phys)
- {
- struct device *dev = this->dev;
- if (virt_addr_valid(destination)) {
- dma_addr_t dest_phys;
- dest_phys = dma_map_single(dev, destination,
- length, DMA_FROM_DEVICE);
- if (dma_mapping_error(dev, dest_phys)) {
- if (alt_size < length) {
- pr_err("Alternate buffer is too small\n");
- return -ENOMEM;
- }
- goto map_failed;
- }
- *use_virt = destination;
- *use_phys = dest_phys;
- this->direct_dma_map_ok = true;
- return 0;
- }
- map_failed:
- *use_virt = alt_virt;
- *use_phys = alt_phys;
- this->direct_dma_map_ok = false;
- return 0;
- }
- static inline void read_page_end(struct gpmi_nand_data *this,
- void *destination, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- void *used_virt, dma_addr_t used_phys)
- {
- if (this->direct_dma_map_ok)
- dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
- }
- static inline void read_page_swap_end(struct gpmi_nand_data *this,
- void *destination, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- void *used_virt, dma_addr_t used_phys)
- {
- if (!this->direct_dma_map_ok)
- memcpy(destination, alt_virt, length);
- }
- static int send_page_prepare(struct gpmi_nand_data *this,
- const void *source, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- const void **use_virt, dma_addr_t *use_phys)
- {
- struct device *dev = this->dev;
- if (virt_addr_valid(source)) {
- dma_addr_t source_phys;
- source_phys = dma_map_single(dev, (void *)source, length,
- DMA_TO_DEVICE);
- if (dma_mapping_error(dev, source_phys)) {
- if (alt_size < length) {
- pr_err("Alternate buffer is too small\n");
- return -ENOMEM;
- }
- goto map_failed;
- }
- *use_virt = source;
- *use_phys = source_phys;
- return 0;
- }
- map_failed:
- /*
- * Copy the content of the source buffer into the alternate
- * buffer and set up the return values accordingly.
- */
- memcpy(alt_virt, source, length);
- *use_virt = alt_virt;
- *use_phys = alt_phys;
- return 0;
- }
- static void send_page_end(struct gpmi_nand_data *this,
- const void *source, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- const void *used_virt, dma_addr_t used_phys)
- {
- struct device *dev = this->dev;
- if (used_virt == source)
- dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
- }
- static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
- {
- struct device *dev = this->dev;
- if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
- dma_free_coherent(dev, this->page_buffer_size,
- this->page_buffer_virt,
- this->page_buffer_phys);
- kfree(this->cmd_buffer);
- kfree(this->data_buffer_dma);
- this->cmd_buffer = NULL;
- this->data_buffer_dma = NULL;
- this->page_buffer_virt = NULL;
- this->page_buffer_size = 0;
- }
- /* Allocate the DMA buffers */
- static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
- {
- struct bch_geometry *geo = &this->bch_geometry;
- struct device *dev = this->dev;
- /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
- this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA);
- if (this->cmd_buffer == NULL)
- goto error_alloc;
- /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
- this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA);
- if (this->data_buffer_dma == NULL)
- goto error_alloc;
- /*
- * [3] Allocate the page buffer.
- *
- * Both the payload buffer and the auxiliary buffer must appear on
- * 32-bit boundaries. We presume the size of the payload buffer is a
- * power of two and is much larger than four, which guarantees the
- * auxiliary buffer will appear on a 32-bit boundary.
- */
- this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
- this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
- &this->page_buffer_phys, GFP_DMA);
- if (!this->page_buffer_virt)
- goto error_alloc;
- /* Slice up the page buffer. */
- this->payload_virt = this->page_buffer_virt;
- this->payload_phys = this->page_buffer_phys;
- this->auxiliary_virt = this->payload_virt + geo->payload_size;
- this->auxiliary_phys = this->payload_phys + geo->payload_size;
- return 0;
- error_alloc:
- gpmi_free_dma_buffer(this);
- pr_err("allocate DMA buffer ret!!\n");
- return -ENOMEM;
- }
- static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- int ret;
- /*
- * Every operation begins with a command byte and a series of zero or
- * more address bytes. These are distinguished by either the Address
- * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
- * asserted. When MTD is ready to execute the command, it will deassert
- * both latch enables.
- *
- * Rather than run a separate DMA operation for every single byte, we
- * queue them up and run a single DMA operation for the entire series
- * of command and data bytes. NAND_CMD_NONE means the END of the queue.
- */
- if ((ctrl & (NAND_ALE | NAND_CLE))) {
- if (data != NAND_CMD_NONE)
- this->cmd_buffer[this->command_length++] = data;
- return;
- }
- if (!this->command_length)
- return;
- ret = gpmi_send_command(this);
- if (ret)
- pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
- this->command_length = 0;
- }
- static int gpmi_dev_ready(struct mtd_info *mtd)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- return gpmi_is_ready(this, this->current_chip);
- }
- static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- if ((this->current_chip < 0) && (chipnr >= 0))
- gpmi_begin(this);
- else if ((this->current_chip >= 0) && (chipnr < 0))
- gpmi_end(this);
- this->current_chip = chipnr;
- }
- static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- pr_debug("len is %d\n", len);
- this->upper_buf = buf;
- this->upper_len = len;
- gpmi_read_data(this);
- }
- static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- pr_debug("len is %d\n", len);
- this->upper_buf = (uint8_t *)buf;
- this->upper_len = len;
- gpmi_send_data(this);
- }
- static uint8_t gpmi_read_byte(struct mtd_info *mtd)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- uint8_t *buf = this->data_buffer_dma;
- gpmi_read_buf(mtd, buf, 1);
- return buf[0];
- }
- /*
- * Handles block mark swapping.
- * It can be called in swapping the block mark, or swapping it back,
- * because the the operations are the same.
- */
- static void block_mark_swapping(struct gpmi_nand_data *this,
- void *payload, void *auxiliary)
- {
- struct bch_geometry *nfc_geo = &this->bch_geometry;
- unsigned char *p;
- unsigned char *a;
- unsigned int bit;
- unsigned char mask;
- unsigned char from_data;
- unsigned char from_oob;
- if (!this->swap_block_mark)
- return;
- /*
- * If control arrives here, we're swapping. Make some convenience
- * variables.
- */
- bit = nfc_geo->block_mark_bit_offset;
- p = payload + nfc_geo->block_mark_byte_offset;
- a = auxiliary;
- /*
- * Get the byte from the data area that overlays the block mark. Since
- * the ECC engine applies its own view to the bits in the page, the
- * physical block mark won't (in general) appear on a byte boundary in
- * the data.
- */
- from_data = (p[0] >> bit) | (p[1] << (8 - bit));
- /* Get the byte from the OOB. */
- from_oob = a[0];
- /* Swap them. */
- a[0] = from_data;
- mask = (0x1 << bit) - 1;
- p[0] = (p[0] & mask) | (from_oob << bit);
- mask = ~0 << bit;
- p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
- }
- static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int page)
- {
- struct gpmi_nand_data *this = chip->priv;
- struct bch_geometry *nfc_geo = &this->bch_geometry;
- void *payload_virt;
- dma_addr_t payload_phys;
- void *auxiliary_virt;
- dma_addr_t auxiliary_phys;
- unsigned int i;
- unsigned char *status;
- unsigned int failed;
- unsigned int corrected;
- int ret;
- pr_debug("page number is : %d\n", page);
- ret = read_page_prepare(this, buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- &payload_virt, &payload_phys);
- if (ret) {
- pr_err("Inadequate DMA buffer\n");
- ret = -ENOMEM;
- return ret;
- }
- auxiliary_virt = this->auxiliary_virt;
- auxiliary_phys = this->auxiliary_phys;
- /* go! */
- ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
- read_page_end(this, buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- payload_virt, payload_phys);
- if (ret) {
- pr_err("Error in ECC-based read: %d\n", ret);
- goto exit_nfc;
- }
- /* handle the block mark swapping */
- block_mark_swapping(this, payload_virt, auxiliary_virt);
- /* Loop over status bytes, accumulating ECC status. */
- failed = 0;
- corrected = 0;
- status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
- for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
- if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
- continue;
- if (*status == STATUS_UNCORRECTABLE) {
- failed++;
- continue;
- }
- corrected += *status;
- }
- /*
- * Propagate ECC status to the owning MTD only when failed or
- * corrected times nearly reaches our ECC correction threshold.
- */
- if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
- mtd->ecc_stats.failed += failed;
- mtd->ecc_stats.corrected += corrected;
- }
- /*
- * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() for
- * details about our policy for delivering the OOB.
- *
- * We fill the caller's buffer with set bits, and then copy the block
- * mark to th caller's buffer. Note that, if block mark swapping was
- * necessary, it has already been done, so we can rely on the first
- * byte of the auxiliary buffer to contain the block mark.
- */
- memset(chip->oob_poi, ~0, mtd->oobsize);
- chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
- read_page_swap_end(this, buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- payload_virt, payload_phys);
- exit_nfc:
- return ret;
- }
- static void gpmi_ecc_write_page(struct mtd_info *mtd,
- struct nand_chip *chip, const uint8_t *buf)
- {
- struct gpmi_nand_data *this = chip->priv;
- struct bch_geometry *nfc_geo = &this->bch_geometry;
- const void *payload_virt;
- dma_addr_t payload_phys;
- const void *auxiliary_virt;
- dma_addr_t auxiliary_phys;
- int ret;
- pr_debug("ecc write page.\n");
- if (this->swap_block_mark) {
- /*
- * If control arrives here, we're doing block mark swapping.
- * Since we can't modify the caller's buffers, we must copy them
- * into our own.
- */
- memcpy(this->payload_virt, buf, mtd->writesize);
- payload_virt = this->payload_virt;
- payload_phys = this->payload_phys;
- memcpy(this->auxiliary_virt, chip->oob_poi,
- nfc_geo->auxiliary_size);
- auxiliary_virt = this->auxiliary_virt;
- auxiliary_phys = this->auxiliary_phys;
- /* Handle block mark swapping. */
- block_mark_swapping(this,
- (void *) payload_virt, (void *) auxiliary_virt);
- } else {
- /*
- * If control arrives here, we're not doing block mark swapping,
- * so we can to try and use the caller's buffers.
- */
- ret = send_page_prepare(this,
- buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- &payload_virt, &payload_phys);
- if (ret) {
- pr_err("Inadequate payload DMA buffer\n");
- return;
- }
- ret = send_page_prepare(this,
- chip->oob_poi, mtd->oobsize,
- this->auxiliary_virt, this->auxiliary_phys,
- nfc_geo->auxiliary_size,
- &auxiliary_virt, &auxiliary_phys);
- if (ret) {
- pr_err("Inadequate auxiliary DMA buffer\n");
- goto exit_auxiliary;
- }
- }
- /* Ask the NFC. */
- ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
- if (ret)
- pr_err("Error in ECC-based write: %d\n", ret);
- if (!this->swap_block_mark) {
- send_page_end(this, chip->oob_poi, mtd->oobsize,
- this->auxiliary_virt, this->auxiliary_phys,
- nfc_geo->auxiliary_size,
- auxiliary_virt, auxiliary_phys);
- exit_auxiliary:
- send_page_end(this, buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- payload_virt, payload_phys);
- }
- }
- /*
- * There are several places in this driver where we have to handle the OOB and
- * block marks. This is the function where things are the most complicated, so
- * this is where we try to explain it all. All the other places refer back to
- * here.
- *
- * These are the rules, in order of decreasing importance:
- *
- * 1) Nothing the caller does can be allowed to imperil the block mark.
- *
- * 2) In read operations, the first byte of the OOB we return must reflect the
- * true state of the block mark, no matter where that block mark appears in
- * the physical page.
- *
- * 3) ECC-based read operations return an OOB full of set bits (since we never
- * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
- * return).
- *
- * 4) "Raw" read operations return a direct view of the physical bytes in the
- * page, using the conventional definition of which bytes are data and which
- * are OOB. This gives the caller a way to see the actual, physical bytes
- * in the page, without the distortions applied by our ECC engine.
- *
- *
- * What we do for this specific read operation depends on two questions:
- *
- * 1) Are we doing a "raw" read, or an ECC-based read?
- *
- * 2) Are we using block mark swapping or transcription?
- *
- * There are four cases, illustrated by the following Karnaugh map:
- *
- * | Raw | ECC-based |
- * -------------+-------------------------+-------------------------+
- * | Read the conventional | |
- * | OOB at the end of the | |
- * Swapping | page and return it. It | |
- * | contains exactly what | |
- * | we want. | Read the block mark and |
- * -------------+-------------------------+ return it in a buffer |
- * | Read the conventional | full of set bits. |
- * | OOB at the end of the | |
- * | page and also the block | |
- * Transcribing | mark in the metadata. | |
- * | Copy the block mark | |
- * | into the first byte of | |
- * | the OOB. | |
- * -------------+-------------------------+-------------------------+
- *
- * Note that we break rule #4 in the Transcribing/Raw case because we're not
- * giving an accurate view of the actual, physical bytes in the page (we're
- * overwriting the block mark). That's OK because it's more important to follow
- * rule #2.
- *
- * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
- * easy. When reading a page, for example, the NAND Flash MTD code calls our
- * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
- * ECC-based or raw view of the page is implicit in which function it calls
- * (there is a similar pair of ECC-based/raw functions for writing).
- *
- * Since MTD assumes the OOB is not covered by ECC, there is no pair of
- * ECC-based/raw functions for reading or or writing the OOB. The fact that the
- * caller wants an ECC-based or raw view of the page is not propagated down to
- * this driver.
- */
- static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
- int page, int sndcmd)
- {
- struct gpmi_nand_data *this = chip->priv;
- pr_debug("page number is %d\n", page);
- /* clear the OOB buffer */
- memset(chip->oob_poi, ~0, mtd->oobsize);
- /* Read out the conventional OOB. */
- chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
- chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
- /*
- * Now, we want to make sure the block mark is correct. In the
- * Swapping/Raw case, we already have it. Otherwise, we need to
- * explicitly read it.
- */
- if (!this->swap_block_mark) {
- /* Read the block mark into the first byte of the OOB buffer. */
- chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
- chip->oob_poi[0] = chip->read_byte(mtd);
- }
- /*
- * Return true, indicating that the next call to this function must send
- * a command.
- */
- return true;
- }
- static int
- gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
- {
- /*
- * The BCH will use all the (page + oob).
- * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
- * But it can not stop some ioctls such MEMWRITEOOB which uses
- * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
- * these ioctls too.
- */
- return -EPERM;
- }
- static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- int block, ret = 0;
- uint8_t *block_mark;
- int column, page, status, chipnr;
- /* Get block number */
- block = (int)(ofs >> chip->bbt_erase_shift);
- if (chip->bbt)
- chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
- /* Do we have a flash based bad block table ? */
- if (chip->bbt_options & NAND_BBT_USE_FLASH)
- ret = nand_update_bbt(mtd, ofs);
- else {
- chipnr = (int)(ofs >> chip->chip_shift);
- chip->select_chip(mtd, chipnr);
- column = this->swap_block_mark ? mtd->writesize : 0;
- /* Write the block mark. */
- block_mark = this->data_buffer_dma;
- block_mark[0] = 0; /* bad block marker */
- /* Shift to get page */
- page = (int)(ofs >> chip->page_shift);
- chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
- chip->write_buf(mtd, block_mark, 1);
- chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
- status = chip->waitfunc(mtd, chip);
- if (status & NAND_STATUS_FAIL)
- ret = -EIO;
- chip->select_chip(mtd, -1);
- }
- if (!ret)
- mtd->ecc_stats.badblocks++;
- return ret;
- }
- static int nand_boot_set_geometry(struct gpmi_nand_data *this)
- {
- struct boot_rom_geometry *geometry = &this->rom_geometry;
- /*
- * Set the boot block stride size.
- *
- * In principle, we should be reading this from the OTP bits, since
- * that's where the ROM is going to get it. In fact, we don't have any
- * way to read the OTP bits, so we go with the default and hope for the
- * best.
- */
- geometry->stride_size_in_pages = 64;
- /*
- * Set the search area stride exponent.
- *
- * In principle, we should be reading this from the OTP bits, since
- * that's where the ROM is going to get it. In fact, we don't have any
- * way to read the OTP bits, so we go with the default and hope for the
- * best.
- */
- geometry->search_area_stride_exponent = 2;
- return 0;
- }
- static const char *fingerprint = "STMP";
- static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
- {
- struct boot_rom_geometry *rom_geo = &this->rom_geometry;
- struct device *dev = this->dev;
- struct mtd_info *mtd = &this->mtd;
- struct nand_chip *chip = &this->nand;
- unsigned int search_area_size_in_strides;
- unsigned int stride;
- unsigned int page;
- loff_t byte;
- uint8_t *buffer = chip->buffers->databuf;
- int saved_chip_number;
- int found_an_ncb_fingerprint = false;
- /* Compute the number of strides in a search area. */
- search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
- saved_chip_number = this->current_chip;
- chip->select_chip(mtd, 0);
- /*
- * Loop through the first search area, looking for the NCB fingerprint.
- */
- dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
- for (stride = 0; stride < search_area_size_in_strides; stride++) {
- /* Compute the page and byte addresses. */
- page = stride * rom_geo->stride_size_in_pages;
- byte = page * mtd->writesize;
- dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
- /*
- * Read the NCB fingerprint. The fingerprint is four bytes long
- * and starts in the 12th byte of the page.
- */
- chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
- chip->read_buf(mtd, buffer, strlen(fingerprint));
- /* Look for the fingerprint. */
- if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
- found_an_ncb_fingerprint = true;
- break;
- }
- }
- chip->select_chip(mtd, saved_chip_number);
- if (found_an_ncb_fingerprint)
- dev_dbg(dev, "\tFound a fingerprint\n");
- else
- dev_dbg(dev, "\tNo fingerprint found\n");
- return found_an_ncb_fingerprint;
- }
- /* Writes a transcription stamp. */
- static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
- {
- struct device *dev = this->dev;
- struct boot_rom_geometry *rom_geo = &this->rom_geometry;
- struct mtd_info *mtd = &this->mtd;
- struct nand_chip *chip = &this->nand;
- unsigned int block_size_in_pages;
- unsigned int search_area_size_in_strides;
- unsigned int search_area_size_in_pages;
- unsigned int search_area_size_in_blocks;
- unsigned int block;
- unsigned int stride;
- unsigned int page;
- loff_t byte;
- uint8_t *buffer = chip->buffers->databuf;
- int saved_chip_number;
- int status;
- /* Compute the search area geometry. */
- block_size_in_pages = mtd->erasesize / mtd->writesize;
- search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
- search_area_size_in_pages = search_area_size_in_strides *
- rom_geo->stride_size_in_pages;
- search_area_size_in_blocks =
- (search_area_size_in_pages + (block_size_in_pages - 1)) /
- block_size_in_pages;
- dev_dbg(dev, "Search Area Geometry :\n");
- dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
- dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
- dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
- /* Select chip 0. */
- saved_chip_number = this->current_chip;
- chip->select_chip(mtd, 0);
- /* Loop over blocks in the first search area, erasing them. */
- dev_dbg(dev, "Erasing the search area...\n");
- for (block = 0; block < search_area_size_in_blocks; block++) {
- /* Compute the page address. */
- page = block * block_size_in_pages;
- /* Erase this block. */
- dev_dbg(dev, "\tErasing block 0x%x\n", block);
- chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
- chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
- /* Wait for the erase to finish. */
- status = chip->waitfunc(mtd, chip);
- if (status & NAND_STATUS_FAIL)
- dev_err(dev, "[%s] Erase failed.\n", __func__);
- }
- /* Write the NCB fingerprint into the page buffer. */
- memset(buffer, ~0, mtd->writesize);
- memset(chip->oob_poi, ~0, mtd->oobsize);
- memcpy(buffer + 12, fingerprint, strlen(fingerprint));
- /* Loop through the first search area, writing NCB fingerprints. */
- dev_dbg(dev, "Writing NCB fingerprints...\n");
- for (stride = 0; stride < search_area_size_in_strides; stride++) {
- /* Compute the page and byte addresses. */
- page = stride * rom_geo->stride_size_in_pages;
- byte = page * mtd->writesize;
- /* Write the first page of the current stride. */
- dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
- chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
- chip->ecc.write_page_raw(mtd, chip, buffer);
- chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
- /* Wait for the write to finish. */
- status = chip->waitfunc(mtd, chip);
- if (status & NAND_STATUS_FAIL)
- dev_err(dev, "[%s] Write failed.\n", __func__);
- }
- /* Deselect chip 0. */
- chip->select_chip(mtd, saved_chip_number);
- return 0;
- }
- static int mx23_boot_init(struct gpmi_nand_data *this)
- {
- struct device *dev = this->dev;
- struct nand_chip *chip = &this->nand;
- struct mtd_info *mtd = &this->mtd;
- unsigned int block_count;
- unsigned int block;
- int chipnr;
- int page;
- loff_t byte;
- uint8_t block_mark;
- int ret = 0;
- /*
- * If control arrives here, we can't use block mark swapping, which
- * means we're forced to use transcription. First, scan for the
- * transcription stamp. If we find it, then we don't have to do
- * anything -- the block marks are already transcribed.
- */
- if (mx23_check_transcription_stamp(this))
- return 0;
- /*
- * If control arrives here, we couldn't find a transcription stamp, so
- * so we presume the block marks are in the conventional location.
- */
- dev_dbg(dev, "Transcribing bad block marks...\n");
- /* Compute the number of blocks in the entire medium. */
- block_count = chip->chipsize >> chip->phys_erase_shift;
- /*
- * Loop over all the blocks in the medium, transcribing block marks as
- * we go.
- */
- for (block = 0; block < block_count; block++) {
- /*
- * Compute the chip, page and byte addresses for this block's
- * conventional mark.
- */
- chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
- page = block << (chip->phys_erase_shift - chip->page_shift);
- byte = block << chip->phys_erase_shift;
- /* Send the command to read the conventional block mark. */
- chip->select_chip(mtd, chipnr);
- chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
- block_mark = chip->read_byte(mtd);
- chip->select_chip(mtd, -1);
- /*
- * Check if the block is marked bad. If so, we need to mark it
- * again, but this time the result will be a mark in the
- * location where we transcribe block marks.
- */
- if (block_mark != 0xff) {
- dev_dbg(dev, "Transcribing mark in block %u\n", block);
- ret = chip->block_markbad(mtd, byte);
- if (ret)
- dev_err(dev, "Failed to mark block bad with "
- "ret %d\n", ret);
- }
- }
- /* Write the stamp that indicates we've transcribed the block marks. */
- mx23_write_transcription_stamp(this);
- return 0;
- }
- static int nand_boot_init(struct gpmi_nand_data *this)
- {
- nand_boot_set_geometry(this);
- /* This is ROM arch-specific initilization before the BBT scanning. */
- if (GPMI_IS_MX23(this))
- return mx23_boot_init(this);
- return 0;
- }
- static int gpmi_set_geometry(struct gpmi_nand_data *this)
- {
- int ret;
- /* Free the temporary DMA memory for reading ID. */
- gpmi_free_dma_buffer(this);
- /* Set up the NFC geometry which is used by BCH. */
- ret = bch_set_geometry(this);
- if (ret) {
- pr_err("set geometry ret : %d\n", ret);
- return ret;
- }
- /* Alloc the new DMA buffers according to the pagesize and oobsize */
- return gpmi_alloc_dma_buffer(this);
- }
- static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this)
- {
- int ret;
- /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
- if (GPMI_IS_MX23(this))
- this->swap_block_mark = false;
- else
- this->swap_block_mark = true;
- /* Set up the medium geometry */
- ret = gpmi_set_geometry(this);
- if (ret)
- return ret;
- /* NAND boot init, depends on the gpmi_set_geometry(). */
- return nand_boot_init(this);
- }
- static int gpmi_scan_bbt(struct mtd_info *mtd)
- {
- struct nand_chip *chip = mtd->priv;
- struct gpmi_nand_data *this = chip->priv;
- int ret;
- /* Prepare for the BBT scan. */
- ret = gpmi_pre_bbt_scan(this);
- if (ret)
- return ret;
- /* use the default BBT implementation */
- return nand_default_bbt(mtd);
- }
- void gpmi_nfc_exit(struct gpmi_nand_data *this)
- {
- nand_release(&this->mtd);
- gpmi_free_dma_buffer(this);
- }
- static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this)
- {
- struct gpmi_nand_platform_data *pdata = this->pdata;
- struct mtd_info *mtd = &this->mtd;
- struct nand_chip *chip = &this->nand;
- int ret;
- /* init current chip */
- this->current_chip = -1;
- /* init the MTD data structures */
- mtd->priv = chip;
- mtd->name = "gpmi-nand";
- mtd->owner = THIS_MODULE;
- /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
- chip->priv = this;
- chip->select_chip = gpmi_select_chip;
- chip->cmd_ctrl = gpmi_cmd_ctrl;
- chip->dev_ready = gpmi_dev_ready;
- chip->read_byte = gpmi_read_byte;
- chip->read_buf = gpmi_read_buf;
- chip->write_buf = gpmi_write_buf;
- chip->ecc.read_page = gpmi_ecc_read_page;
- chip->ecc.write_page = gpmi_ecc_write_page;
- chip->ecc.read_oob = gpmi_ecc_read_oob;
- chip->ecc.write_oob = gpmi_ecc_write_oob;
- chip->scan_bbt = gpmi_scan_bbt;
- chip->badblock_pattern = &gpmi_bbt_descr;
- chip->block_markbad = gpmi_block_markbad;
- chip->options |= NAND_NO_SUBPAGE_WRITE;
- chip->ecc.mode = NAND_ECC_HW;
- chip->ecc.size = 1;
- chip->ecc.layout = &gpmi_hw_ecclayout;
- /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
- this->bch_geometry.payload_size = 1024;
- this->bch_geometry.auxiliary_size = 128;
- ret = gpmi_alloc_dma_buffer(this);
- if (ret)
- goto err_out;
- ret = nand_scan(mtd, pdata->max_chip_count);
- if (ret) {
- pr_err("Chip scan failed\n");
- goto err_out;
- }
- ret = mtd_device_parse_register(mtd, NULL, NULL,
- pdata->partitions, pdata->partition_count);
- if (ret)
- goto err_out;
- return 0;
- err_out:
- gpmi_nfc_exit(this);
- return ret;
- }
- static int __devinit gpmi_nand_probe(struct platform_device *pdev)
- {
- struct gpmi_nand_platform_data *pdata = pdev->dev.platform_data;
- struct gpmi_nand_data *this;
- int ret;
- this = kzalloc(sizeof(*this), GFP_KERNEL);
- if (!this) {
- pr_err("Failed to allocate per-device memory\n");
- return -ENOMEM;
- }
- platform_set_drvdata(pdev, this);
- this->pdev = pdev;
- this->dev = &pdev->dev;
- this->pdata = pdata;
- if (pdata->platform_init) {
- ret = pdata->platform_init();
- if (ret)
- goto platform_init_error;
- }
- ret = acquire_resources(this);
- if (ret)
- goto exit_acquire_resources;
- ret = init_hardware(this);
- if (ret)
- goto exit_nfc_init;
- ret = gpmi_nfc_init(this);
- if (ret)
- goto exit_nfc_init;
- return 0;
- exit_nfc_init:
- release_resources(this);
- platform_init_error:
- exit_acquire_resources:
- platform_set_drvdata(pdev, NULL);
- kfree(this);
- return ret;
- }
- static int __exit gpmi_nand_remove(struct platform_device *pdev)
- {
- struct gpmi_nand_data *this = platform_get_drvdata(pdev);
- gpmi_nfc_exit(this);
- release_resources(this);
- platform_set_drvdata(pdev, NULL);
- kfree(this);
- return 0;
- }
- static const struct platform_device_id gpmi_ids[] = {
- {
- .name = "imx23-gpmi-nand",
- .driver_data = IS_MX23,
- }, {
- .name = "imx28-gpmi-nand",
- .driver_data = IS_MX28,
- }, {},
- };
- static struct platform_driver gpmi_nand_driver = {
- .driver = {
- .name = "gpmi-nand",
- },
- .probe = gpmi_nand_probe,
- .remove = __exit_p(gpmi_nand_remove),
- .id_table = gpmi_ids,
- };
- static int __init gpmi_nand_init(void)
- {
- int err;
- err = platform_driver_register(&gpmi_nand_driver);
- if (err == 0)
- printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n");
- else
- pr_err("i.MX GPMI NAND driver registration failed\n");
- return err;
- }
- static void __exit gpmi_nand_exit(void)
- {
- platform_driver_unregister(&gpmi_nand_driver);
- }
- module_init(gpmi_nand_init);
- module_exit(gpmi_nand_exit);
- MODULE_AUTHOR("Freescale Semiconductor, Inc.");
- MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
- MODULE_LICENSE("GPL");
|