mtdcore.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149
  1. /*
  2. * Core registration and callback routines for MTD
  3. * drivers and users.
  4. *
  5. * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
  6. * Copyright © 2006 Red Hat UK Limited
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/string.h>
  28. #include <linux/timer.h>
  29. #include <linux/major.h>
  30. #include <linux/fs.h>
  31. #include <linux/err.h>
  32. #include <linux/ioctl.h>
  33. #include <linux/init.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/idr.h>
  36. #include <linux/backing-dev.h>
  37. #include <linux/gfp.h>
  38. #include <linux/mtd/mtd.h>
  39. #include <linux/mtd/partitions.h>
  40. #include "mtdcore.h"
  41. /*
  42. * backing device capabilities for non-mappable devices (such as NAND flash)
  43. * - permits private mappings, copies are taken of the data
  44. */
  45. static struct backing_dev_info mtd_bdi_unmappable = {
  46. .capabilities = BDI_CAP_MAP_COPY,
  47. };
  48. /*
  49. * backing device capabilities for R/O mappable devices (such as ROM)
  50. * - permits private mappings, copies are taken of the data
  51. * - permits non-writable shared mappings
  52. */
  53. static struct backing_dev_info mtd_bdi_ro_mappable = {
  54. .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
  55. BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
  56. };
  57. /*
  58. * backing device capabilities for writable mappable devices (such as RAM)
  59. * - permits private mappings, copies are taken of the data
  60. * - permits non-writable shared mappings
  61. */
  62. static struct backing_dev_info mtd_bdi_rw_mappable = {
  63. .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
  64. BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
  65. BDI_CAP_WRITE_MAP),
  66. };
  67. static int mtd_cls_suspend(struct device *dev, pm_message_t state);
  68. static int mtd_cls_resume(struct device *dev);
  69. static struct class mtd_class = {
  70. .name = "mtd",
  71. .owner = THIS_MODULE,
  72. .suspend = mtd_cls_suspend,
  73. .resume = mtd_cls_resume,
  74. };
  75. static DEFINE_IDR(mtd_idr);
  76. /* These are exported solely for the purpose of mtd_blkdevs.c. You
  77. should not use them for _anything_ else */
  78. DEFINE_MUTEX(mtd_table_mutex);
  79. EXPORT_SYMBOL_GPL(mtd_table_mutex);
  80. struct mtd_info *__mtd_next_device(int i)
  81. {
  82. return idr_get_next(&mtd_idr, &i);
  83. }
  84. EXPORT_SYMBOL_GPL(__mtd_next_device);
  85. static LIST_HEAD(mtd_notifiers);
  86. #if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE)
  87. #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
  88. #else
  89. #define MTD_DEVT(index) 0
  90. #endif
  91. /* REVISIT once MTD uses the driver model better, whoever allocates
  92. * the mtd_info will probably want to use the release() hook...
  93. */
  94. static void mtd_release(struct device *dev)
  95. {
  96. struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
  97. dev_t index = MTD_DEVT(mtd->index);
  98. /* remove /dev/mtdXro node if needed */
  99. if (index)
  100. device_destroy(&mtd_class, index + 1);
  101. }
  102. static int mtd_cls_suspend(struct device *dev, pm_message_t state)
  103. {
  104. struct mtd_info *mtd = dev_get_drvdata(dev);
  105. return mtd ? mtd_suspend(mtd) : 0;
  106. }
  107. static int mtd_cls_resume(struct device *dev)
  108. {
  109. struct mtd_info *mtd = dev_get_drvdata(dev);
  110. if (mtd)
  111. mtd_resume(mtd);
  112. return 0;
  113. }
  114. static ssize_t mtd_type_show(struct device *dev,
  115. struct device_attribute *attr, char *buf)
  116. {
  117. struct mtd_info *mtd = dev_get_drvdata(dev);
  118. char *type;
  119. switch (mtd->type) {
  120. case MTD_ABSENT:
  121. type = "absent";
  122. break;
  123. case MTD_RAM:
  124. type = "ram";
  125. break;
  126. case MTD_ROM:
  127. type = "rom";
  128. break;
  129. case MTD_NORFLASH:
  130. type = "nor";
  131. break;
  132. case MTD_NANDFLASH:
  133. type = "nand";
  134. break;
  135. case MTD_DATAFLASH:
  136. type = "dataflash";
  137. break;
  138. case MTD_UBIVOLUME:
  139. type = "ubi";
  140. break;
  141. default:
  142. type = "unknown";
  143. }
  144. return snprintf(buf, PAGE_SIZE, "%s\n", type);
  145. }
  146. static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
  147. static ssize_t mtd_flags_show(struct device *dev,
  148. struct device_attribute *attr, char *buf)
  149. {
  150. struct mtd_info *mtd = dev_get_drvdata(dev);
  151. return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
  152. }
  153. static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
  154. static ssize_t mtd_size_show(struct device *dev,
  155. struct device_attribute *attr, char *buf)
  156. {
  157. struct mtd_info *mtd = dev_get_drvdata(dev);
  158. return snprintf(buf, PAGE_SIZE, "%llu\n",
  159. (unsigned long long)mtd->size);
  160. }
  161. static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
  162. static ssize_t mtd_erasesize_show(struct device *dev,
  163. struct device_attribute *attr, char *buf)
  164. {
  165. struct mtd_info *mtd = dev_get_drvdata(dev);
  166. return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
  167. }
  168. static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
  169. static ssize_t mtd_writesize_show(struct device *dev,
  170. struct device_attribute *attr, char *buf)
  171. {
  172. struct mtd_info *mtd = dev_get_drvdata(dev);
  173. return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
  174. }
  175. static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
  176. static ssize_t mtd_subpagesize_show(struct device *dev,
  177. struct device_attribute *attr, char *buf)
  178. {
  179. struct mtd_info *mtd = dev_get_drvdata(dev);
  180. unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
  181. return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
  182. }
  183. static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
  184. static ssize_t mtd_oobsize_show(struct device *dev,
  185. struct device_attribute *attr, char *buf)
  186. {
  187. struct mtd_info *mtd = dev_get_drvdata(dev);
  188. return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
  189. }
  190. static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
  191. static ssize_t mtd_numeraseregions_show(struct device *dev,
  192. struct device_attribute *attr, char *buf)
  193. {
  194. struct mtd_info *mtd = dev_get_drvdata(dev);
  195. return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
  196. }
  197. static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
  198. NULL);
  199. static ssize_t mtd_name_show(struct device *dev,
  200. struct device_attribute *attr, char *buf)
  201. {
  202. struct mtd_info *mtd = dev_get_drvdata(dev);
  203. return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
  204. }
  205. static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
  206. static struct attribute *mtd_attrs[] = {
  207. &dev_attr_type.attr,
  208. &dev_attr_flags.attr,
  209. &dev_attr_size.attr,
  210. &dev_attr_erasesize.attr,
  211. &dev_attr_writesize.attr,
  212. &dev_attr_subpagesize.attr,
  213. &dev_attr_oobsize.attr,
  214. &dev_attr_numeraseregions.attr,
  215. &dev_attr_name.attr,
  216. NULL,
  217. };
  218. static struct attribute_group mtd_group = {
  219. .attrs = mtd_attrs,
  220. };
  221. static const struct attribute_group *mtd_groups[] = {
  222. &mtd_group,
  223. NULL,
  224. };
  225. static struct device_type mtd_devtype = {
  226. .name = "mtd",
  227. .groups = mtd_groups,
  228. .release = mtd_release,
  229. };
  230. /**
  231. * add_mtd_device - register an MTD device
  232. * @mtd: pointer to new MTD device info structure
  233. *
  234. * Add a device to the list of MTD devices present in the system, and
  235. * notify each currently active MTD 'user' of its arrival. Returns
  236. * zero on success or 1 on failure, which currently will only happen
  237. * if there is insufficient memory or a sysfs error.
  238. */
  239. int add_mtd_device(struct mtd_info *mtd)
  240. {
  241. struct mtd_notifier *not;
  242. int i, error;
  243. if (!mtd->backing_dev_info) {
  244. switch (mtd->type) {
  245. case MTD_RAM:
  246. mtd->backing_dev_info = &mtd_bdi_rw_mappable;
  247. break;
  248. case MTD_ROM:
  249. mtd->backing_dev_info = &mtd_bdi_ro_mappable;
  250. break;
  251. default:
  252. mtd->backing_dev_info = &mtd_bdi_unmappable;
  253. break;
  254. }
  255. }
  256. BUG_ON(mtd->writesize == 0);
  257. mutex_lock(&mtd_table_mutex);
  258. do {
  259. if (!idr_pre_get(&mtd_idr, GFP_KERNEL))
  260. goto fail_locked;
  261. error = idr_get_new(&mtd_idr, mtd, &i);
  262. } while (error == -EAGAIN);
  263. if (error)
  264. goto fail_locked;
  265. mtd->index = i;
  266. mtd->usecount = 0;
  267. if (is_power_of_2(mtd->erasesize))
  268. mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
  269. else
  270. mtd->erasesize_shift = 0;
  271. if (is_power_of_2(mtd->writesize))
  272. mtd->writesize_shift = ffs(mtd->writesize) - 1;
  273. else
  274. mtd->writesize_shift = 0;
  275. mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
  276. mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
  277. /* Some chips always power up locked. Unlock them now */
  278. if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
  279. error = mtd_unlock(mtd, 0, mtd->size);
  280. if (error && error != -EOPNOTSUPP)
  281. printk(KERN_WARNING
  282. "%s: unlock failed, writes may not work\n",
  283. mtd->name);
  284. }
  285. /* Caller should have set dev.parent to match the
  286. * physical device.
  287. */
  288. mtd->dev.type = &mtd_devtype;
  289. mtd->dev.class = &mtd_class;
  290. mtd->dev.devt = MTD_DEVT(i);
  291. dev_set_name(&mtd->dev, "mtd%d", i);
  292. dev_set_drvdata(&mtd->dev, mtd);
  293. if (device_register(&mtd->dev) != 0)
  294. goto fail_added;
  295. if (MTD_DEVT(i))
  296. device_create(&mtd_class, mtd->dev.parent,
  297. MTD_DEVT(i) + 1,
  298. NULL, "mtd%dro", i);
  299. pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
  300. /* No need to get a refcount on the module containing
  301. the notifier, since we hold the mtd_table_mutex */
  302. list_for_each_entry(not, &mtd_notifiers, list)
  303. not->add(mtd);
  304. mutex_unlock(&mtd_table_mutex);
  305. /* We _know_ we aren't being removed, because
  306. our caller is still holding us here. So none
  307. of this try_ nonsense, and no bitching about it
  308. either. :) */
  309. __module_get(THIS_MODULE);
  310. return 0;
  311. fail_added:
  312. idr_remove(&mtd_idr, i);
  313. fail_locked:
  314. mutex_unlock(&mtd_table_mutex);
  315. return 1;
  316. }
  317. /**
  318. * del_mtd_device - unregister an MTD device
  319. * @mtd: pointer to MTD device info structure
  320. *
  321. * Remove a device from the list of MTD devices present in the system,
  322. * and notify each currently active MTD 'user' of its departure.
  323. * Returns zero on success or 1 on failure, which currently will happen
  324. * if the requested device does not appear to be present in the list.
  325. */
  326. int del_mtd_device(struct mtd_info *mtd)
  327. {
  328. int ret;
  329. struct mtd_notifier *not;
  330. mutex_lock(&mtd_table_mutex);
  331. if (idr_find(&mtd_idr, mtd->index) != mtd) {
  332. ret = -ENODEV;
  333. goto out_error;
  334. }
  335. /* No need to get a refcount on the module containing
  336. the notifier, since we hold the mtd_table_mutex */
  337. list_for_each_entry(not, &mtd_notifiers, list)
  338. not->remove(mtd);
  339. if (mtd->usecount) {
  340. printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
  341. mtd->index, mtd->name, mtd->usecount);
  342. ret = -EBUSY;
  343. } else {
  344. device_unregister(&mtd->dev);
  345. idr_remove(&mtd_idr, mtd->index);
  346. module_put(THIS_MODULE);
  347. ret = 0;
  348. }
  349. out_error:
  350. mutex_unlock(&mtd_table_mutex);
  351. return ret;
  352. }
  353. /**
  354. * mtd_device_parse_register - parse partitions and register an MTD device.
  355. *
  356. * @mtd: the MTD device to register
  357. * @types: the list of MTD partition probes to try, see
  358. * 'parse_mtd_partitions()' for more information
  359. * @parser_data: MTD partition parser-specific data
  360. * @parts: fallback partition information to register, if parsing fails;
  361. * only valid if %nr_parts > %0
  362. * @nr_parts: the number of partitions in parts, if zero then the full
  363. * MTD device is registered if no partition info is found
  364. *
  365. * This function aggregates MTD partitions parsing (done by
  366. * 'parse_mtd_partitions()') and MTD device and partitions registering. It
  367. * basically follows the most common pattern found in many MTD drivers:
  368. *
  369. * * It first tries to probe partitions on MTD device @mtd using parsers
  370. * specified in @types (if @types is %NULL, then the default list of parsers
  371. * is used, see 'parse_mtd_partitions()' for more information). If none are
  372. * found this functions tries to fallback to information specified in
  373. * @parts/@nr_parts.
  374. * * If any partitioning info was found, this function registers the found
  375. * partitions.
  376. * * If no partitions were found this function just registers the MTD device
  377. * @mtd and exits.
  378. *
  379. * Returns zero in case of success and a negative error code in case of failure.
  380. */
  381. int mtd_device_parse_register(struct mtd_info *mtd, const char **types,
  382. struct mtd_part_parser_data *parser_data,
  383. const struct mtd_partition *parts,
  384. int nr_parts)
  385. {
  386. int err;
  387. struct mtd_partition *real_parts;
  388. err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
  389. if (err <= 0 && nr_parts && parts) {
  390. real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
  391. GFP_KERNEL);
  392. if (!real_parts)
  393. err = -ENOMEM;
  394. else
  395. err = nr_parts;
  396. }
  397. if (err > 0) {
  398. err = add_mtd_partitions(mtd, real_parts, err);
  399. kfree(real_parts);
  400. } else if (err == 0) {
  401. err = add_mtd_device(mtd);
  402. if (err == 1)
  403. err = -ENODEV;
  404. }
  405. return err;
  406. }
  407. EXPORT_SYMBOL_GPL(mtd_device_parse_register);
  408. /**
  409. * mtd_device_unregister - unregister an existing MTD device.
  410. *
  411. * @master: the MTD device to unregister. This will unregister both the master
  412. * and any partitions if registered.
  413. */
  414. int mtd_device_unregister(struct mtd_info *master)
  415. {
  416. int err;
  417. err = del_mtd_partitions(master);
  418. if (err)
  419. return err;
  420. if (!device_is_registered(&master->dev))
  421. return 0;
  422. return del_mtd_device(master);
  423. }
  424. EXPORT_SYMBOL_GPL(mtd_device_unregister);
  425. /**
  426. * register_mtd_user - register a 'user' of MTD devices.
  427. * @new: pointer to notifier info structure
  428. *
  429. * Registers a pair of callbacks function to be called upon addition
  430. * or removal of MTD devices. Causes the 'add' callback to be immediately
  431. * invoked for each MTD device currently present in the system.
  432. */
  433. void register_mtd_user (struct mtd_notifier *new)
  434. {
  435. struct mtd_info *mtd;
  436. mutex_lock(&mtd_table_mutex);
  437. list_add(&new->list, &mtd_notifiers);
  438. __module_get(THIS_MODULE);
  439. mtd_for_each_device(mtd)
  440. new->add(mtd);
  441. mutex_unlock(&mtd_table_mutex);
  442. }
  443. EXPORT_SYMBOL_GPL(register_mtd_user);
  444. /**
  445. * unregister_mtd_user - unregister a 'user' of MTD devices.
  446. * @old: pointer to notifier info structure
  447. *
  448. * Removes a callback function pair from the list of 'users' to be
  449. * notified upon addition or removal of MTD devices. Causes the
  450. * 'remove' callback to be immediately invoked for each MTD device
  451. * currently present in the system.
  452. */
  453. int unregister_mtd_user (struct mtd_notifier *old)
  454. {
  455. struct mtd_info *mtd;
  456. mutex_lock(&mtd_table_mutex);
  457. module_put(THIS_MODULE);
  458. mtd_for_each_device(mtd)
  459. old->remove(mtd);
  460. list_del(&old->list);
  461. mutex_unlock(&mtd_table_mutex);
  462. return 0;
  463. }
  464. EXPORT_SYMBOL_GPL(unregister_mtd_user);
  465. /**
  466. * get_mtd_device - obtain a validated handle for an MTD device
  467. * @mtd: last known address of the required MTD device
  468. * @num: internal device number of the required MTD device
  469. *
  470. * Given a number and NULL address, return the num'th entry in the device
  471. * table, if any. Given an address and num == -1, search the device table
  472. * for a device with that address and return if it's still present. Given
  473. * both, return the num'th driver only if its address matches. Return
  474. * error code if not.
  475. */
  476. struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
  477. {
  478. struct mtd_info *ret = NULL, *other;
  479. int err = -ENODEV;
  480. mutex_lock(&mtd_table_mutex);
  481. if (num == -1) {
  482. mtd_for_each_device(other) {
  483. if (other == mtd) {
  484. ret = mtd;
  485. break;
  486. }
  487. }
  488. } else if (num >= 0) {
  489. ret = idr_find(&mtd_idr, num);
  490. if (mtd && mtd != ret)
  491. ret = NULL;
  492. }
  493. if (!ret) {
  494. ret = ERR_PTR(err);
  495. goto out;
  496. }
  497. err = __get_mtd_device(ret);
  498. if (err)
  499. ret = ERR_PTR(err);
  500. out:
  501. mutex_unlock(&mtd_table_mutex);
  502. return ret;
  503. }
  504. EXPORT_SYMBOL_GPL(get_mtd_device);
  505. int __get_mtd_device(struct mtd_info *mtd)
  506. {
  507. int err;
  508. if (!try_module_get(mtd->owner))
  509. return -ENODEV;
  510. if (mtd->_get_device) {
  511. err = mtd->_get_device(mtd);
  512. if (err) {
  513. module_put(mtd->owner);
  514. return err;
  515. }
  516. }
  517. mtd->usecount++;
  518. return 0;
  519. }
  520. EXPORT_SYMBOL_GPL(__get_mtd_device);
  521. /**
  522. * get_mtd_device_nm - obtain a validated handle for an MTD device by
  523. * device name
  524. * @name: MTD device name to open
  525. *
  526. * This function returns MTD device description structure in case of
  527. * success and an error code in case of failure.
  528. */
  529. struct mtd_info *get_mtd_device_nm(const char *name)
  530. {
  531. int err = -ENODEV;
  532. struct mtd_info *mtd = NULL, *other;
  533. mutex_lock(&mtd_table_mutex);
  534. mtd_for_each_device(other) {
  535. if (!strcmp(name, other->name)) {
  536. mtd = other;
  537. break;
  538. }
  539. }
  540. if (!mtd)
  541. goto out_unlock;
  542. err = __get_mtd_device(mtd);
  543. if (err)
  544. goto out_unlock;
  545. mutex_unlock(&mtd_table_mutex);
  546. return mtd;
  547. out_unlock:
  548. mutex_unlock(&mtd_table_mutex);
  549. return ERR_PTR(err);
  550. }
  551. EXPORT_SYMBOL_GPL(get_mtd_device_nm);
  552. void put_mtd_device(struct mtd_info *mtd)
  553. {
  554. mutex_lock(&mtd_table_mutex);
  555. __put_mtd_device(mtd);
  556. mutex_unlock(&mtd_table_mutex);
  557. }
  558. EXPORT_SYMBOL_GPL(put_mtd_device);
  559. void __put_mtd_device(struct mtd_info *mtd)
  560. {
  561. --mtd->usecount;
  562. BUG_ON(mtd->usecount < 0);
  563. if (mtd->_put_device)
  564. mtd->_put_device(mtd);
  565. module_put(mtd->owner);
  566. }
  567. EXPORT_SYMBOL_GPL(__put_mtd_device);
  568. /*
  569. * Erase is an asynchronous operation. Device drivers are supposed
  570. * to call instr->callback() whenever the operation completes, even
  571. * if it completes with a failure.
  572. * Callers are supposed to pass a callback function and wait for it
  573. * to be called before writing to the block.
  574. */
  575. int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
  576. {
  577. if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
  578. return -EINVAL;
  579. if (!(mtd->flags & MTD_WRITEABLE))
  580. return -EROFS;
  581. instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
  582. if (!instr->len) {
  583. instr->state = MTD_ERASE_DONE;
  584. mtd_erase_callback(instr);
  585. return 0;
  586. }
  587. return mtd->_erase(mtd, instr);
  588. }
  589. EXPORT_SYMBOL_GPL(mtd_erase);
  590. /*
  591. * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
  592. */
  593. int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
  594. void **virt, resource_size_t *phys)
  595. {
  596. *retlen = 0;
  597. *virt = NULL;
  598. if (phys)
  599. *phys = 0;
  600. if (!mtd->_point)
  601. return -EOPNOTSUPP;
  602. if (from < 0 || from > mtd->size || len > mtd->size - from)
  603. return -EINVAL;
  604. if (!len)
  605. return 0;
  606. return mtd->_point(mtd, from, len, retlen, virt, phys);
  607. }
  608. EXPORT_SYMBOL_GPL(mtd_point);
  609. /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
  610. int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  611. {
  612. if (!mtd->_point)
  613. return -EOPNOTSUPP;
  614. if (from < 0 || from > mtd->size || len > mtd->size - from)
  615. return -EINVAL;
  616. if (!len)
  617. return 0;
  618. return mtd->_unpoint(mtd, from, len);
  619. }
  620. EXPORT_SYMBOL_GPL(mtd_unpoint);
  621. /*
  622. * Allow NOMMU mmap() to directly map the device (if not NULL)
  623. * - return the address to which the offset maps
  624. * - return -ENOSYS to indicate refusal to do the mapping
  625. */
  626. unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
  627. unsigned long offset, unsigned long flags)
  628. {
  629. if (!mtd->_get_unmapped_area)
  630. return -EOPNOTSUPP;
  631. if (offset > mtd->size || len > mtd->size - offset)
  632. return -EINVAL;
  633. return mtd->_get_unmapped_area(mtd, len, offset, flags);
  634. }
  635. EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
  636. int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
  637. u_char *buf)
  638. {
  639. *retlen = 0;
  640. if (from < 0 || from > mtd->size || len > mtd->size - from)
  641. return -EINVAL;
  642. if (!len)
  643. return 0;
  644. return mtd->_read(mtd, from, len, retlen, buf);
  645. }
  646. EXPORT_SYMBOL_GPL(mtd_read);
  647. int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
  648. const u_char *buf)
  649. {
  650. *retlen = 0;
  651. if (to < 0 || to > mtd->size || len > mtd->size - to)
  652. return -EINVAL;
  653. if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
  654. return -EROFS;
  655. if (!len)
  656. return 0;
  657. return mtd->_write(mtd, to, len, retlen, buf);
  658. }
  659. EXPORT_SYMBOL_GPL(mtd_write);
  660. /*
  661. * In blackbox flight recorder like scenarios we want to make successful writes
  662. * in interrupt context. panic_write() is only intended to be called when its
  663. * known the kernel is about to panic and we need the write to succeed. Since
  664. * the kernel is not going to be running for much longer, this function can
  665. * break locks and delay to ensure the write succeeds (but not sleep).
  666. */
  667. int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
  668. const u_char *buf)
  669. {
  670. *retlen = 0;
  671. if (!mtd->_panic_write)
  672. return -EOPNOTSUPP;
  673. if (to < 0 || to > mtd->size || len > mtd->size - to)
  674. return -EINVAL;
  675. if (!(mtd->flags & MTD_WRITEABLE))
  676. return -EROFS;
  677. if (!len)
  678. return 0;
  679. return mtd->_panic_write(mtd, to, len, retlen, buf);
  680. }
  681. EXPORT_SYMBOL_GPL(mtd_panic_write);
  682. /*
  683. * Method to access the protection register area, present in some flash
  684. * devices. The user data is one time programmable but the factory data is read
  685. * only.
  686. */
  687. int mtd_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  688. size_t len)
  689. {
  690. if (!mtd->_get_fact_prot_info)
  691. return -EOPNOTSUPP;
  692. if (!len)
  693. return 0;
  694. return mtd->_get_fact_prot_info(mtd, buf, len);
  695. }
  696. EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
  697. int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
  698. size_t *retlen, u_char *buf)
  699. {
  700. *retlen = 0;
  701. if (!mtd->_read_fact_prot_reg)
  702. return -EOPNOTSUPP;
  703. if (!len)
  704. return 0;
  705. return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
  706. }
  707. EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
  708. int mtd_get_user_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  709. size_t len)
  710. {
  711. if (!mtd->_get_user_prot_info)
  712. return -EOPNOTSUPP;
  713. if (!len)
  714. return 0;
  715. return mtd->_get_user_prot_info(mtd, buf, len);
  716. }
  717. EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
  718. int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
  719. size_t *retlen, u_char *buf)
  720. {
  721. *retlen = 0;
  722. if (!mtd->_read_user_prot_reg)
  723. return -EOPNOTSUPP;
  724. if (!len)
  725. return 0;
  726. return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
  727. }
  728. EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
  729. int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
  730. size_t *retlen, u_char *buf)
  731. {
  732. *retlen = 0;
  733. if (!mtd->_write_user_prot_reg)
  734. return -EOPNOTSUPP;
  735. if (!len)
  736. return 0;
  737. return mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
  738. }
  739. EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
  740. int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
  741. {
  742. if (!mtd->_lock_user_prot_reg)
  743. return -EOPNOTSUPP;
  744. if (!len)
  745. return 0;
  746. return mtd->_lock_user_prot_reg(mtd, from, len);
  747. }
  748. EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
  749. /* Chip-supported device locking */
  750. int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  751. {
  752. if (!mtd->_lock)
  753. return -EOPNOTSUPP;
  754. if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
  755. return -EINVAL;
  756. if (!len)
  757. return 0;
  758. return mtd->_lock(mtd, ofs, len);
  759. }
  760. EXPORT_SYMBOL_GPL(mtd_lock);
  761. int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  762. {
  763. if (!mtd->_unlock)
  764. return -EOPNOTSUPP;
  765. if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
  766. return -EINVAL;
  767. if (!len)
  768. return 0;
  769. return mtd->_unlock(mtd, ofs, len);
  770. }
  771. EXPORT_SYMBOL_GPL(mtd_unlock);
  772. int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  773. {
  774. if (!mtd->_is_locked)
  775. return -EOPNOTSUPP;
  776. if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
  777. return -EINVAL;
  778. if (!len)
  779. return 0;
  780. return mtd->_is_locked(mtd, ofs, len);
  781. }
  782. EXPORT_SYMBOL_GPL(mtd_is_locked);
  783. int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
  784. {
  785. if (!mtd->_block_isbad)
  786. return 0;
  787. if (ofs < 0 || ofs > mtd->size)
  788. return -EINVAL;
  789. return mtd->_block_isbad(mtd, ofs);
  790. }
  791. EXPORT_SYMBOL_GPL(mtd_block_isbad);
  792. int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
  793. {
  794. if (!mtd->_block_markbad)
  795. return -EOPNOTSUPP;
  796. if (ofs < 0 || ofs > mtd->size)
  797. return -EINVAL;
  798. if (!(mtd->flags & MTD_WRITEABLE))
  799. return -EROFS;
  800. return mtd->_block_markbad(mtd, ofs);
  801. }
  802. EXPORT_SYMBOL_GPL(mtd_block_markbad);
  803. /*
  804. * default_mtd_writev - the default writev method
  805. * @mtd: mtd device description object pointer
  806. * @vecs: the vectors to write
  807. * @count: count of vectors in @vecs
  808. * @to: the MTD device offset to write to
  809. * @retlen: on exit contains the count of bytes written to the MTD device.
  810. *
  811. * This function returns zero in case of success and a negative error code in
  812. * case of failure.
  813. */
  814. static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
  815. unsigned long count, loff_t to, size_t *retlen)
  816. {
  817. unsigned long i;
  818. size_t totlen = 0, thislen;
  819. int ret = 0;
  820. for (i = 0; i < count; i++) {
  821. if (!vecs[i].iov_len)
  822. continue;
  823. ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
  824. vecs[i].iov_base);
  825. totlen += thislen;
  826. if (ret || thislen != vecs[i].iov_len)
  827. break;
  828. to += vecs[i].iov_len;
  829. }
  830. *retlen = totlen;
  831. return ret;
  832. }
  833. /*
  834. * mtd_writev - the vector-based MTD write method
  835. * @mtd: mtd device description object pointer
  836. * @vecs: the vectors to write
  837. * @count: count of vectors in @vecs
  838. * @to: the MTD device offset to write to
  839. * @retlen: on exit contains the count of bytes written to the MTD device.
  840. *
  841. * This function returns zero in case of success and a negative error code in
  842. * case of failure.
  843. */
  844. int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
  845. unsigned long count, loff_t to, size_t *retlen)
  846. {
  847. *retlen = 0;
  848. if (!(mtd->flags & MTD_WRITEABLE))
  849. return -EROFS;
  850. if (!mtd->_writev)
  851. return default_mtd_writev(mtd, vecs, count, to, retlen);
  852. return mtd->_writev(mtd, vecs, count, to, retlen);
  853. }
  854. EXPORT_SYMBOL_GPL(mtd_writev);
  855. /**
  856. * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
  857. * @mtd: mtd device description object pointer
  858. * @size: a pointer to the ideal or maximum size of the allocation, points
  859. * to the actual allocation size on success.
  860. *
  861. * This routine attempts to allocate a contiguous kernel buffer up to
  862. * the specified size, backing off the size of the request exponentially
  863. * until the request succeeds or until the allocation size falls below
  864. * the system page size. This attempts to make sure it does not adversely
  865. * impact system performance, so when allocating more than one page, we
  866. * ask the memory allocator to avoid re-trying, swapping, writing back
  867. * or performing I/O.
  868. *
  869. * Note, this function also makes sure that the allocated buffer is aligned to
  870. * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
  871. *
  872. * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
  873. * to handle smaller (i.e. degraded) buffer allocations under low- or
  874. * fragmented-memory situations where such reduced allocations, from a
  875. * requested ideal, are allowed.
  876. *
  877. * Returns a pointer to the allocated buffer on success; otherwise, NULL.
  878. */
  879. void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
  880. {
  881. gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
  882. __GFP_NORETRY | __GFP_NO_KSWAPD;
  883. size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
  884. void *kbuf;
  885. *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
  886. while (*size > min_alloc) {
  887. kbuf = kmalloc(*size, flags);
  888. if (kbuf)
  889. return kbuf;
  890. *size >>= 1;
  891. *size = ALIGN(*size, mtd->writesize);
  892. }
  893. /*
  894. * For the last resort allocation allow 'kmalloc()' to do all sorts of
  895. * things (write-back, dropping caches, etc) by using GFP_KERNEL.
  896. */
  897. return kmalloc(*size, GFP_KERNEL);
  898. }
  899. EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
  900. #ifdef CONFIG_PROC_FS
  901. /*====================================================================*/
  902. /* Support for /proc/mtd */
  903. static struct proc_dir_entry *proc_mtd;
  904. static int mtd_proc_show(struct seq_file *m, void *v)
  905. {
  906. struct mtd_info *mtd;
  907. seq_puts(m, "dev: size erasesize name\n");
  908. mutex_lock(&mtd_table_mutex);
  909. mtd_for_each_device(mtd) {
  910. seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
  911. mtd->index, (unsigned long long)mtd->size,
  912. mtd->erasesize, mtd->name);
  913. }
  914. mutex_unlock(&mtd_table_mutex);
  915. return 0;
  916. }
  917. static int mtd_proc_open(struct inode *inode, struct file *file)
  918. {
  919. return single_open(file, mtd_proc_show, NULL);
  920. }
  921. static const struct file_operations mtd_proc_ops = {
  922. .open = mtd_proc_open,
  923. .read = seq_read,
  924. .llseek = seq_lseek,
  925. .release = single_release,
  926. };
  927. #endif /* CONFIG_PROC_FS */
  928. /*====================================================================*/
  929. /* Init code */
  930. static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
  931. {
  932. int ret;
  933. ret = bdi_init(bdi);
  934. if (!ret)
  935. ret = bdi_register(bdi, NULL, name);
  936. if (ret)
  937. bdi_destroy(bdi);
  938. return ret;
  939. }
  940. static int __init init_mtd(void)
  941. {
  942. int ret;
  943. ret = class_register(&mtd_class);
  944. if (ret)
  945. goto err_reg;
  946. ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
  947. if (ret)
  948. goto err_bdi1;
  949. ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
  950. if (ret)
  951. goto err_bdi2;
  952. ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
  953. if (ret)
  954. goto err_bdi3;
  955. #ifdef CONFIG_PROC_FS
  956. proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
  957. #endif /* CONFIG_PROC_FS */
  958. return 0;
  959. err_bdi3:
  960. bdi_destroy(&mtd_bdi_ro_mappable);
  961. err_bdi2:
  962. bdi_destroy(&mtd_bdi_unmappable);
  963. err_bdi1:
  964. class_unregister(&mtd_class);
  965. err_reg:
  966. pr_err("Error registering mtd class or bdi: %d\n", ret);
  967. return ret;
  968. }
  969. static void __exit cleanup_mtd(void)
  970. {
  971. #ifdef CONFIG_PROC_FS
  972. if (proc_mtd)
  973. remove_proc_entry( "mtd", NULL);
  974. #endif /* CONFIG_PROC_FS */
  975. class_unregister(&mtd_class);
  976. bdi_destroy(&mtd_bdi_unmappable);
  977. bdi_destroy(&mtd_bdi_ro_mappable);
  978. bdi_destroy(&mtd_bdi_rw_mappable);
  979. }
  980. module_init(init_mtd);
  981. module_exit(cleanup_mtd);
  982. MODULE_LICENSE("GPL");
  983. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  984. MODULE_DESCRIPTION("Core MTD registration and access routines");