addr.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461
  1. /*
  2. * Copyright (c) 2005 Voltaire Inc. All rights reserved.
  3. * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
  4. * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
  5. * Copyright (c) 2005 Intel Corporation. All rights reserved.
  6. *
  7. * This software is available to you under a choice of one of two
  8. * licenses. You may choose to be licensed under the terms of the GNU
  9. * General Public License (GPL) Version 2, available from the file
  10. * COPYING in the main directory of this source tree, or the
  11. * OpenIB.org BSD license below:
  12. *
  13. * Redistribution and use in source and binary forms, with or
  14. * without modification, are permitted provided that the following
  15. * conditions are met:
  16. *
  17. * - Redistributions of source code must retain the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer.
  20. *
  21. * - Redistributions in binary form must reproduce the above
  22. * copyright notice, this list of conditions and the following
  23. * disclaimer in the documentation and/or other materials
  24. * provided with the distribution.
  25. *
  26. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33. * SOFTWARE.
  34. */
  35. #include <linux/mutex.h>
  36. #include <linux/inetdevice.h>
  37. #include <linux/slab.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/module.h>
  40. #include <net/arp.h>
  41. #include <net/neighbour.h>
  42. #include <net/route.h>
  43. #include <net/netevent.h>
  44. #include <net/addrconf.h>
  45. #include <net/ip6_route.h>
  46. #include <rdma/ib_addr.h>
  47. MODULE_AUTHOR("Sean Hefty");
  48. MODULE_DESCRIPTION("IB Address Translation");
  49. MODULE_LICENSE("Dual BSD/GPL");
  50. struct addr_req {
  51. struct list_head list;
  52. struct sockaddr_storage src_addr;
  53. struct sockaddr_storage dst_addr;
  54. struct rdma_dev_addr *addr;
  55. struct rdma_addr_client *client;
  56. void *context;
  57. void (*callback)(int status, struct sockaddr *src_addr,
  58. struct rdma_dev_addr *addr, void *context);
  59. unsigned long timeout;
  60. int status;
  61. };
  62. static void process_req(struct work_struct *work);
  63. static DEFINE_MUTEX(lock);
  64. static LIST_HEAD(req_list);
  65. static DECLARE_DELAYED_WORK(work, process_req);
  66. static struct workqueue_struct *addr_wq;
  67. void rdma_addr_register_client(struct rdma_addr_client *client)
  68. {
  69. atomic_set(&client->refcount, 1);
  70. init_completion(&client->comp);
  71. }
  72. EXPORT_SYMBOL(rdma_addr_register_client);
  73. static inline void put_client(struct rdma_addr_client *client)
  74. {
  75. if (atomic_dec_and_test(&client->refcount))
  76. complete(&client->comp);
  77. }
  78. void rdma_addr_unregister_client(struct rdma_addr_client *client)
  79. {
  80. put_client(client);
  81. wait_for_completion(&client->comp);
  82. }
  83. EXPORT_SYMBOL(rdma_addr_unregister_client);
  84. int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
  85. const unsigned char *dst_dev_addr)
  86. {
  87. dev_addr->dev_type = dev->type;
  88. memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
  89. memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
  90. if (dst_dev_addr)
  91. memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
  92. dev_addr->bound_dev_if = dev->ifindex;
  93. return 0;
  94. }
  95. EXPORT_SYMBOL(rdma_copy_addr);
  96. int rdma_translate_ip(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
  97. {
  98. struct net_device *dev;
  99. int ret = -EADDRNOTAVAIL;
  100. if (dev_addr->bound_dev_if) {
  101. dev = dev_get_by_index(&init_net, dev_addr->bound_dev_if);
  102. if (!dev)
  103. return -ENODEV;
  104. ret = rdma_copy_addr(dev_addr, dev, NULL);
  105. dev_put(dev);
  106. return ret;
  107. }
  108. switch (addr->sa_family) {
  109. case AF_INET:
  110. dev = ip_dev_find(&init_net,
  111. ((struct sockaddr_in *) addr)->sin_addr.s_addr);
  112. if (!dev)
  113. return ret;
  114. ret = rdma_copy_addr(dev_addr, dev, NULL);
  115. dev_put(dev);
  116. break;
  117. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  118. case AF_INET6:
  119. rcu_read_lock();
  120. for_each_netdev_rcu(&init_net, dev) {
  121. if (ipv6_chk_addr(&init_net,
  122. &((struct sockaddr_in6 *) addr)->sin6_addr,
  123. dev, 1)) {
  124. ret = rdma_copy_addr(dev_addr, dev, NULL);
  125. break;
  126. }
  127. }
  128. rcu_read_unlock();
  129. break;
  130. #endif
  131. }
  132. return ret;
  133. }
  134. EXPORT_SYMBOL(rdma_translate_ip);
  135. static void set_timeout(unsigned long time)
  136. {
  137. unsigned long delay;
  138. cancel_delayed_work(&work);
  139. delay = time - jiffies;
  140. if ((long)delay <= 0)
  141. delay = 1;
  142. queue_delayed_work(addr_wq, &work, delay);
  143. }
  144. static void queue_req(struct addr_req *req)
  145. {
  146. struct addr_req *temp_req;
  147. mutex_lock(&lock);
  148. list_for_each_entry_reverse(temp_req, &req_list, list) {
  149. if (time_after_eq(req->timeout, temp_req->timeout))
  150. break;
  151. }
  152. list_add(&req->list, &temp_req->list);
  153. if (req_list.next == &req->list)
  154. set_timeout(req->timeout);
  155. mutex_unlock(&lock);
  156. }
  157. static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, void *daddr)
  158. {
  159. struct neighbour *n;
  160. int ret;
  161. n = dst_neigh_lookup(dst, daddr);
  162. rcu_read_lock();
  163. if (!n || !(n->nud_state & NUD_VALID)) {
  164. if (n)
  165. neigh_event_send(n, NULL);
  166. ret = -ENODATA;
  167. } else {
  168. ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
  169. }
  170. rcu_read_unlock();
  171. if (n)
  172. neigh_release(n);
  173. return ret;
  174. }
  175. static int addr4_resolve(struct sockaddr_in *src_in,
  176. struct sockaddr_in *dst_in,
  177. struct rdma_dev_addr *addr)
  178. {
  179. __be32 src_ip = src_in->sin_addr.s_addr;
  180. __be32 dst_ip = dst_in->sin_addr.s_addr;
  181. struct rtable *rt;
  182. struct flowi4 fl4;
  183. int ret;
  184. memset(&fl4, 0, sizeof(fl4));
  185. fl4.daddr = dst_ip;
  186. fl4.saddr = src_ip;
  187. fl4.flowi4_oif = addr->bound_dev_if;
  188. rt = ip_route_output_key(&init_net, &fl4);
  189. if (IS_ERR(rt)) {
  190. ret = PTR_ERR(rt);
  191. goto out;
  192. }
  193. src_in->sin_family = AF_INET;
  194. src_in->sin_addr.s_addr = fl4.saddr;
  195. if (rt->dst.dev->flags & IFF_LOOPBACK) {
  196. ret = rdma_translate_ip((struct sockaddr *) dst_in, addr);
  197. if (!ret)
  198. memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
  199. goto put;
  200. }
  201. /* If the device does ARP internally, return 'done' */
  202. if (rt->dst.dev->flags & IFF_NOARP) {
  203. ret = rdma_copy_addr(addr, rt->dst.dev, NULL);
  204. goto put;
  205. }
  206. ret = dst_fetch_ha(&rt->dst, addr, &fl4.daddr);
  207. put:
  208. ip_rt_put(rt);
  209. out:
  210. return ret;
  211. }
  212. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  213. static int addr6_resolve(struct sockaddr_in6 *src_in,
  214. struct sockaddr_in6 *dst_in,
  215. struct rdma_dev_addr *addr)
  216. {
  217. struct flowi6 fl6;
  218. struct dst_entry *dst;
  219. int ret;
  220. memset(&fl6, 0, sizeof fl6);
  221. fl6.daddr = dst_in->sin6_addr;
  222. fl6.saddr = src_in->sin6_addr;
  223. fl6.flowi6_oif = addr->bound_dev_if;
  224. dst = ip6_route_output(&init_net, NULL, &fl6);
  225. if ((ret = dst->error))
  226. goto put;
  227. if (ipv6_addr_any(&fl6.saddr)) {
  228. ret = ipv6_dev_get_saddr(&init_net, ip6_dst_idev(dst)->dev,
  229. &fl6.daddr, 0, &fl6.saddr);
  230. if (ret)
  231. goto put;
  232. src_in->sin6_family = AF_INET6;
  233. src_in->sin6_addr = fl6.saddr;
  234. }
  235. if (dst->dev->flags & IFF_LOOPBACK) {
  236. ret = rdma_translate_ip((struct sockaddr *) dst_in, addr);
  237. if (!ret)
  238. memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
  239. goto put;
  240. }
  241. /* If the device does ARP internally, return 'done' */
  242. if (dst->dev->flags & IFF_NOARP) {
  243. ret = rdma_copy_addr(addr, dst->dev, NULL);
  244. goto put;
  245. }
  246. ret = dst_fetch_ha(dst, addr, &fl6.daddr);
  247. put:
  248. dst_release(dst);
  249. return ret;
  250. }
  251. #else
  252. static int addr6_resolve(struct sockaddr_in6 *src_in,
  253. struct sockaddr_in6 *dst_in,
  254. struct rdma_dev_addr *addr)
  255. {
  256. return -EADDRNOTAVAIL;
  257. }
  258. #endif
  259. static int addr_resolve(struct sockaddr *src_in,
  260. struct sockaddr *dst_in,
  261. struct rdma_dev_addr *addr)
  262. {
  263. if (src_in->sa_family == AF_INET) {
  264. return addr4_resolve((struct sockaddr_in *) src_in,
  265. (struct sockaddr_in *) dst_in, addr);
  266. } else
  267. return addr6_resolve((struct sockaddr_in6 *) src_in,
  268. (struct sockaddr_in6 *) dst_in, addr);
  269. }
  270. static void process_req(struct work_struct *work)
  271. {
  272. struct addr_req *req, *temp_req;
  273. struct sockaddr *src_in, *dst_in;
  274. struct list_head done_list;
  275. INIT_LIST_HEAD(&done_list);
  276. mutex_lock(&lock);
  277. list_for_each_entry_safe(req, temp_req, &req_list, list) {
  278. if (req->status == -ENODATA) {
  279. src_in = (struct sockaddr *) &req->src_addr;
  280. dst_in = (struct sockaddr *) &req->dst_addr;
  281. req->status = addr_resolve(src_in, dst_in, req->addr);
  282. if (req->status && time_after_eq(jiffies, req->timeout))
  283. req->status = -ETIMEDOUT;
  284. else if (req->status == -ENODATA)
  285. continue;
  286. }
  287. list_move_tail(&req->list, &done_list);
  288. }
  289. if (!list_empty(&req_list)) {
  290. req = list_entry(req_list.next, struct addr_req, list);
  291. set_timeout(req->timeout);
  292. }
  293. mutex_unlock(&lock);
  294. list_for_each_entry_safe(req, temp_req, &done_list, list) {
  295. list_del(&req->list);
  296. req->callback(req->status, (struct sockaddr *) &req->src_addr,
  297. req->addr, req->context);
  298. put_client(req->client);
  299. kfree(req);
  300. }
  301. }
  302. int rdma_resolve_ip(struct rdma_addr_client *client,
  303. struct sockaddr *src_addr, struct sockaddr *dst_addr,
  304. struct rdma_dev_addr *addr, int timeout_ms,
  305. void (*callback)(int status, struct sockaddr *src_addr,
  306. struct rdma_dev_addr *addr, void *context),
  307. void *context)
  308. {
  309. struct sockaddr *src_in, *dst_in;
  310. struct addr_req *req;
  311. int ret = 0;
  312. req = kzalloc(sizeof *req, GFP_KERNEL);
  313. if (!req)
  314. return -ENOMEM;
  315. src_in = (struct sockaddr *) &req->src_addr;
  316. dst_in = (struct sockaddr *) &req->dst_addr;
  317. if (src_addr) {
  318. if (src_addr->sa_family != dst_addr->sa_family) {
  319. ret = -EINVAL;
  320. goto err;
  321. }
  322. memcpy(src_in, src_addr, ip_addr_size(src_addr));
  323. } else {
  324. src_in->sa_family = dst_addr->sa_family;
  325. }
  326. memcpy(dst_in, dst_addr, ip_addr_size(dst_addr));
  327. req->addr = addr;
  328. req->callback = callback;
  329. req->context = context;
  330. req->client = client;
  331. atomic_inc(&client->refcount);
  332. req->status = addr_resolve(src_in, dst_in, addr);
  333. switch (req->status) {
  334. case 0:
  335. req->timeout = jiffies;
  336. queue_req(req);
  337. break;
  338. case -ENODATA:
  339. req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
  340. queue_req(req);
  341. break;
  342. default:
  343. ret = req->status;
  344. atomic_dec(&client->refcount);
  345. goto err;
  346. }
  347. return ret;
  348. err:
  349. kfree(req);
  350. return ret;
  351. }
  352. EXPORT_SYMBOL(rdma_resolve_ip);
  353. void rdma_addr_cancel(struct rdma_dev_addr *addr)
  354. {
  355. struct addr_req *req, *temp_req;
  356. mutex_lock(&lock);
  357. list_for_each_entry_safe(req, temp_req, &req_list, list) {
  358. if (req->addr == addr) {
  359. req->status = -ECANCELED;
  360. req->timeout = jiffies;
  361. list_move(&req->list, &req_list);
  362. set_timeout(req->timeout);
  363. break;
  364. }
  365. }
  366. mutex_unlock(&lock);
  367. }
  368. EXPORT_SYMBOL(rdma_addr_cancel);
  369. static int netevent_callback(struct notifier_block *self, unsigned long event,
  370. void *ctx)
  371. {
  372. if (event == NETEVENT_NEIGH_UPDATE) {
  373. struct neighbour *neigh = ctx;
  374. if (neigh->nud_state & NUD_VALID) {
  375. set_timeout(jiffies);
  376. }
  377. }
  378. return 0;
  379. }
  380. static struct notifier_block nb = {
  381. .notifier_call = netevent_callback
  382. };
  383. static int __init addr_init(void)
  384. {
  385. addr_wq = create_singlethread_workqueue("ib_addr");
  386. if (!addr_wq)
  387. return -ENOMEM;
  388. register_netevent_notifier(&nb);
  389. return 0;
  390. }
  391. static void __exit addr_cleanup(void)
  392. {
  393. unregister_netevent_notifier(&nb);
  394. destroy_workqueue(addr_wq);
  395. }
  396. module_init(addr_init);
  397. module_exit(addr_cleanup);