123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719 |
- /*
- * NAND Flash Controller Device Driver
- * Copyright © 2009-2010, Intel Corporation and its suppliers.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms and conditions of the GNU General Public License,
- * version 2, as published by the Free Software Foundation.
- *
- * This program is distributed in the hope it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- * more details.
- *
- * You should have received a copy of the GNU General Public License along with
- * this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
- *
- */
- #include <linux/interrupt.h>
- #include <linux/delay.h>
- #include <linux/dma-mapping.h>
- #include <linux/wait.h>
- #include <linux/mutex.h>
- #include <linux/slab.h>
- #include <linux/pci.h>
- #include <linux/mtd/mtd.h>
- #include <linux/module.h>
- #include "denali.h"
- MODULE_LICENSE("GPL");
- /* We define a module parameter that allows the user to override
- * the hardware and decide what timing mode should be used.
- */
- #define NAND_DEFAULT_TIMINGS -1
- static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
- module_param(onfi_timing_mode, int, S_IRUGO);
- MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
- " -1 indicates use default timings");
- #define DENALI_NAND_NAME "denali-nand"
- /* We define a macro here that combines all interrupts this driver uses into
- * a single constant value, for convenience. */
- #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
- INTR_STATUS__ECC_TRANSACTION_DONE | \
- INTR_STATUS__ECC_ERR | \
- INTR_STATUS__PROGRAM_FAIL | \
- INTR_STATUS__LOAD_COMP | \
- INTR_STATUS__PROGRAM_COMP | \
- INTR_STATUS__TIME_OUT | \
- INTR_STATUS__ERASE_FAIL | \
- INTR_STATUS__RST_COMP | \
- INTR_STATUS__ERASE_COMP)
- /* indicates whether or not the internal value for the flash bank is
- * valid or not */
- #define CHIP_SELECT_INVALID -1
- #define SUPPORT_8BITECC 1
- /* This macro divides two integers and rounds fractional values up
- * to the nearest integer value. */
- #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
- /* this macro allows us to convert from an MTD structure to our own
- * device context (denali) structure.
- */
- #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
- /* These constants are defined by the driver to enable common driver
- * configuration options. */
- #define SPARE_ACCESS 0x41
- #define MAIN_ACCESS 0x42
- #define MAIN_SPARE_ACCESS 0x43
- #define DENALI_READ 0
- #define DENALI_WRITE 0x100
- /* types of device accesses. We can issue commands and get status */
- #define COMMAND_CYCLE 0
- #define ADDR_CYCLE 1
- #define STATUS_CYCLE 2
- /* this is a helper macro that allows us to
- * format the bank into the proper bits for the controller */
- #define BANK(x) ((x) << 24)
- /* List of platforms this NAND controller has be integrated into */
- static const struct pci_device_id denali_pci_ids[] = {
- { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
- { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
- { /* end: all zeroes */ }
- };
- /* forward declarations */
- static void clear_interrupts(struct denali_nand_info *denali);
- static uint32_t wait_for_irq(struct denali_nand_info *denali,
- uint32_t irq_mask);
- static void denali_irq_enable(struct denali_nand_info *denali,
- uint32_t int_mask);
- static uint32_t read_interrupt_status(struct denali_nand_info *denali);
- /* Certain operations for the denali NAND controller use
- * an indexed mode to read/write data. The operation is
- * performed by writing the address value of the command
- * to the device memory followed by the data. This function
- * abstracts this common operation.
- */
- static void index_addr(struct denali_nand_info *denali,
- uint32_t address, uint32_t data)
- {
- iowrite32(address, denali->flash_mem);
- iowrite32(data, denali->flash_mem + 0x10);
- }
- /* Perform an indexed read of the device */
- static void index_addr_read_data(struct denali_nand_info *denali,
- uint32_t address, uint32_t *pdata)
- {
- iowrite32(address, denali->flash_mem);
- *pdata = ioread32(denali->flash_mem + 0x10);
- }
- /* We need to buffer some data for some of the NAND core routines.
- * The operations manage buffering that data. */
- static void reset_buf(struct denali_nand_info *denali)
- {
- denali->buf.head = denali->buf.tail = 0;
- }
- static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
- {
- BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
- denali->buf.buf[denali->buf.tail++] = byte;
- }
- /* reads the status of the device */
- static void read_status(struct denali_nand_info *denali)
- {
- uint32_t cmd = 0x0;
- /* initialize the data buffer to store status */
- reset_buf(denali);
- cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
- if (cmd)
- write_byte_to_buf(denali, NAND_STATUS_WP);
- else
- write_byte_to_buf(denali, 0);
- }
- /* resets a specific device connected to the core */
- static void reset_bank(struct denali_nand_info *denali)
- {
- uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS__RST_COMP |
- INTR_STATUS__TIME_OUT;
- clear_interrupts(denali);
- iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
- irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status & INTR_STATUS__TIME_OUT)
- dev_err(denali->dev, "reset bank failed.\n");
- }
- /* Reset the flash controller */
- static uint16_t denali_nand_reset(struct denali_nand_info *denali)
- {
- uint32_t i;
- dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
- __FILE__, __LINE__, __func__);
- for (i = 0 ; i < denali->max_banks; i++)
- iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
- denali->flash_reg + INTR_STATUS(i));
- for (i = 0 ; i < denali->max_banks; i++) {
- iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
- while (!(ioread32(denali->flash_reg +
- INTR_STATUS(i)) &
- (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
- cpu_relax();
- if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
- INTR_STATUS__TIME_OUT)
- dev_dbg(denali->dev,
- "NAND Reset operation timed out on bank %d\n", i);
- }
- for (i = 0; i < denali->max_banks; i++)
- iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
- denali->flash_reg + INTR_STATUS(i));
- return PASS;
- }
- /* this routine calculates the ONFI timing values for a given mode and
- * programs the clocking register accordingly. The mode is determined by
- * the get_onfi_nand_para routine.
- */
- static void nand_onfi_timing_set(struct denali_nand_info *denali,
- uint16_t mode)
- {
- uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
- uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
- uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
- uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
- uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
- uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
- uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
- uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
- uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
- uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
- uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
- uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
- uint16_t TclsRising = 1;
- uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
- uint16_t dv_window = 0;
- uint16_t en_lo, en_hi;
- uint16_t acc_clks;
- uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
- dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
- __FILE__, __LINE__, __func__);
- en_lo = CEIL_DIV(Trp[mode], CLK_X);
- en_hi = CEIL_DIV(Treh[mode], CLK_X);
- #if ONFI_BLOOM_TIME
- if ((en_hi * CLK_X) < (Treh[mode] + 2))
- en_hi++;
- #endif
- if ((en_lo + en_hi) * CLK_X < Trc[mode])
- en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
- if ((en_lo + en_hi) < CLK_MULTI)
- en_lo += CLK_MULTI - en_lo - en_hi;
- while (dv_window < 8) {
- data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
- data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
- data_invalid =
- data_invalid_rhoh <
- data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
- dv_window = data_invalid - Trea[mode];
- if (dv_window < 8)
- en_lo++;
- }
- acc_clks = CEIL_DIV(Trea[mode], CLK_X);
- while (((acc_clks * CLK_X) - Trea[mode]) < 3)
- acc_clks++;
- if ((data_invalid - acc_clks * CLK_X) < 2)
- dev_warn(denali->dev, "%s, Line %d: Warning!\n",
- __FILE__, __LINE__);
- addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
- re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
- re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
- we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
- cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
- if (!TclsRising)
- cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
- if (cs_cnt == 0)
- cs_cnt = 1;
- if (Tcea[mode]) {
- while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
- cs_cnt++;
- }
- #if MODE5_WORKAROUND
- if (mode == 5)
- acc_clks = 5;
- #endif
- /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
- if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
- (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
- acc_clks = 6;
- iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
- iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
- iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
- iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
- iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
- iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
- iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
- iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
- }
- /* queries the NAND device to see what ONFI modes it supports. */
- static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
- {
- int i;
- /* we needn't to do a reset here because driver has already
- * reset all the banks before
- * */
- if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
- ONFI_TIMING_MODE__VALUE))
- return FAIL;
- for (i = 5; i > 0; i--) {
- if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
- (0x01 << i))
- break;
- }
- nand_onfi_timing_set(denali, i);
- /* By now, all the ONFI devices we know support the page cache */
- /* rw feature. So here we enable the pipeline_rw_ahead feature */
- /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
- /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
- return PASS;
- }
- static void get_samsung_nand_para(struct denali_nand_info *denali,
- uint8_t device_id)
- {
- if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
- /* Set timing register values according to datasheet */
- iowrite32(5, denali->flash_reg + ACC_CLKS);
- iowrite32(20, denali->flash_reg + RE_2_WE);
- iowrite32(12, denali->flash_reg + WE_2_RE);
- iowrite32(14, denali->flash_reg + ADDR_2_DATA);
- iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
- iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
- iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
- }
- }
- static void get_toshiba_nand_para(struct denali_nand_info *denali)
- {
- uint32_t tmp;
- /* Workaround to fix a controller bug which reports a wrong */
- /* spare area size for some kind of Toshiba NAND device */
- if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
- (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
- iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
- ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- iowrite32(tmp,
- denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
- #if SUPPORT_15BITECC
- iowrite32(15, denali->flash_reg + ECC_CORRECTION);
- #elif SUPPORT_8BITECC
- iowrite32(8, denali->flash_reg + ECC_CORRECTION);
- #endif
- }
- }
- static void get_hynix_nand_para(struct denali_nand_info *denali,
- uint8_t device_id)
- {
- uint32_t main_size, spare_size;
- switch (device_id) {
- case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
- case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
- iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
- iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
- iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- main_size = 4096 *
- ioread32(denali->flash_reg + DEVICES_CONNECTED);
- spare_size = 224 *
- ioread32(denali->flash_reg + DEVICES_CONNECTED);
- iowrite32(main_size,
- denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
- iowrite32(spare_size,
- denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
- iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
- #if SUPPORT_15BITECC
- iowrite32(15, denali->flash_reg + ECC_CORRECTION);
- #elif SUPPORT_8BITECC
- iowrite32(8, denali->flash_reg + ECC_CORRECTION);
- #endif
- break;
- default:
- dev_warn(denali->dev,
- "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
- "Will use default parameter values instead.\n",
- device_id);
- }
- }
- /* determines how many NAND chips are connected to the controller. Note for
- * Intel CE4100 devices we don't support more than one device.
- */
- static void find_valid_banks(struct denali_nand_info *denali)
- {
- uint32_t id[denali->max_banks];
- int i;
- denali->total_used_banks = 1;
- for (i = 0; i < denali->max_banks; i++) {
- index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
- index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
- index_addr_read_data(denali,
- (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
- dev_dbg(denali->dev,
- "Return 1st ID for bank[%d]: %x\n", i, id[i]);
- if (i == 0) {
- if (!(id[i] & 0x0ff))
- break; /* WTF? */
- } else {
- if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
- denali->total_used_banks++;
- else
- break;
- }
- }
- if (denali->platform == INTEL_CE4100) {
- /* Platform limitations of the CE4100 device limit
- * users to a single chip solution for NAND.
- * Multichip support is not enabled.
- */
- if (denali->total_used_banks != 1) {
- dev_err(denali->dev,
- "Sorry, Intel CE4100 only supports "
- "a single NAND device.\n");
- BUG();
- }
- }
- dev_dbg(denali->dev,
- "denali->total_used_banks: %d\n", denali->total_used_banks);
- }
- /*
- * Use the configuration feature register to determine the maximum number of
- * banks that the hardware supports.
- */
- static void detect_max_banks(struct denali_nand_info *denali)
- {
- uint32_t features = ioread32(denali->flash_reg + FEATURES);
- denali->max_banks = 2 << (features & FEATURES__N_BANKS);
- }
- static void detect_partition_feature(struct denali_nand_info *denali)
- {
- /* For MRST platform, denali->fwblks represent the
- * number of blocks firmware is taken,
- * FW is in protect partition and MTD driver has no
- * permission to access it. So let driver know how many
- * blocks it can't touch.
- * */
- if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
- if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
- PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
- denali->fwblks =
- ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
- MIN_MAX_BANK__MIN_VALUE) *
- denali->blksperchip)
- +
- (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
- MIN_BLK_ADDR__VALUE);
- } else
- denali->fwblks = SPECTRA_START_BLOCK;
- } else
- denali->fwblks = SPECTRA_START_BLOCK;
- }
- static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
- {
- uint16_t status = PASS;
- uint32_t id_bytes[5], addr;
- uint8_t i, maf_id, device_id;
- dev_dbg(denali->dev,
- "%s, Line %d, Function: %s\n",
- __FILE__, __LINE__, __func__);
- /* Use read id method to get device ID and other
- * params. For some NAND chips, controller can't
- * report the correct device ID by reading from
- * DEVICE_ID register
- * */
- addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
- index_addr(denali, (uint32_t)addr | 0, 0x90);
- index_addr(denali, (uint32_t)addr | 1, 0);
- for (i = 0; i < 5; i++)
- index_addr_read_data(denali, addr | 2, &id_bytes[i]);
- maf_id = id_bytes[0];
- device_id = id_bytes[1];
- if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
- ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
- if (FAIL == get_onfi_nand_para(denali))
- return FAIL;
- } else if (maf_id == 0xEC) { /* Samsung NAND */
- get_samsung_nand_para(denali, device_id);
- } else if (maf_id == 0x98) { /* Toshiba NAND */
- get_toshiba_nand_para(denali);
- } else if (maf_id == 0xAD) { /* Hynix NAND */
- get_hynix_nand_para(denali, device_id);
- }
- dev_info(denali->dev,
- "Dump timing register values:"
- "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
- "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
- "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
- ioread32(denali->flash_reg + ACC_CLKS),
- ioread32(denali->flash_reg + RE_2_WE),
- ioread32(denali->flash_reg + RE_2_RE),
- ioread32(denali->flash_reg + WE_2_RE),
- ioread32(denali->flash_reg + ADDR_2_DATA),
- ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
- ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
- ioread32(denali->flash_reg + CS_SETUP_CNT));
- find_valid_banks(denali);
- detect_partition_feature(denali);
- /* If the user specified to override the default timings
- * with a specific ONFI mode, we apply those changes here.
- */
- if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
- nand_onfi_timing_set(denali, onfi_timing_mode);
- return status;
- }
- static void denali_set_intr_modes(struct denali_nand_info *denali,
- uint16_t INT_ENABLE)
- {
- dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
- __FILE__, __LINE__, __func__);
- if (INT_ENABLE)
- iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
- else
- iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
- }
- /* validation function to verify that the controlling software is making
- * a valid request
- */
- static inline bool is_flash_bank_valid(int flash_bank)
- {
- return (flash_bank >= 0 && flash_bank < 4);
- }
- static void denali_irq_init(struct denali_nand_info *denali)
- {
- uint32_t int_mask = 0;
- int i;
- /* Disable global interrupts */
- denali_set_intr_modes(denali, false);
- int_mask = DENALI_IRQ_ALL;
- /* Clear all status bits */
- for (i = 0; i < denali->max_banks; ++i)
- iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
- denali_irq_enable(denali, int_mask);
- }
- static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
- {
- denali_set_intr_modes(denali, false);
- free_irq(irqnum, denali);
- }
- static void denali_irq_enable(struct denali_nand_info *denali,
- uint32_t int_mask)
- {
- int i;
- for (i = 0; i < denali->max_banks; ++i)
- iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
- }
- /* This function only returns when an interrupt that this driver cares about
- * occurs. This is to reduce the overhead of servicing interrupts
- */
- static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
- {
- return read_interrupt_status(denali) & DENALI_IRQ_ALL;
- }
- /* Interrupts are cleared by writing a 1 to the appropriate status bit */
- static inline void clear_interrupt(struct denali_nand_info *denali,
- uint32_t irq_mask)
- {
- uint32_t intr_status_reg = 0;
- intr_status_reg = INTR_STATUS(denali->flash_bank);
- iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
- }
- static void clear_interrupts(struct denali_nand_info *denali)
- {
- uint32_t status = 0x0;
- spin_lock_irq(&denali->irq_lock);
- status = read_interrupt_status(denali);
- clear_interrupt(denali, status);
- denali->irq_status = 0x0;
- spin_unlock_irq(&denali->irq_lock);
- }
- static uint32_t read_interrupt_status(struct denali_nand_info *denali)
- {
- uint32_t intr_status_reg = 0;
- intr_status_reg = INTR_STATUS(denali->flash_bank);
- return ioread32(denali->flash_reg + intr_status_reg);
- }
- /* This is the interrupt service routine. It handles all interrupts
- * sent to this device. Note that on CE4100, this is a shared
- * interrupt.
- */
- static irqreturn_t denali_isr(int irq, void *dev_id)
- {
- struct denali_nand_info *denali = dev_id;
- uint32_t irq_status = 0x0;
- irqreturn_t result = IRQ_NONE;
- spin_lock(&denali->irq_lock);
- /* check to see if a valid NAND chip has
- * been selected.
- */
- if (is_flash_bank_valid(denali->flash_bank)) {
- /* check to see if controller generated
- * the interrupt, since this is a shared interrupt */
- irq_status = denali_irq_detected(denali);
- if (irq_status != 0) {
- /* handle interrupt */
- /* first acknowledge it */
- clear_interrupt(denali, irq_status);
- /* store the status in the device context for someone
- to read */
- denali->irq_status |= irq_status;
- /* notify anyone who cares that it happened */
- complete(&denali->complete);
- /* tell the OS that we've handled this */
- result = IRQ_HANDLED;
- }
- }
- spin_unlock(&denali->irq_lock);
- return result;
- }
- #define BANK(x) ((x) << 24)
- static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
- {
- unsigned long comp_res = 0;
- uint32_t intr_status = 0;
- bool retry = false;
- unsigned long timeout = msecs_to_jiffies(1000);
- do {
- comp_res =
- wait_for_completion_timeout(&denali->complete, timeout);
- spin_lock_irq(&denali->irq_lock);
- intr_status = denali->irq_status;
- if (intr_status & irq_mask) {
- denali->irq_status &= ~irq_mask;
- spin_unlock_irq(&denali->irq_lock);
- /* our interrupt was detected */
- break;
- } else {
- /* these are not the interrupts you are looking for -
- * need to wait again */
- spin_unlock_irq(&denali->irq_lock);
- retry = true;
- }
- } while (comp_res != 0);
- if (comp_res == 0) {
- /* timeout */
- printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
- intr_status, irq_mask);
- intr_status = 0;
- }
- return intr_status;
- }
- /* This helper function setups the registers for ECC and whether or not
- * the spare area will be transferred. */
- static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
- bool transfer_spare)
- {
- int ecc_en_flag = 0, transfer_spare_flag = 0;
- /* set ECC, transfer spare bits if needed */
- ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
- transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
- /* Enable spare area/ECC per user's request. */
- iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
- iowrite32(transfer_spare_flag,
- denali->flash_reg + TRANSFER_SPARE_REG);
- }
- /* sends a pipeline command operation to the controller. See the Denali NAND
- * controller's user guide for more information (section 4.2.3.6).
- */
- static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
- bool ecc_en,
- bool transfer_spare,
- int access_type,
- int op)
- {
- int status = PASS;
- uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
- irq_mask = 0;
- if (op == DENALI_READ)
- irq_mask = INTR_STATUS__LOAD_COMP;
- else if (op == DENALI_WRITE)
- irq_mask = 0;
- else
- BUG();
- setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
- /* clear interrupts */
- clear_interrupts(denali);
- addr = BANK(denali->flash_bank) | denali->page;
- if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
- cmd = MODE_01 | addr;
- iowrite32(cmd, denali->flash_mem);
- } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
- /* read spare area */
- cmd = MODE_10 | addr;
- index_addr(denali, (uint32_t)cmd, access_type);
- cmd = MODE_01 | addr;
- iowrite32(cmd, denali->flash_mem);
- } else if (op == DENALI_READ) {
- /* setup page read request for access type */
- cmd = MODE_10 | addr;
- index_addr(denali, (uint32_t)cmd, access_type);
- /* page 33 of the NAND controller spec indicates we should not
- use the pipeline commands in Spare area only mode. So we
- don't.
- */
- if (access_type == SPARE_ACCESS) {
- cmd = MODE_01 | addr;
- iowrite32(cmd, denali->flash_mem);
- } else {
- index_addr(denali, (uint32_t)cmd,
- 0x2000 | op | page_count);
- /* wait for command to be accepted
- * can always use status0 bit as the
- * mask is identical for each
- * bank. */
- irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status == 0) {
- dev_err(denali->dev,
- "cmd, page, addr on timeout "
- "(0x%x, 0x%x, 0x%x)\n",
- cmd, denali->page, addr);
- status = FAIL;
- } else {
- cmd = MODE_01 | addr;
- iowrite32(cmd, denali->flash_mem);
- }
- }
- }
- return status;
- }
- /* helper function that simply writes a buffer to the flash */
- static int write_data_to_flash_mem(struct denali_nand_info *denali,
- const uint8_t *buf,
- int len)
- {
- uint32_t i = 0, *buf32;
- /* verify that the len is a multiple of 4. see comment in
- * read_data_from_flash_mem() */
- BUG_ON((len % 4) != 0);
- /* write the data to the flash memory */
- buf32 = (uint32_t *)buf;
- for (i = 0; i < len / 4; i++)
- iowrite32(*buf32++, denali->flash_mem + 0x10);
- return i*4; /* intent is to return the number of bytes read */
- }
- /* helper function that simply reads a buffer from the flash */
- static int read_data_from_flash_mem(struct denali_nand_info *denali,
- uint8_t *buf,
- int len)
- {
- uint32_t i = 0, *buf32;
- /* we assume that len will be a multiple of 4, if not
- * it would be nice to know about it ASAP rather than
- * have random failures...
- * This assumption is based on the fact that this
- * function is designed to be used to read flash pages,
- * which are typically multiples of 4...
- */
- BUG_ON((len % 4) != 0);
- /* transfer the data from the flash */
- buf32 = (uint32_t *)buf;
- for (i = 0; i < len / 4; i++)
- *buf32++ = ioread32(denali->flash_mem + 0x10);
- return i*4; /* intent is to return the number of bytes read */
- }
- /* writes OOB data to the device */
- static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
- INTR_STATUS__PROGRAM_FAIL;
- int status = 0;
- denali->page = page;
- if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
- DENALI_WRITE) == PASS) {
- write_data_to_flash_mem(denali, buf, mtd->oobsize);
- /* wait for operation to complete */
- irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status == 0) {
- dev_err(denali->dev, "OOB write failed\n");
- status = -EIO;
- }
- } else {
- dev_err(denali->dev, "unable to send pipeline command\n");
- status = -EIO;
- }
- return status;
- }
- /* reads OOB data from the device */
- static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
- irq_status = 0, addr = 0x0, cmd = 0x0;
- denali->page = page;
- if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
- DENALI_READ) == PASS) {
- read_data_from_flash_mem(denali, buf, mtd->oobsize);
- /* wait for command to be accepted
- * can always use status0 bit as the mask is identical for each
- * bank. */
- irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status == 0)
- dev_err(denali->dev, "page on OOB timeout %d\n",
- denali->page);
- /* We set the device back to MAIN_ACCESS here as I observed
- * instability with the controller if you do a block erase
- * and the last transaction was a SPARE_ACCESS. Block erase
- * is reliable (according to the MTD test infrastructure)
- * if you are in MAIN_ACCESS.
- */
- addr = BANK(denali->flash_bank) | denali->page;
- cmd = MODE_10 | addr;
- index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
- }
- }
- /* this function examines buffers to see if they contain data that
- * indicate that the buffer is part of an erased region of flash.
- */
- bool is_erased(uint8_t *buf, int len)
- {
- int i = 0;
- for (i = 0; i < len; i++)
- if (buf[i] != 0xFF)
- return false;
- return true;
- }
- #define ECC_SECTOR_SIZE 512
- #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
- #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
- #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
- #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
- #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
- #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
- static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
- uint32_t irq_status)
- {
- bool check_erased_page = false;
- if (irq_status & INTR_STATUS__ECC_ERR) {
- /* read the ECC errors. we'll ignore them for now */
- uint32_t err_address = 0, err_correction_info = 0;
- uint32_t err_byte = 0, err_sector = 0, err_device = 0;
- uint32_t err_correction_value = 0;
- denali_set_intr_modes(denali, false);
- do {
- err_address = ioread32(denali->flash_reg +
- ECC_ERROR_ADDRESS);
- err_sector = ECC_SECTOR(err_address);
- err_byte = ECC_BYTE(err_address);
- err_correction_info = ioread32(denali->flash_reg +
- ERR_CORRECTION_INFO);
- err_correction_value =
- ECC_CORRECTION_VALUE(err_correction_info);
- err_device = ECC_ERR_DEVICE(err_correction_info);
- if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
- /* If err_byte is larger than ECC_SECTOR_SIZE,
- * means error happened in OOB, so we ignore
- * it. It's no need for us to correct it
- * err_device is represented the NAND error
- * bits are happened in if there are more
- * than one NAND connected.
- * */
- if (err_byte < ECC_SECTOR_SIZE) {
- int offset;
- offset = (err_sector *
- ECC_SECTOR_SIZE +
- err_byte) *
- denali->devnum +
- err_device;
- /* correct the ECC error */
- buf[offset] ^= err_correction_value;
- denali->mtd.ecc_stats.corrected++;
- }
- } else {
- /* if the error is not correctable, need to
- * look at the page to see if it is an erased
- * page. if so, then it's not a real ECC error
- * */
- check_erased_page = true;
- }
- } while (!ECC_LAST_ERR(err_correction_info));
- /* Once handle all ecc errors, controller will triger
- * a ECC_TRANSACTION_DONE interrupt, so here just wait
- * for a while for this interrupt
- * */
- while (!(read_interrupt_status(denali) &
- INTR_STATUS__ECC_TRANSACTION_DONE))
- cpu_relax();
- clear_interrupts(denali);
- denali_set_intr_modes(denali, true);
- }
- return check_erased_page;
- }
- /* programs the controller to either enable/disable DMA transfers */
- static void denali_enable_dma(struct denali_nand_info *denali, bool en)
- {
- uint32_t reg_val = 0x0;
- if (en)
- reg_val = DMA_ENABLE__FLAG;
- iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
- ioread32(denali->flash_reg + DMA_ENABLE);
- }
- /* setups the HW to perform the data DMA */
- static void denali_setup_dma(struct denali_nand_info *denali, int op)
- {
- uint32_t mode = 0x0;
- const int page_count = 1;
- dma_addr_t addr = denali->buf.dma_buf;
- mode = MODE_10 | BANK(denali->flash_bank);
- /* DMA is a four step process */
- /* 1. setup transfer type and # of pages */
- index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
- /* 2. set memory high address bits 23:8 */
- index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
- /* 3. set memory low address bits 23:8 */
- index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
- /* 4. interrupt when complete, burst len = 64 bytes*/
- index_addr(denali, mode | 0x14000, 0x2400);
- }
- /* writes a page. user specifies type, and this function handles the
- * configuration details. */
- static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf, bool raw_xfer)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- dma_addr_t addr = denali->buf.dma_buf;
- size_t size = denali->mtd.writesize + denali->mtd.oobsize;
- uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
- INTR_STATUS__PROGRAM_FAIL;
- /* if it is a raw xfer, we want to disable ecc, and send
- * the spare area.
- * !raw_xfer - enable ecc
- * raw_xfer - transfer spare
- */
- setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
- /* copy buffer into DMA buffer */
- memcpy(denali->buf.buf, buf, mtd->writesize);
- if (raw_xfer) {
- /* transfer the data to the spare area */
- memcpy(denali->buf.buf + mtd->writesize,
- chip->oob_poi,
- mtd->oobsize);
- }
- dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
- clear_interrupts(denali);
- denali_enable_dma(denali, true);
- denali_setup_dma(denali, DENALI_WRITE);
- /* wait for operation to complete */
- irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status == 0) {
- dev_err(denali->dev,
- "timeout on write_page (type = %d)\n",
- raw_xfer);
- denali->status =
- (irq_status & INTR_STATUS__PROGRAM_FAIL) ?
- NAND_STATUS_FAIL : PASS;
- }
- denali_enable_dma(denali, false);
- dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
- }
- /* NAND core entry points */
- /* this is the callback that the NAND core calls to write a page. Since
- * writing a page with ECC or without is similar, all the work is done
- * by write_page above.
- * */
- static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf)
- {
- /* for regular page writes, we let HW handle all the ECC
- * data written to the device. */
- write_page(mtd, chip, buf, false);
- }
- /* This is the callback that the NAND core calls to write a page without ECC.
- * raw access is similar to ECC page writes, so all the work is done in the
- * write_page() function above.
- */
- static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf)
- {
- /* for raw page writes, we want to disable ECC and simply write
- whatever data is in the buffer. */
- write_page(mtd, chip, buf, true);
- }
- static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
- int page)
- {
- return write_oob_data(mtd, chip->oob_poi, page);
- }
- static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
- int page, int sndcmd)
- {
- read_oob_data(mtd, chip->oob_poi, page);
- return 0; /* notify NAND core to send command to
- NAND device. */
- }
- static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int page)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- dma_addr_t addr = denali->buf.dma_buf;
- size_t size = denali->mtd.writesize + denali->mtd.oobsize;
- uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
- INTR_STATUS__ECC_ERR;
- bool check_erased_page = false;
- if (page != denali->page) {
- dev_err(denali->dev, "IN %s: page %d is not"
- " equal to denali->page %d, investigate!!",
- __func__, page, denali->page);
- BUG();
- }
- setup_ecc_for_xfer(denali, true, false);
- denali_enable_dma(denali, true);
- dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
- clear_interrupts(denali);
- denali_setup_dma(denali, DENALI_READ);
- /* wait for operation to complete */
- irq_status = wait_for_irq(denali, irq_mask);
- dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
- memcpy(buf, denali->buf.buf, mtd->writesize);
- check_erased_page = handle_ecc(denali, buf, irq_status);
- denali_enable_dma(denali, false);
- if (check_erased_page) {
- read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
- /* check ECC failures that may have occurred on erased pages */
- if (check_erased_page) {
- if (!is_erased(buf, denali->mtd.writesize))
- denali->mtd.ecc_stats.failed++;
- if (!is_erased(buf, denali->mtd.oobsize))
- denali->mtd.ecc_stats.failed++;
- }
- }
- return 0;
- }
- static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf, int page)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- dma_addr_t addr = denali->buf.dma_buf;
- size_t size = denali->mtd.writesize + denali->mtd.oobsize;
- uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
- if (page != denali->page) {
- dev_err(denali->dev, "IN %s: page %d is not"
- " equal to denali->page %d, investigate!!",
- __func__, page, denali->page);
- BUG();
- }
- setup_ecc_for_xfer(denali, false, true);
- denali_enable_dma(denali, true);
- dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
- clear_interrupts(denali);
- denali_setup_dma(denali, DENALI_READ);
- /* wait for operation to complete */
- irq_status = wait_for_irq(denali, irq_mask);
- dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
- denali_enable_dma(denali, false);
- memcpy(buf, denali->buf.buf, mtd->writesize);
- memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
- return 0;
- }
- static uint8_t denali_read_byte(struct mtd_info *mtd)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint8_t result = 0xff;
- if (denali->buf.head < denali->buf.tail)
- result = denali->buf.buf[denali->buf.head++];
- return result;
- }
- static void denali_select_chip(struct mtd_info *mtd, int chip)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- spin_lock_irq(&denali->irq_lock);
- denali->flash_bank = chip;
- spin_unlock_irq(&denali->irq_lock);
- }
- static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- int status = denali->status;
- denali->status = 0;
- return status;
- }
- static void denali_erase(struct mtd_info *mtd, int page)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t cmd = 0x0, irq_status = 0;
- /* clear interrupts */
- clear_interrupts(denali);
- /* setup page read request for access type */
- cmd = MODE_10 | BANK(denali->flash_bank) | page;
- index_addr(denali, (uint32_t)cmd, 0x1);
- /* wait for erase to complete or failure to occur */
- irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
- INTR_STATUS__ERASE_FAIL);
- denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ?
- NAND_STATUS_FAIL : PASS;
- }
- static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
- int page)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t addr, id;
- int i;
- switch (cmd) {
- case NAND_CMD_PAGEPROG:
- break;
- case NAND_CMD_STATUS:
- read_status(denali);
- break;
- case NAND_CMD_READID:
- case NAND_CMD_PARAM:
- reset_buf(denali);
- /*sometimes ManufactureId read from register is not right
- * e.g. some of Micron MT29F32G08QAA MLC NAND chips
- * So here we send READID cmd to NAND insteand
- * */
- addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
- index_addr(denali, (uint32_t)addr | 0, 0x90);
- index_addr(denali, (uint32_t)addr | 1, 0);
- for (i = 0; i < 5; i++) {
- index_addr_read_data(denali,
- (uint32_t)addr | 2,
- &id);
- write_byte_to_buf(denali, id);
- }
- break;
- case NAND_CMD_READ0:
- case NAND_CMD_SEQIN:
- denali->page = page;
- break;
- case NAND_CMD_RESET:
- reset_bank(denali);
- break;
- case NAND_CMD_READOOB:
- /* TODO: Read OOB data */
- break;
- default:
- printk(KERN_ERR ": unsupported command"
- " received 0x%x\n", cmd);
- break;
- }
- }
- /* stubs for ECC functions not used by the NAND core */
- static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
- uint8_t *ecc_code)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- dev_err(denali->dev,
- "denali_ecc_calculate called unexpectedly\n");
- BUG();
- return -EIO;
- }
- static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
- uint8_t *read_ecc, uint8_t *calc_ecc)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- dev_err(denali->dev,
- "denali_ecc_correct called unexpectedly\n");
- BUG();
- return -EIO;
- }
- static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
- {
- struct denali_nand_info *denali = mtd_to_denali(mtd);
- dev_err(denali->dev,
- "denali_ecc_hwctl called unexpectedly\n");
- BUG();
- }
- /* end NAND core entry points */
- /* Initialization code to bring the device up to a known good state */
- static void denali_hw_init(struct denali_nand_info *denali)
- {
- /* tell driver how many bit controller will skip before
- * writing ECC code in OOB, this register may be already
- * set by firmware. So we read this value out.
- * if this value is 0, just let it be.
- * */
- denali->bbtskipbytes = ioread32(denali->flash_reg +
- SPARE_AREA_SKIP_BYTES);
- detect_max_banks(denali);
- denali_nand_reset(denali);
- iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
- iowrite32(CHIP_EN_DONT_CARE__FLAG,
- denali->flash_reg + CHIP_ENABLE_DONT_CARE);
- iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
- /* Should set value for these registers when init */
- iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
- iowrite32(1, denali->flash_reg + ECC_ENABLE);
- denali_nand_timing_set(denali);
- denali_irq_init(denali);
- }
- /* Althogh controller spec said SLC ECC is forceb to be 4bit,
- * but denali controller in MRST only support 15bit and 8bit ECC
- * correction
- * */
- #define ECC_8BITS 14
- static struct nand_ecclayout nand_8bit_oob = {
- .eccbytes = 14,
- };
- #define ECC_15BITS 26
- static struct nand_ecclayout nand_15bit_oob = {
- .eccbytes = 26,
- };
- static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
- static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
- static struct nand_bbt_descr bbt_main_descr = {
- .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
- | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
- .offs = 8,
- .len = 4,
- .veroffs = 12,
- .maxblocks = 4,
- .pattern = bbt_pattern,
- };
- static struct nand_bbt_descr bbt_mirror_descr = {
- .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
- | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
- .offs = 8,
- .len = 4,
- .veroffs = 12,
- .maxblocks = 4,
- .pattern = mirror_pattern,
- };
- /* initialize driver data structures */
- void denali_drv_init(struct denali_nand_info *denali)
- {
- denali->idx = 0;
- /* setup interrupt handler */
- /* the completion object will be used to notify
- * the callee that the interrupt is done */
- init_completion(&denali->complete);
- /* the spinlock will be used to synchronize the ISR
- * with any element that might be access shared
- * data (interrupt status) */
- spin_lock_init(&denali->irq_lock);
- /* indicate that MTD has not selected a valid bank yet */
- denali->flash_bank = CHIP_SELECT_INVALID;
- /* initialize our irq_status variable to indicate no interrupts */
- denali->irq_status = 0;
- }
- /* driver entry point */
- static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
- {
- int ret = -ENODEV;
- resource_size_t csr_base, mem_base;
- unsigned long csr_len, mem_len;
- struct denali_nand_info *denali;
- denali = kzalloc(sizeof(*denali), GFP_KERNEL);
- if (!denali)
- return -ENOMEM;
- ret = pci_enable_device(dev);
- if (ret) {
- printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
- goto failed_alloc_memery;
- }
- if (id->driver_data == INTEL_CE4100) {
- /* Due to a silicon limitation, we can only support
- * ONFI timing mode 1 and below.
- */
- if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
- printk(KERN_ERR "Intel CE4100 only supports"
- " ONFI timing mode 1 or below\n");
- ret = -EINVAL;
- goto failed_enable_dev;
- }
- denali->platform = INTEL_CE4100;
- mem_base = pci_resource_start(dev, 0);
- mem_len = pci_resource_len(dev, 1);
- csr_base = pci_resource_start(dev, 1);
- csr_len = pci_resource_len(dev, 1);
- } else {
- denali->platform = INTEL_MRST;
- csr_base = pci_resource_start(dev, 0);
- csr_len = pci_resource_len(dev, 0);
- mem_base = pci_resource_start(dev, 1);
- mem_len = pci_resource_len(dev, 1);
- if (!mem_len) {
- mem_base = csr_base + csr_len;
- mem_len = csr_len;
- }
- }
- /* Is 32-bit DMA supported? */
- ret = dma_set_mask(&dev->dev, DMA_BIT_MASK(32));
- if (ret) {
- printk(KERN_ERR "Spectra: no usable DMA configuration\n");
- goto failed_enable_dev;
- }
- denali->buf.dma_buf = dma_map_single(&dev->dev, denali->buf.buf,
- DENALI_BUF_SIZE,
- DMA_BIDIRECTIONAL);
- if (dma_mapping_error(&dev->dev, denali->buf.dma_buf)) {
- dev_err(&dev->dev, "Spectra: failed to map DMA buffer\n");
- goto failed_enable_dev;
- }
- pci_set_master(dev);
- denali->dev = &dev->dev;
- denali->mtd.dev.parent = &dev->dev;
- ret = pci_request_regions(dev, DENALI_NAND_NAME);
- if (ret) {
- printk(KERN_ERR "Spectra: Unable to request memory regions\n");
- goto failed_dma_map;
- }
- denali->flash_reg = ioremap_nocache(csr_base, csr_len);
- if (!denali->flash_reg) {
- printk(KERN_ERR "Spectra: Unable to remap memory region\n");
- ret = -ENOMEM;
- goto failed_req_regions;
- }
- denali->flash_mem = ioremap_nocache(mem_base, mem_len);
- if (!denali->flash_mem) {
- printk(KERN_ERR "Spectra: ioremap_nocache failed!");
- ret = -ENOMEM;
- goto failed_remap_reg;
- }
- denali_hw_init(denali);
- denali_drv_init(denali);
- /* denali_isr register is done after all the hardware
- * initilization is finished*/
- if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
- DENALI_NAND_NAME, denali)) {
- printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
- ret = -ENODEV;
- goto failed_remap_mem;
- }
- /* now that our ISR is registered, we can enable interrupts */
- denali_set_intr_modes(denali, true);
- pci_set_drvdata(dev, denali);
- denali->mtd.name = "denali-nand";
- denali->mtd.owner = THIS_MODULE;
- denali->mtd.priv = &denali->nand;
- /* register the driver with the NAND core subsystem */
- denali->nand.select_chip = denali_select_chip;
- denali->nand.cmdfunc = denali_cmdfunc;
- denali->nand.read_byte = denali_read_byte;
- denali->nand.waitfunc = denali_waitfunc;
- /* scan for NAND devices attached to the controller
- * this is the first stage in a two step process to register
- * with the nand subsystem */
- if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
- ret = -ENXIO;
- goto failed_req_irq;
- }
- /* MTD supported page sizes vary by kernel. We validate our
- * kernel supports the device here.
- */
- if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
- ret = -ENODEV;
- printk(KERN_ERR "Spectra: device size not supported by this "
- "version of MTD.");
- goto failed_req_irq;
- }
- /* support for multi nand
- * MTD known nothing about multi nand,
- * so we should tell it the real pagesize
- * and anything necessery
- */
- denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
- denali->nand.chipsize <<= (denali->devnum - 1);
- denali->nand.page_shift += (denali->devnum - 1);
- denali->nand.pagemask = (denali->nand.chipsize >>
- denali->nand.page_shift) - 1;
- denali->nand.bbt_erase_shift += (denali->devnum - 1);
- denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
- denali->nand.chip_shift += (denali->devnum - 1);
- denali->mtd.writesize <<= (denali->devnum - 1);
- denali->mtd.oobsize <<= (denali->devnum - 1);
- denali->mtd.erasesize <<= (denali->devnum - 1);
- denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
- denali->bbtskipbytes *= denali->devnum;
- /* second stage of the NAND scan
- * this stage requires information regarding ECC and
- * bad block management. */
- /* Bad block management */
- denali->nand.bbt_td = &bbt_main_descr;
- denali->nand.bbt_md = &bbt_mirror_descr;
- /* skip the scan for now until we have OOB read and write support */
- denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
- denali->nand.options |= NAND_SKIP_BBTSCAN;
- denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
- /* Denali Controller only support 15bit and 8bit ECC in MRST,
- * so just let controller do 15bit ECC for MLC and 8bit ECC for
- * SLC if possible.
- * */
- if (denali->nand.cellinfo & 0xc &&
- (denali->mtd.oobsize > (denali->bbtskipbytes +
- ECC_15BITS * (denali->mtd.writesize /
- ECC_SECTOR_SIZE)))) {
- /* if MLC OOB size is large enough, use 15bit ECC*/
- denali->nand.ecc.strength = 15;
- denali->nand.ecc.layout = &nand_15bit_oob;
- denali->nand.ecc.bytes = ECC_15BITS;
- iowrite32(15, denali->flash_reg + ECC_CORRECTION);
- } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
- ECC_8BITS * (denali->mtd.writesize /
- ECC_SECTOR_SIZE))) {
- printk(KERN_ERR "Your NAND chip OOB is not large enough to"
- " contain 8bit ECC correction codes");
- goto failed_req_irq;
- } else {
- denali->nand.ecc.strength = 8;
- denali->nand.ecc.layout = &nand_8bit_oob;
- denali->nand.ecc.bytes = ECC_8BITS;
- iowrite32(8, denali->flash_reg + ECC_CORRECTION);
- }
- denali->nand.ecc.bytes *= denali->devnum;
- denali->nand.ecc.strength *= denali->devnum;
- denali->nand.ecc.layout->eccbytes *=
- denali->mtd.writesize / ECC_SECTOR_SIZE;
- denali->nand.ecc.layout->oobfree[0].offset =
- denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
- denali->nand.ecc.layout->oobfree[0].length =
- denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
- denali->bbtskipbytes;
- /* Let driver know the total blocks number and
- * how many blocks contained by each nand chip.
- * blksperchip will help driver to know how many
- * blocks is taken by FW.
- * */
- denali->totalblks = denali->mtd.size >>
- denali->nand.phys_erase_shift;
- denali->blksperchip = denali->totalblks / denali->nand.numchips;
- /* These functions are required by the NAND core framework, otherwise,
- * the NAND core will assert. However, we don't need them, so we'll stub
- * them out. */
- denali->nand.ecc.calculate = denali_ecc_calculate;
- denali->nand.ecc.correct = denali_ecc_correct;
- denali->nand.ecc.hwctl = denali_ecc_hwctl;
- /* override the default read operations */
- denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
- denali->nand.ecc.read_page = denali_read_page;
- denali->nand.ecc.read_page_raw = denali_read_page_raw;
- denali->nand.ecc.write_page = denali_write_page;
- denali->nand.ecc.write_page_raw = denali_write_page_raw;
- denali->nand.ecc.read_oob = denali_read_oob;
- denali->nand.ecc.write_oob = denali_write_oob;
- denali->nand.erase_cmd = denali_erase;
- if (nand_scan_tail(&denali->mtd)) {
- ret = -ENXIO;
- goto failed_req_irq;
- }
- ret = mtd_device_register(&denali->mtd, NULL, 0);
- if (ret) {
- dev_err(&dev->dev, "Spectra: Failed to register MTD: %d\n",
- ret);
- goto failed_req_irq;
- }
- return 0;
- failed_req_irq:
- denali_irq_cleanup(dev->irq, denali);
- failed_remap_mem:
- iounmap(denali->flash_mem);
- failed_remap_reg:
- iounmap(denali->flash_reg);
- failed_req_regions:
- pci_release_regions(dev);
- failed_dma_map:
- dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
- DMA_BIDIRECTIONAL);
- failed_enable_dev:
- pci_disable_device(dev);
- failed_alloc_memery:
- kfree(denali);
- return ret;
- }
- /* driver exit point */
- static void denali_pci_remove(struct pci_dev *dev)
- {
- struct denali_nand_info *denali = pci_get_drvdata(dev);
- nand_release(&denali->mtd);
- denali_irq_cleanup(dev->irq, denali);
- iounmap(denali->flash_reg);
- iounmap(denali->flash_mem);
- pci_release_regions(dev);
- pci_disable_device(dev);
- dma_unmap_single(&dev->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
- DMA_BIDIRECTIONAL);
- pci_set_drvdata(dev, NULL);
- kfree(denali);
- }
- MODULE_DEVICE_TABLE(pci, denali_pci_ids);
- static struct pci_driver denali_pci_driver = {
- .name = DENALI_NAND_NAME,
- .id_table = denali_pci_ids,
- .probe = denali_pci_probe,
- .remove = denali_pci_remove,
- };
- static int __devinit denali_init(void)
- {
- printk(KERN_INFO "Spectra MTD driver\n");
- return pci_register_driver(&denali_pci_driver);
- }
- /* Free memory */
- static void __devexit denali_exit(void)
- {
- pci_unregister_driver(&denali_pci_driver);
- }
- module_init(denali_init);
- module_exit(denali_exit);
|