cpuset.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. /*
  61. * Workqueue for cpuset related tasks.
  62. *
  63. * Using kevent workqueue may cause deadlock when memory_migrate
  64. * is set. So we create a separate workqueue thread for cpuset.
  65. */
  66. static struct workqueue_struct *cpuset_wq;
  67. /*
  68. * Tracks how many cpusets are currently defined in system.
  69. * When there is only one cpuset (the root cpuset) we can
  70. * short circuit some hooks.
  71. */
  72. int number_of_cpusets __read_mostly;
  73. /* Forward declare cgroup structures */
  74. struct cgroup_subsys cpuset_subsys;
  75. struct cpuset;
  76. /* See "Frequency meter" comments, below. */
  77. struct fmeter {
  78. int cnt; /* unprocessed events count */
  79. int val; /* most recent output value */
  80. time_t time; /* clock (secs) when val computed */
  81. spinlock_t lock; /* guards read or write of above */
  82. };
  83. struct cpuset {
  84. struct cgroup_subsys_state css;
  85. unsigned long flags; /* "unsigned long" so bitops work */
  86. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  87. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  88. struct cpuset *parent; /* my parent */
  89. struct fmeter fmeter; /* memory_pressure filter */
  90. /* partition number for rebuild_sched_domains() */
  91. int pn;
  92. /* for custom sched domain */
  93. int relax_domain_level;
  94. /* used for walking a cpuset hierarchy */
  95. struct list_head stack_list;
  96. };
  97. /* Retrieve the cpuset for a cgroup */
  98. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  99. {
  100. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  101. struct cpuset, css);
  102. }
  103. /* Retrieve the cpuset for a task */
  104. static inline struct cpuset *task_cs(struct task_struct *task)
  105. {
  106. return container_of(task_subsys_state(task, cpuset_subsys_id),
  107. struct cpuset, css);
  108. }
  109. #ifdef CONFIG_NUMA
  110. static inline bool task_has_mempolicy(struct task_struct *task)
  111. {
  112. return task->mempolicy;
  113. }
  114. #else
  115. static inline bool task_has_mempolicy(struct task_struct *task)
  116. {
  117. return false;
  118. }
  119. #endif
  120. /* bits in struct cpuset flags field */
  121. typedef enum {
  122. CS_CPU_EXCLUSIVE,
  123. CS_MEM_EXCLUSIVE,
  124. CS_MEM_HARDWALL,
  125. CS_MEMORY_MIGRATE,
  126. CS_SCHED_LOAD_BALANCE,
  127. CS_SPREAD_PAGE,
  128. CS_SPREAD_SLAB,
  129. } cpuset_flagbits_t;
  130. /* convenient tests for these bits */
  131. static inline int is_cpu_exclusive(const struct cpuset *cs)
  132. {
  133. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  134. }
  135. static inline int is_mem_exclusive(const struct cpuset *cs)
  136. {
  137. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  138. }
  139. static inline int is_mem_hardwall(const struct cpuset *cs)
  140. {
  141. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  142. }
  143. static inline int is_sched_load_balance(const struct cpuset *cs)
  144. {
  145. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  146. }
  147. static inline int is_memory_migrate(const struct cpuset *cs)
  148. {
  149. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  150. }
  151. static inline int is_spread_page(const struct cpuset *cs)
  152. {
  153. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  154. }
  155. static inline int is_spread_slab(const struct cpuset *cs)
  156. {
  157. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  158. }
  159. static struct cpuset top_cpuset = {
  160. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  161. };
  162. /*
  163. * There are two global mutexes guarding cpuset structures. The first
  164. * is the main control groups cgroup_mutex, accessed via
  165. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  166. * callback_mutex, below. They can nest. It is ok to first take
  167. * cgroup_mutex, then nest callback_mutex. We also require taking
  168. * task_lock() when dereferencing a task's cpuset pointer. See "The
  169. * task_lock() exception", at the end of this comment.
  170. *
  171. * A task must hold both mutexes to modify cpusets. If a task
  172. * holds cgroup_mutex, then it blocks others wanting that mutex,
  173. * ensuring that it is the only task able to also acquire callback_mutex
  174. * and be able to modify cpusets. It can perform various checks on
  175. * the cpuset structure first, knowing nothing will change. It can
  176. * also allocate memory while just holding cgroup_mutex. While it is
  177. * performing these checks, various callback routines can briefly
  178. * acquire callback_mutex to query cpusets. Once it is ready to make
  179. * the changes, it takes callback_mutex, blocking everyone else.
  180. *
  181. * Calls to the kernel memory allocator can not be made while holding
  182. * callback_mutex, as that would risk double tripping on callback_mutex
  183. * from one of the callbacks into the cpuset code from within
  184. * __alloc_pages().
  185. *
  186. * If a task is only holding callback_mutex, then it has read-only
  187. * access to cpusets.
  188. *
  189. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  190. * by other task, we use alloc_lock in the task_struct fields to protect
  191. * them.
  192. *
  193. * The cpuset_common_file_read() handlers only hold callback_mutex across
  194. * small pieces of code, such as when reading out possibly multi-word
  195. * cpumasks and nodemasks.
  196. *
  197. * Accessing a task's cpuset should be done in accordance with the
  198. * guidelines for accessing subsystem state in kernel/cgroup.c
  199. */
  200. static DEFINE_MUTEX(callback_mutex);
  201. /*
  202. * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
  203. * buffers. They are statically allocated to prevent using excess stack
  204. * when calling cpuset_print_task_mems_allowed().
  205. */
  206. #define CPUSET_NAME_LEN (128)
  207. #define CPUSET_NODELIST_LEN (256)
  208. static char cpuset_name[CPUSET_NAME_LEN];
  209. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  210. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  211. /*
  212. * This is ugly, but preserves the userspace API for existing cpuset
  213. * users. If someone tries to mount the "cpuset" filesystem, we
  214. * silently switch it to mount "cgroup" instead
  215. */
  216. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  217. int flags, const char *unused_dev_name, void *data)
  218. {
  219. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  220. struct dentry *ret = ERR_PTR(-ENODEV);
  221. if (cgroup_fs) {
  222. char mountopts[] =
  223. "cpuset,noprefix,"
  224. "release_agent=/sbin/cpuset_release_agent";
  225. ret = cgroup_fs->mount(cgroup_fs, flags,
  226. unused_dev_name, mountopts);
  227. put_filesystem(cgroup_fs);
  228. }
  229. return ret;
  230. }
  231. static struct file_system_type cpuset_fs_type = {
  232. .name = "cpuset",
  233. .mount = cpuset_mount,
  234. };
  235. /*
  236. * Return in pmask the portion of a cpusets's cpus_allowed that
  237. * are online. If none are online, walk up the cpuset hierarchy
  238. * until we find one that does have some online cpus. If we get
  239. * all the way to the top and still haven't found any online cpus,
  240. * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
  241. * task, return cpu_online_mask.
  242. *
  243. * One way or another, we guarantee to return some non-empty subset
  244. * of cpu_online_mask.
  245. *
  246. * Call with callback_mutex held.
  247. */
  248. static void guarantee_online_cpus(const struct cpuset *cs,
  249. struct cpumask *pmask)
  250. {
  251. while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  252. cs = cs->parent;
  253. if (cs)
  254. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  255. else
  256. cpumask_copy(pmask, cpu_online_mask);
  257. BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
  258. }
  259. /*
  260. * Return in *pmask the portion of a cpusets's mems_allowed that
  261. * are online, with memory. If none are online with memory, walk
  262. * up the cpuset hierarchy until we find one that does have some
  263. * online mems. If we get all the way to the top and still haven't
  264. * found any online mems, return node_states[N_HIGH_MEMORY].
  265. *
  266. * One way or another, we guarantee to return some non-empty subset
  267. * of node_states[N_HIGH_MEMORY].
  268. *
  269. * Call with callback_mutex held.
  270. */
  271. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  272. {
  273. while (cs && !nodes_intersects(cs->mems_allowed,
  274. node_states[N_HIGH_MEMORY]))
  275. cs = cs->parent;
  276. if (cs)
  277. nodes_and(*pmask, cs->mems_allowed,
  278. node_states[N_HIGH_MEMORY]);
  279. else
  280. *pmask = node_states[N_HIGH_MEMORY];
  281. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  282. }
  283. /*
  284. * update task's spread flag if cpuset's page/slab spread flag is set
  285. *
  286. * Called with callback_mutex/cgroup_mutex held
  287. */
  288. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  289. struct task_struct *tsk)
  290. {
  291. if (is_spread_page(cs))
  292. task_set_spread_page(tsk);
  293. else
  294. task_clear_spread_page(tsk);
  295. if (is_spread_slab(cs))
  296. task_set_spread_slab(tsk);
  297. else
  298. task_clear_spread_slab(tsk);
  299. }
  300. /*
  301. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  302. *
  303. * One cpuset is a subset of another if all its allowed CPUs and
  304. * Memory Nodes are a subset of the other, and its exclusive flags
  305. * are only set if the other's are set. Call holding cgroup_mutex.
  306. */
  307. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  308. {
  309. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  310. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  311. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  312. is_mem_exclusive(p) <= is_mem_exclusive(q);
  313. }
  314. /**
  315. * alloc_trial_cpuset - allocate a trial cpuset
  316. * @cs: the cpuset that the trial cpuset duplicates
  317. */
  318. static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
  319. {
  320. struct cpuset *trial;
  321. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  322. if (!trial)
  323. return NULL;
  324. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  325. kfree(trial);
  326. return NULL;
  327. }
  328. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  329. return trial;
  330. }
  331. /**
  332. * free_trial_cpuset - free the trial cpuset
  333. * @trial: the trial cpuset to be freed
  334. */
  335. static void free_trial_cpuset(struct cpuset *trial)
  336. {
  337. free_cpumask_var(trial->cpus_allowed);
  338. kfree(trial);
  339. }
  340. /*
  341. * validate_change() - Used to validate that any proposed cpuset change
  342. * follows the structural rules for cpusets.
  343. *
  344. * If we replaced the flag and mask values of the current cpuset
  345. * (cur) with those values in the trial cpuset (trial), would
  346. * our various subset and exclusive rules still be valid? Presumes
  347. * cgroup_mutex held.
  348. *
  349. * 'cur' is the address of an actual, in-use cpuset. Operations
  350. * such as list traversal that depend on the actual address of the
  351. * cpuset in the list must use cur below, not trial.
  352. *
  353. * 'trial' is the address of bulk structure copy of cur, with
  354. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  355. * or flags changed to new, trial values.
  356. *
  357. * Return 0 if valid, -errno if not.
  358. */
  359. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  360. {
  361. struct cgroup *cont;
  362. struct cpuset *c, *par;
  363. /* Each of our child cpusets must be a subset of us */
  364. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  365. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  366. return -EBUSY;
  367. }
  368. /* Remaining checks don't apply to root cpuset */
  369. if (cur == &top_cpuset)
  370. return 0;
  371. par = cur->parent;
  372. /* We must be a subset of our parent cpuset */
  373. if (!is_cpuset_subset(trial, par))
  374. return -EACCES;
  375. /*
  376. * If either I or some sibling (!= me) is exclusive, we can't
  377. * overlap
  378. */
  379. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  380. c = cgroup_cs(cont);
  381. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  382. c != cur &&
  383. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  384. return -EINVAL;
  385. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  386. c != cur &&
  387. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  388. return -EINVAL;
  389. }
  390. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  391. if (cgroup_task_count(cur->css.cgroup)) {
  392. if (cpumask_empty(trial->cpus_allowed) ||
  393. nodes_empty(trial->mems_allowed)) {
  394. return -ENOSPC;
  395. }
  396. }
  397. return 0;
  398. }
  399. #ifdef CONFIG_SMP
  400. /*
  401. * Helper routine for generate_sched_domains().
  402. * Do cpusets a, b have overlapping cpus_allowed masks?
  403. */
  404. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  405. {
  406. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  407. }
  408. static void
  409. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  410. {
  411. if (dattr->relax_domain_level < c->relax_domain_level)
  412. dattr->relax_domain_level = c->relax_domain_level;
  413. return;
  414. }
  415. static void
  416. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  417. {
  418. LIST_HEAD(q);
  419. list_add(&c->stack_list, &q);
  420. while (!list_empty(&q)) {
  421. struct cpuset *cp;
  422. struct cgroup *cont;
  423. struct cpuset *child;
  424. cp = list_first_entry(&q, struct cpuset, stack_list);
  425. list_del(q.next);
  426. if (cpumask_empty(cp->cpus_allowed))
  427. continue;
  428. if (is_sched_load_balance(cp))
  429. update_domain_attr(dattr, cp);
  430. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  431. child = cgroup_cs(cont);
  432. list_add_tail(&child->stack_list, &q);
  433. }
  434. }
  435. }
  436. /*
  437. * generate_sched_domains()
  438. *
  439. * This function builds a partial partition of the systems CPUs
  440. * A 'partial partition' is a set of non-overlapping subsets whose
  441. * union is a subset of that set.
  442. * The output of this function needs to be passed to kernel/sched.c
  443. * partition_sched_domains() routine, which will rebuild the scheduler's
  444. * load balancing domains (sched domains) as specified by that partial
  445. * partition.
  446. *
  447. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  448. * for a background explanation of this.
  449. *
  450. * Does not return errors, on the theory that the callers of this
  451. * routine would rather not worry about failures to rebuild sched
  452. * domains when operating in the severe memory shortage situations
  453. * that could cause allocation failures below.
  454. *
  455. * Must be called with cgroup_lock held.
  456. *
  457. * The three key local variables below are:
  458. * q - a linked-list queue of cpuset pointers, used to implement a
  459. * top-down scan of all cpusets. This scan loads a pointer
  460. * to each cpuset marked is_sched_load_balance into the
  461. * array 'csa'. For our purposes, rebuilding the schedulers
  462. * sched domains, we can ignore !is_sched_load_balance cpusets.
  463. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  464. * that need to be load balanced, for convenient iterative
  465. * access by the subsequent code that finds the best partition,
  466. * i.e the set of domains (subsets) of CPUs such that the
  467. * cpus_allowed of every cpuset marked is_sched_load_balance
  468. * is a subset of one of these domains, while there are as
  469. * many such domains as possible, each as small as possible.
  470. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  471. * the kernel/sched.c routine partition_sched_domains() in a
  472. * convenient format, that can be easily compared to the prior
  473. * value to determine what partition elements (sched domains)
  474. * were changed (added or removed.)
  475. *
  476. * Finding the best partition (set of domains):
  477. * The triple nested loops below over i, j, k scan over the
  478. * load balanced cpusets (using the array of cpuset pointers in
  479. * csa[]) looking for pairs of cpusets that have overlapping
  480. * cpus_allowed, but which don't have the same 'pn' partition
  481. * number and gives them in the same partition number. It keeps
  482. * looping on the 'restart' label until it can no longer find
  483. * any such pairs.
  484. *
  485. * The union of the cpus_allowed masks from the set of
  486. * all cpusets having the same 'pn' value then form the one
  487. * element of the partition (one sched domain) to be passed to
  488. * partition_sched_domains().
  489. */
  490. static int generate_sched_domains(cpumask_var_t **domains,
  491. struct sched_domain_attr **attributes)
  492. {
  493. LIST_HEAD(q); /* queue of cpusets to be scanned */
  494. struct cpuset *cp; /* scans q */
  495. struct cpuset **csa; /* array of all cpuset ptrs */
  496. int csn; /* how many cpuset ptrs in csa so far */
  497. int i, j, k; /* indices for partition finding loops */
  498. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  499. struct sched_domain_attr *dattr; /* attributes for custom domains */
  500. int ndoms = 0; /* number of sched domains in result */
  501. int nslot; /* next empty doms[] struct cpumask slot */
  502. doms = NULL;
  503. dattr = NULL;
  504. csa = NULL;
  505. /* Special case for the 99% of systems with one, full, sched domain */
  506. if (is_sched_load_balance(&top_cpuset)) {
  507. ndoms = 1;
  508. doms = alloc_sched_domains(ndoms);
  509. if (!doms)
  510. goto done;
  511. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  512. if (dattr) {
  513. *dattr = SD_ATTR_INIT;
  514. update_domain_attr_tree(dattr, &top_cpuset);
  515. }
  516. cpumask_copy(doms[0], top_cpuset.cpus_allowed);
  517. goto done;
  518. }
  519. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  520. if (!csa)
  521. goto done;
  522. csn = 0;
  523. list_add(&top_cpuset.stack_list, &q);
  524. while (!list_empty(&q)) {
  525. struct cgroup *cont;
  526. struct cpuset *child; /* scans child cpusets of cp */
  527. cp = list_first_entry(&q, struct cpuset, stack_list);
  528. list_del(q.next);
  529. if (cpumask_empty(cp->cpus_allowed))
  530. continue;
  531. /*
  532. * All child cpusets contain a subset of the parent's cpus, so
  533. * just skip them, and then we call update_domain_attr_tree()
  534. * to calc relax_domain_level of the corresponding sched
  535. * domain.
  536. */
  537. if (is_sched_load_balance(cp)) {
  538. csa[csn++] = cp;
  539. continue;
  540. }
  541. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  542. child = cgroup_cs(cont);
  543. list_add_tail(&child->stack_list, &q);
  544. }
  545. }
  546. for (i = 0; i < csn; i++)
  547. csa[i]->pn = i;
  548. ndoms = csn;
  549. restart:
  550. /* Find the best partition (set of sched domains) */
  551. for (i = 0; i < csn; i++) {
  552. struct cpuset *a = csa[i];
  553. int apn = a->pn;
  554. for (j = 0; j < csn; j++) {
  555. struct cpuset *b = csa[j];
  556. int bpn = b->pn;
  557. if (apn != bpn && cpusets_overlap(a, b)) {
  558. for (k = 0; k < csn; k++) {
  559. struct cpuset *c = csa[k];
  560. if (c->pn == bpn)
  561. c->pn = apn;
  562. }
  563. ndoms--; /* one less element */
  564. goto restart;
  565. }
  566. }
  567. }
  568. /*
  569. * Now we know how many domains to create.
  570. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  571. */
  572. doms = alloc_sched_domains(ndoms);
  573. if (!doms)
  574. goto done;
  575. /*
  576. * The rest of the code, including the scheduler, can deal with
  577. * dattr==NULL case. No need to abort if alloc fails.
  578. */
  579. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  580. for (nslot = 0, i = 0; i < csn; i++) {
  581. struct cpuset *a = csa[i];
  582. struct cpumask *dp;
  583. int apn = a->pn;
  584. if (apn < 0) {
  585. /* Skip completed partitions */
  586. continue;
  587. }
  588. dp = doms[nslot];
  589. if (nslot == ndoms) {
  590. static int warnings = 10;
  591. if (warnings) {
  592. printk(KERN_WARNING
  593. "rebuild_sched_domains confused:"
  594. " nslot %d, ndoms %d, csn %d, i %d,"
  595. " apn %d\n",
  596. nslot, ndoms, csn, i, apn);
  597. warnings--;
  598. }
  599. continue;
  600. }
  601. cpumask_clear(dp);
  602. if (dattr)
  603. *(dattr + nslot) = SD_ATTR_INIT;
  604. for (j = i; j < csn; j++) {
  605. struct cpuset *b = csa[j];
  606. if (apn == b->pn) {
  607. cpumask_or(dp, dp, b->cpus_allowed);
  608. if (dattr)
  609. update_domain_attr_tree(dattr + nslot, b);
  610. /* Done with this partition */
  611. b->pn = -1;
  612. }
  613. }
  614. nslot++;
  615. }
  616. BUG_ON(nslot != ndoms);
  617. done:
  618. kfree(csa);
  619. /*
  620. * Fallback to the default domain if kmalloc() failed.
  621. * See comments in partition_sched_domains().
  622. */
  623. if (doms == NULL)
  624. ndoms = 1;
  625. *domains = doms;
  626. *attributes = dattr;
  627. return ndoms;
  628. }
  629. /*
  630. * Rebuild scheduler domains.
  631. *
  632. * Call with neither cgroup_mutex held nor within get_online_cpus().
  633. * Takes both cgroup_mutex and get_online_cpus().
  634. *
  635. * Cannot be directly called from cpuset code handling changes
  636. * to the cpuset pseudo-filesystem, because it cannot be called
  637. * from code that already holds cgroup_mutex.
  638. */
  639. static void do_rebuild_sched_domains(struct work_struct *unused)
  640. {
  641. struct sched_domain_attr *attr;
  642. cpumask_var_t *doms;
  643. int ndoms;
  644. get_online_cpus();
  645. /* Generate domain masks and attrs */
  646. cgroup_lock();
  647. ndoms = generate_sched_domains(&doms, &attr);
  648. cgroup_unlock();
  649. /* Have scheduler rebuild the domains */
  650. partition_sched_domains(ndoms, doms, attr);
  651. put_online_cpus();
  652. }
  653. #else /* !CONFIG_SMP */
  654. static void do_rebuild_sched_domains(struct work_struct *unused)
  655. {
  656. }
  657. static int generate_sched_domains(cpumask_var_t **domains,
  658. struct sched_domain_attr **attributes)
  659. {
  660. *domains = NULL;
  661. return 1;
  662. }
  663. #endif /* CONFIG_SMP */
  664. static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
  665. /*
  666. * Rebuild scheduler domains, asynchronously via workqueue.
  667. *
  668. * If the flag 'sched_load_balance' of any cpuset with non-empty
  669. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  670. * which has that flag enabled, or if any cpuset with a non-empty
  671. * 'cpus' is removed, then call this routine to rebuild the
  672. * scheduler's dynamic sched domains.
  673. *
  674. * The rebuild_sched_domains() and partition_sched_domains()
  675. * routines must nest cgroup_lock() inside get_online_cpus(),
  676. * but such cpuset changes as these must nest that locking the
  677. * other way, holding cgroup_lock() for much of the code.
  678. *
  679. * So in order to avoid an ABBA deadlock, the cpuset code handling
  680. * these user changes delegates the actual sched domain rebuilding
  681. * to a separate workqueue thread, which ends up processing the
  682. * above do_rebuild_sched_domains() function.
  683. */
  684. static void async_rebuild_sched_domains(void)
  685. {
  686. queue_work(cpuset_wq, &rebuild_sched_domains_work);
  687. }
  688. /*
  689. * Accomplishes the same scheduler domain rebuild as the above
  690. * async_rebuild_sched_domains(), however it directly calls the
  691. * rebuild routine synchronously rather than calling it via an
  692. * asynchronous work thread.
  693. *
  694. * This can only be called from code that is not holding
  695. * cgroup_mutex (not nested in a cgroup_lock() call.)
  696. */
  697. void rebuild_sched_domains(void)
  698. {
  699. do_rebuild_sched_domains(NULL);
  700. }
  701. /**
  702. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  703. * @tsk: task to test
  704. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  705. *
  706. * Call with cgroup_mutex held. May take callback_mutex during call.
  707. * Called for each task in a cgroup by cgroup_scan_tasks().
  708. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  709. * words, if its mask is not equal to its cpuset's mask).
  710. */
  711. static int cpuset_test_cpumask(struct task_struct *tsk,
  712. struct cgroup_scanner *scan)
  713. {
  714. return !cpumask_equal(&tsk->cpus_allowed,
  715. (cgroup_cs(scan->cg))->cpus_allowed);
  716. }
  717. /**
  718. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  719. * @tsk: task to test
  720. * @scan: struct cgroup_scanner containing the cgroup of the task
  721. *
  722. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  723. * cpus_allowed mask needs to be changed.
  724. *
  725. * We don't need to re-check for the cgroup/cpuset membership, since we're
  726. * holding cgroup_lock() at this point.
  727. */
  728. static void cpuset_change_cpumask(struct task_struct *tsk,
  729. struct cgroup_scanner *scan)
  730. {
  731. set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
  732. }
  733. /**
  734. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  735. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  736. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  737. *
  738. * Called with cgroup_mutex held
  739. *
  740. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  741. * calling callback functions for each.
  742. *
  743. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  744. * if @heap != NULL.
  745. */
  746. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  747. {
  748. struct cgroup_scanner scan;
  749. scan.cg = cs->css.cgroup;
  750. scan.test_task = cpuset_test_cpumask;
  751. scan.process_task = cpuset_change_cpumask;
  752. scan.heap = heap;
  753. cgroup_scan_tasks(&scan);
  754. }
  755. /**
  756. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  757. * @cs: the cpuset to consider
  758. * @buf: buffer of cpu numbers written to this cpuset
  759. */
  760. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  761. const char *buf)
  762. {
  763. struct ptr_heap heap;
  764. int retval;
  765. int is_load_balanced;
  766. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  767. if (cs == &top_cpuset)
  768. return -EACCES;
  769. /*
  770. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  771. * Since cpulist_parse() fails on an empty mask, we special case
  772. * that parsing. The validate_change() call ensures that cpusets
  773. * with tasks have cpus.
  774. */
  775. if (!*buf) {
  776. cpumask_clear(trialcs->cpus_allowed);
  777. } else {
  778. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  779. if (retval < 0)
  780. return retval;
  781. if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
  782. return -EINVAL;
  783. }
  784. retval = validate_change(cs, trialcs);
  785. if (retval < 0)
  786. return retval;
  787. /* Nothing to do if the cpus didn't change */
  788. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  789. return 0;
  790. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  791. if (retval)
  792. return retval;
  793. is_load_balanced = is_sched_load_balance(trialcs);
  794. mutex_lock(&callback_mutex);
  795. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  796. mutex_unlock(&callback_mutex);
  797. /*
  798. * Scan tasks in the cpuset, and update the cpumasks of any
  799. * that need an update.
  800. */
  801. update_tasks_cpumask(cs, &heap);
  802. heap_free(&heap);
  803. if (is_load_balanced)
  804. async_rebuild_sched_domains();
  805. return 0;
  806. }
  807. /*
  808. * cpuset_migrate_mm
  809. *
  810. * Migrate memory region from one set of nodes to another.
  811. *
  812. * Temporarilly set tasks mems_allowed to target nodes of migration,
  813. * so that the migration code can allocate pages on these nodes.
  814. *
  815. * Call holding cgroup_mutex, so current's cpuset won't change
  816. * during this call, as manage_mutex holds off any cpuset_attach()
  817. * calls. Therefore we don't need to take task_lock around the
  818. * call to guarantee_online_mems(), as we know no one is changing
  819. * our task's cpuset.
  820. *
  821. * While the mm_struct we are migrating is typically from some
  822. * other task, the task_struct mems_allowed that we are hacking
  823. * is for our current task, which must allocate new pages for that
  824. * migrating memory region.
  825. */
  826. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  827. const nodemask_t *to)
  828. {
  829. struct task_struct *tsk = current;
  830. tsk->mems_allowed = *to;
  831. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  832. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  833. }
  834. /*
  835. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  836. * @tsk: the task to change
  837. * @newmems: new nodes that the task will be set
  838. *
  839. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  840. * we structure updates as setting all new allowed nodes, then clearing newly
  841. * disallowed ones.
  842. */
  843. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  844. nodemask_t *newmems)
  845. {
  846. bool need_loop;
  847. task_lock(tsk);
  848. /*
  849. * Determine if a loop is necessary if another thread is doing
  850. * get_mems_allowed(). If at least one node remains unchanged and
  851. * tsk does not have a mempolicy, then an empty nodemask will not be
  852. * possible when mems_allowed is larger than a word.
  853. */
  854. need_loop = task_has_mempolicy(tsk) ||
  855. !nodes_intersects(*newmems, tsk->mems_allowed);
  856. if (need_loop) {
  857. local_irq_disable();
  858. write_seqcount_begin(&tsk->mems_allowed_seq);
  859. }
  860. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  861. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  862. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  863. tsk->mems_allowed = *newmems;
  864. if (need_loop) {
  865. write_seqcount_end(&tsk->mems_allowed_seq);
  866. local_irq_enable();
  867. }
  868. task_unlock(tsk);
  869. }
  870. /*
  871. * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
  872. * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
  873. * memory_migrate flag is set. Called with cgroup_mutex held.
  874. */
  875. static void cpuset_change_nodemask(struct task_struct *p,
  876. struct cgroup_scanner *scan)
  877. {
  878. struct mm_struct *mm;
  879. struct cpuset *cs;
  880. int migrate;
  881. const nodemask_t *oldmem = scan->data;
  882. static nodemask_t newmems; /* protected by cgroup_mutex */
  883. cs = cgroup_cs(scan->cg);
  884. guarantee_online_mems(cs, &newmems);
  885. cpuset_change_task_nodemask(p, &newmems);
  886. mm = get_task_mm(p);
  887. if (!mm)
  888. return;
  889. migrate = is_memory_migrate(cs);
  890. mpol_rebind_mm(mm, &cs->mems_allowed);
  891. if (migrate)
  892. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  893. mmput(mm);
  894. }
  895. static void *cpuset_being_rebound;
  896. /**
  897. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  898. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  899. * @oldmem: old mems_allowed of cpuset cs
  900. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  901. *
  902. * Called with cgroup_mutex held
  903. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  904. * if @heap != NULL.
  905. */
  906. static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
  907. struct ptr_heap *heap)
  908. {
  909. struct cgroup_scanner scan;
  910. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  911. scan.cg = cs->css.cgroup;
  912. scan.test_task = NULL;
  913. scan.process_task = cpuset_change_nodemask;
  914. scan.heap = heap;
  915. scan.data = (nodemask_t *)oldmem;
  916. /*
  917. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  918. * take while holding tasklist_lock. Forks can happen - the
  919. * mpol_dup() cpuset_being_rebound check will catch such forks,
  920. * and rebind their vma mempolicies too. Because we still hold
  921. * the global cgroup_mutex, we know that no other rebind effort
  922. * will be contending for the global variable cpuset_being_rebound.
  923. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  924. * is idempotent. Also migrate pages in each mm to new nodes.
  925. */
  926. cgroup_scan_tasks(&scan);
  927. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  928. cpuset_being_rebound = NULL;
  929. }
  930. /*
  931. * Handle user request to change the 'mems' memory placement
  932. * of a cpuset. Needs to validate the request, update the
  933. * cpusets mems_allowed, and for each task in the cpuset,
  934. * update mems_allowed and rebind task's mempolicy and any vma
  935. * mempolicies and if the cpuset is marked 'memory_migrate',
  936. * migrate the tasks pages to the new memory.
  937. *
  938. * Call with cgroup_mutex held. May take callback_mutex during call.
  939. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  940. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  941. * their mempolicies to the cpusets new mems_allowed.
  942. */
  943. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  944. const char *buf)
  945. {
  946. NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
  947. int retval;
  948. struct ptr_heap heap;
  949. if (!oldmem)
  950. return -ENOMEM;
  951. /*
  952. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  953. * it's read-only
  954. */
  955. if (cs == &top_cpuset) {
  956. retval = -EACCES;
  957. goto done;
  958. }
  959. /*
  960. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  961. * Since nodelist_parse() fails on an empty mask, we special case
  962. * that parsing. The validate_change() call ensures that cpusets
  963. * with tasks have memory.
  964. */
  965. if (!*buf) {
  966. nodes_clear(trialcs->mems_allowed);
  967. } else {
  968. retval = nodelist_parse(buf, trialcs->mems_allowed);
  969. if (retval < 0)
  970. goto done;
  971. if (!nodes_subset(trialcs->mems_allowed,
  972. node_states[N_HIGH_MEMORY])) {
  973. retval = -EINVAL;
  974. goto done;
  975. }
  976. }
  977. *oldmem = cs->mems_allowed;
  978. if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
  979. retval = 0; /* Too easy - nothing to do */
  980. goto done;
  981. }
  982. retval = validate_change(cs, trialcs);
  983. if (retval < 0)
  984. goto done;
  985. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  986. if (retval < 0)
  987. goto done;
  988. mutex_lock(&callback_mutex);
  989. cs->mems_allowed = trialcs->mems_allowed;
  990. mutex_unlock(&callback_mutex);
  991. update_tasks_nodemask(cs, oldmem, &heap);
  992. heap_free(&heap);
  993. done:
  994. NODEMASK_FREE(oldmem);
  995. return retval;
  996. }
  997. int current_cpuset_is_being_rebound(void)
  998. {
  999. int ret;
  1000. rcu_read_lock();
  1001. ret = task_cs(current) == cpuset_being_rebound;
  1002. rcu_read_unlock();
  1003. return ret;
  1004. }
  1005. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1006. {
  1007. #ifdef CONFIG_SMP
  1008. if (val < -1 || val >= sched_domain_level_max)
  1009. return -EINVAL;
  1010. #endif
  1011. if (val != cs->relax_domain_level) {
  1012. cs->relax_domain_level = val;
  1013. if (!cpumask_empty(cs->cpus_allowed) &&
  1014. is_sched_load_balance(cs))
  1015. async_rebuild_sched_domains();
  1016. }
  1017. return 0;
  1018. }
  1019. /*
  1020. * cpuset_change_flag - make a task's spread flags the same as its cpuset's
  1021. * @tsk: task to be updated
  1022. * @scan: struct cgroup_scanner containing the cgroup of the task
  1023. *
  1024. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1025. *
  1026. * We don't need to re-check for the cgroup/cpuset membership, since we're
  1027. * holding cgroup_lock() at this point.
  1028. */
  1029. static void cpuset_change_flag(struct task_struct *tsk,
  1030. struct cgroup_scanner *scan)
  1031. {
  1032. cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
  1033. }
  1034. /*
  1035. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1036. * @cs: the cpuset in which each task's spread flags needs to be changed
  1037. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  1038. *
  1039. * Called with cgroup_mutex held
  1040. *
  1041. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1042. * calling callback functions for each.
  1043. *
  1044. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  1045. * if @heap != NULL.
  1046. */
  1047. static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
  1048. {
  1049. struct cgroup_scanner scan;
  1050. scan.cg = cs->css.cgroup;
  1051. scan.test_task = NULL;
  1052. scan.process_task = cpuset_change_flag;
  1053. scan.heap = heap;
  1054. cgroup_scan_tasks(&scan);
  1055. }
  1056. /*
  1057. * update_flag - read a 0 or a 1 in a file and update associated flag
  1058. * bit: the bit to update (see cpuset_flagbits_t)
  1059. * cs: the cpuset to update
  1060. * turning_on: whether the flag is being set or cleared
  1061. *
  1062. * Call with cgroup_mutex held.
  1063. */
  1064. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1065. int turning_on)
  1066. {
  1067. struct cpuset *trialcs;
  1068. int balance_flag_changed;
  1069. int spread_flag_changed;
  1070. struct ptr_heap heap;
  1071. int err;
  1072. trialcs = alloc_trial_cpuset(cs);
  1073. if (!trialcs)
  1074. return -ENOMEM;
  1075. if (turning_on)
  1076. set_bit(bit, &trialcs->flags);
  1077. else
  1078. clear_bit(bit, &trialcs->flags);
  1079. err = validate_change(cs, trialcs);
  1080. if (err < 0)
  1081. goto out;
  1082. err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1083. if (err < 0)
  1084. goto out;
  1085. balance_flag_changed = (is_sched_load_balance(cs) !=
  1086. is_sched_load_balance(trialcs));
  1087. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1088. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1089. mutex_lock(&callback_mutex);
  1090. cs->flags = trialcs->flags;
  1091. mutex_unlock(&callback_mutex);
  1092. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1093. async_rebuild_sched_domains();
  1094. if (spread_flag_changed)
  1095. update_tasks_flags(cs, &heap);
  1096. heap_free(&heap);
  1097. out:
  1098. free_trial_cpuset(trialcs);
  1099. return err;
  1100. }
  1101. /*
  1102. * Frequency meter - How fast is some event occurring?
  1103. *
  1104. * These routines manage a digitally filtered, constant time based,
  1105. * event frequency meter. There are four routines:
  1106. * fmeter_init() - initialize a frequency meter.
  1107. * fmeter_markevent() - called each time the event happens.
  1108. * fmeter_getrate() - returns the recent rate of such events.
  1109. * fmeter_update() - internal routine used to update fmeter.
  1110. *
  1111. * A common data structure is passed to each of these routines,
  1112. * which is used to keep track of the state required to manage the
  1113. * frequency meter and its digital filter.
  1114. *
  1115. * The filter works on the number of events marked per unit time.
  1116. * The filter is single-pole low-pass recursive (IIR). The time unit
  1117. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1118. * simulate 3 decimal digits of precision (multiplied by 1000).
  1119. *
  1120. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1121. * has a half-life of 10 seconds, meaning that if the events quit
  1122. * happening, then the rate returned from the fmeter_getrate()
  1123. * will be cut in half each 10 seconds, until it converges to zero.
  1124. *
  1125. * It is not worth doing a real infinitely recursive filter. If more
  1126. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1127. * just compute FM_MAXTICKS ticks worth, by which point the level
  1128. * will be stable.
  1129. *
  1130. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1131. * arithmetic overflow in the fmeter_update() routine.
  1132. *
  1133. * Given the simple 32 bit integer arithmetic used, this meter works
  1134. * best for reporting rates between one per millisecond (msec) and
  1135. * one per 32 (approx) seconds. At constant rates faster than one
  1136. * per msec it maxes out at values just under 1,000,000. At constant
  1137. * rates between one per msec, and one per second it will stabilize
  1138. * to a value N*1000, where N is the rate of events per second.
  1139. * At constant rates between one per second and one per 32 seconds,
  1140. * it will be choppy, moving up on the seconds that have an event,
  1141. * and then decaying until the next event. At rates slower than
  1142. * about one in 32 seconds, it decays all the way back to zero between
  1143. * each event.
  1144. */
  1145. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1146. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1147. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1148. #define FM_SCALE 1000 /* faux fixed point scale */
  1149. /* Initialize a frequency meter */
  1150. static void fmeter_init(struct fmeter *fmp)
  1151. {
  1152. fmp->cnt = 0;
  1153. fmp->val = 0;
  1154. fmp->time = 0;
  1155. spin_lock_init(&fmp->lock);
  1156. }
  1157. /* Internal meter update - process cnt events and update value */
  1158. static void fmeter_update(struct fmeter *fmp)
  1159. {
  1160. time_t now = get_seconds();
  1161. time_t ticks = now - fmp->time;
  1162. if (ticks == 0)
  1163. return;
  1164. ticks = min(FM_MAXTICKS, ticks);
  1165. while (ticks-- > 0)
  1166. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1167. fmp->time = now;
  1168. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1169. fmp->cnt = 0;
  1170. }
  1171. /* Process any previous ticks, then bump cnt by one (times scale). */
  1172. static void fmeter_markevent(struct fmeter *fmp)
  1173. {
  1174. spin_lock(&fmp->lock);
  1175. fmeter_update(fmp);
  1176. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1177. spin_unlock(&fmp->lock);
  1178. }
  1179. /* Process any previous ticks, then return current value. */
  1180. static int fmeter_getrate(struct fmeter *fmp)
  1181. {
  1182. int val;
  1183. spin_lock(&fmp->lock);
  1184. fmeter_update(fmp);
  1185. val = fmp->val;
  1186. spin_unlock(&fmp->lock);
  1187. return val;
  1188. }
  1189. /*
  1190. * Protected by cgroup_lock. The nodemasks must be stored globally because
  1191. * dynamically allocating them is not allowed in can_attach, and they must
  1192. * persist until attach.
  1193. */
  1194. static cpumask_var_t cpus_attach;
  1195. static nodemask_t cpuset_attach_nodemask_from;
  1196. static nodemask_t cpuset_attach_nodemask_to;
  1197. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1198. static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1199. {
  1200. struct cpuset *cs = cgroup_cs(cgrp);
  1201. struct task_struct *task;
  1202. int ret;
  1203. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1204. return -ENOSPC;
  1205. cgroup_taskset_for_each(task, cgrp, tset) {
  1206. /*
  1207. * Kthreads bound to specific cpus cannot be moved to a new
  1208. * cpuset; we cannot change their cpu affinity and
  1209. * isolating such threads by their set of allowed nodes is
  1210. * unnecessary. Thus, cpusets are not applicable for such
  1211. * threads. This prevents checking for success of
  1212. * set_cpus_allowed_ptr() on all attached tasks before
  1213. * cpus_allowed may be changed.
  1214. */
  1215. if (task->flags & PF_THREAD_BOUND)
  1216. return -EINVAL;
  1217. if ((ret = security_task_setscheduler(task)))
  1218. return ret;
  1219. }
  1220. /* prepare for attach */
  1221. if (cs == &top_cpuset)
  1222. cpumask_copy(cpus_attach, cpu_possible_mask);
  1223. else
  1224. guarantee_online_cpus(cs, cpus_attach);
  1225. guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
  1226. return 0;
  1227. }
  1228. static int cpuset_allow_attach(struct cgroup *cgrp,
  1229. struct cgroup_taskset *tset)
  1230. {
  1231. const struct cred *cred = current_cred(), *tcred;
  1232. struct task_struct *task;
  1233. cgroup_taskset_for_each(task, cgrp, tset) {
  1234. tcred = __task_cred(task);
  1235. if ((current != task) && !capable(CAP_SYS_ADMIN) &&
  1236. cred->euid != tcred->uid && cred->euid != tcred->suid)
  1237. return -EACCES;
  1238. }
  1239. return 0;
  1240. }
  1241. static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1242. {
  1243. struct mm_struct *mm;
  1244. struct task_struct *task;
  1245. struct task_struct *leader = cgroup_taskset_first(tset);
  1246. struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
  1247. struct cpuset *cs = cgroup_cs(cgrp);
  1248. struct cpuset *oldcs = cgroup_cs(oldcgrp);
  1249. cgroup_taskset_for_each(task, cgrp, tset) {
  1250. /*
  1251. * can_attach beforehand should guarantee that this doesn't
  1252. * fail. TODO: have a better way to handle failure here
  1253. */
  1254. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1255. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1256. cpuset_update_task_spread_flag(cs, task);
  1257. }
  1258. /*
  1259. * Change mm, possibly for multiple threads in a threadgroup. This is
  1260. * expensive and may sleep.
  1261. */
  1262. cpuset_attach_nodemask_from = oldcs->mems_allowed;
  1263. cpuset_attach_nodemask_to = cs->mems_allowed;
  1264. mm = get_task_mm(leader);
  1265. if (mm) {
  1266. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1267. if (is_memory_migrate(cs))
  1268. cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
  1269. &cpuset_attach_nodemask_to);
  1270. mmput(mm);
  1271. }
  1272. }
  1273. /* The various types of files and directories in a cpuset file system */
  1274. typedef enum {
  1275. FILE_MEMORY_MIGRATE,
  1276. FILE_CPULIST,
  1277. FILE_MEMLIST,
  1278. FILE_CPU_EXCLUSIVE,
  1279. FILE_MEM_EXCLUSIVE,
  1280. FILE_MEM_HARDWALL,
  1281. FILE_SCHED_LOAD_BALANCE,
  1282. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1283. FILE_MEMORY_PRESSURE_ENABLED,
  1284. FILE_MEMORY_PRESSURE,
  1285. FILE_SPREAD_PAGE,
  1286. FILE_SPREAD_SLAB,
  1287. } cpuset_filetype_t;
  1288. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1289. {
  1290. int retval = 0;
  1291. struct cpuset *cs = cgroup_cs(cgrp);
  1292. cpuset_filetype_t type = cft->private;
  1293. if (!cgroup_lock_live_group(cgrp))
  1294. return -ENODEV;
  1295. switch (type) {
  1296. case FILE_CPU_EXCLUSIVE:
  1297. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1298. break;
  1299. case FILE_MEM_EXCLUSIVE:
  1300. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1301. break;
  1302. case FILE_MEM_HARDWALL:
  1303. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1304. break;
  1305. case FILE_SCHED_LOAD_BALANCE:
  1306. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1307. break;
  1308. case FILE_MEMORY_MIGRATE:
  1309. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1310. break;
  1311. case FILE_MEMORY_PRESSURE_ENABLED:
  1312. cpuset_memory_pressure_enabled = !!val;
  1313. break;
  1314. case FILE_MEMORY_PRESSURE:
  1315. retval = -EACCES;
  1316. break;
  1317. case FILE_SPREAD_PAGE:
  1318. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1319. break;
  1320. case FILE_SPREAD_SLAB:
  1321. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1322. break;
  1323. default:
  1324. retval = -EINVAL;
  1325. break;
  1326. }
  1327. cgroup_unlock();
  1328. return retval;
  1329. }
  1330. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1331. {
  1332. int retval = 0;
  1333. struct cpuset *cs = cgroup_cs(cgrp);
  1334. cpuset_filetype_t type = cft->private;
  1335. if (!cgroup_lock_live_group(cgrp))
  1336. return -ENODEV;
  1337. switch (type) {
  1338. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1339. retval = update_relax_domain_level(cs, val);
  1340. break;
  1341. default:
  1342. retval = -EINVAL;
  1343. break;
  1344. }
  1345. cgroup_unlock();
  1346. return retval;
  1347. }
  1348. /*
  1349. * Common handling for a write to a "cpus" or "mems" file.
  1350. */
  1351. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1352. const char *buf)
  1353. {
  1354. int retval = 0;
  1355. struct cpuset *cs = cgroup_cs(cgrp);
  1356. struct cpuset *trialcs;
  1357. if (!cgroup_lock_live_group(cgrp))
  1358. return -ENODEV;
  1359. trialcs = alloc_trial_cpuset(cs);
  1360. if (!trialcs) {
  1361. retval = -ENOMEM;
  1362. goto out;
  1363. }
  1364. switch (cft->private) {
  1365. case FILE_CPULIST:
  1366. retval = update_cpumask(cs, trialcs, buf);
  1367. break;
  1368. case FILE_MEMLIST:
  1369. retval = update_nodemask(cs, trialcs, buf);
  1370. break;
  1371. default:
  1372. retval = -EINVAL;
  1373. break;
  1374. }
  1375. free_trial_cpuset(trialcs);
  1376. out:
  1377. cgroup_unlock();
  1378. return retval;
  1379. }
  1380. /*
  1381. * These ascii lists should be read in a single call, by using a user
  1382. * buffer large enough to hold the entire map. If read in smaller
  1383. * chunks, there is no guarantee of atomicity. Since the display format
  1384. * used, list of ranges of sequential numbers, is variable length,
  1385. * and since these maps can change value dynamically, one could read
  1386. * gibberish by doing partial reads while a list was changing.
  1387. * A single large read to a buffer that crosses a page boundary is
  1388. * ok, because the result being copied to user land is not recomputed
  1389. * across a page fault.
  1390. */
  1391. static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1392. {
  1393. size_t count;
  1394. mutex_lock(&callback_mutex);
  1395. count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1396. mutex_unlock(&callback_mutex);
  1397. return count;
  1398. }
  1399. static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1400. {
  1401. size_t count;
  1402. mutex_lock(&callback_mutex);
  1403. count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
  1404. mutex_unlock(&callback_mutex);
  1405. return count;
  1406. }
  1407. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1408. struct cftype *cft,
  1409. struct file *file,
  1410. char __user *buf,
  1411. size_t nbytes, loff_t *ppos)
  1412. {
  1413. struct cpuset *cs = cgroup_cs(cont);
  1414. cpuset_filetype_t type = cft->private;
  1415. char *page;
  1416. ssize_t retval = 0;
  1417. char *s;
  1418. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1419. return -ENOMEM;
  1420. s = page;
  1421. switch (type) {
  1422. case FILE_CPULIST:
  1423. s += cpuset_sprintf_cpulist(s, cs);
  1424. break;
  1425. case FILE_MEMLIST:
  1426. s += cpuset_sprintf_memlist(s, cs);
  1427. break;
  1428. default:
  1429. retval = -EINVAL;
  1430. goto out;
  1431. }
  1432. *s++ = '\n';
  1433. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1434. out:
  1435. free_page((unsigned long)page);
  1436. return retval;
  1437. }
  1438. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1439. {
  1440. struct cpuset *cs = cgroup_cs(cont);
  1441. cpuset_filetype_t type = cft->private;
  1442. switch (type) {
  1443. case FILE_CPU_EXCLUSIVE:
  1444. return is_cpu_exclusive(cs);
  1445. case FILE_MEM_EXCLUSIVE:
  1446. return is_mem_exclusive(cs);
  1447. case FILE_MEM_HARDWALL:
  1448. return is_mem_hardwall(cs);
  1449. case FILE_SCHED_LOAD_BALANCE:
  1450. return is_sched_load_balance(cs);
  1451. case FILE_MEMORY_MIGRATE:
  1452. return is_memory_migrate(cs);
  1453. case FILE_MEMORY_PRESSURE_ENABLED:
  1454. return cpuset_memory_pressure_enabled;
  1455. case FILE_MEMORY_PRESSURE:
  1456. return fmeter_getrate(&cs->fmeter);
  1457. case FILE_SPREAD_PAGE:
  1458. return is_spread_page(cs);
  1459. case FILE_SPREAD_SLAB:
  1460. return is_spread_slab(cs);
  1461. default:
  1462. BUG();
  1463. }
  1464. /* Unreachable but makes gcc happy */
  1465. return 0;
  1466. }
  1467. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1468. {
  1469. struct cpuset *cs = cgroup_cs(cont);
  1470. cpuset_filetype_t type = cft->private;
  1471. switch (type) {
  1472. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1473. return cs->relax_domain_level;
  1474. default:
  1475. BUG();
  1476. }
  1477. /* Unrechable but makes gcc happy */
  1478. return 0;
  1479. }
  1480. /*
  1481. * for the common functions, 'private' gives the type of file
  1482. */
  1483. static struct cftype files[] = {
  1484. {
  1485. .name = "cpus",
  1486. .read = cpuset_common_file_read,
  1487. .write_string = cpuset_write_resmask,
  1488. .max_write_len = (100U + 6 * NR_CPUS),
  1489. .private = FILE_CPULIST,
  1490. },
  1491. {
  1492. .name = "mems",
  1493. .read = cpuset_common_file_read,
  1494. .write_string = cpuset_write_resmask,
  1495. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1496. .private = FILE_MEMLIST,
  1497. },
  1498. {
  1499. .name = "cpu_exclusive",
  1500. .read_u64 = cpuset_read_u64,
  1501. .write_u64 = cpuset_write_u64,
  1502. .private = FILE_CPU_EXCLUSIVE,
  1503. },
  1504. {
  1505. .name = "mem_exclusive",
  1506. .read_u64 = cpuset_read_u64,
  1507. .write_u64 = cpuset_write_u64,
  1508. .private = FILE_MEM_EXCLUSIVE,
  1509. },
  1510. {
  1511. .name = "mem_hardwall",
  1512. .read_u64 = cpuset_read_u64,
  1513. .write_u64 = cpuset_write_u64,
  1514. .private = FILE_MEM_HARDWALL,
  1515. },
  1516. {
  1517. .name = "sched_load_balance",
  1518. .read_u64 = cpuset_read_u64,
  1519. .write_u64 = cpuset_write_u64,
  1520. .private = FILE_SCHED_LOAD_BALANCE,
  1521. },
  1522. {
  1523. .name = "sched_relax_domain_level",
  1524. .read_s64 = cpuset_read_s64,
  1525. .write_s64 = cpuset_write_s64,
  1526. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1527. },
  1528. {
  1529. .name = "memory_migrate",
  1530. .read_u64 = cpuset_read_u64,
  1531. .write_u64 = cpuset_write_u64,
  1532. .private = FILE_MEMORY_MIGRATE,
  1533. },
  1534. {
  1535. .name = "memory_pressure",
  1536. .read_u64 = cpuset_read_u64,
  1537. .write_u64 = cpuset_write_u64,
  1538. .private = FILE_MEMORY_PRESSURE,
  1539. .mode = S_IRUGO,
  1540. },
  1541. {
  1542. .name = "memory_spread_page",
  1543. .read_u64 = cpuset_read_u64,
  1544. .write_u64 = cpuset_write_u64,
  1545. .private = FILE_SPREAD_PAGE,
  1546. },
  1547. {
  1548. .name = "memory_spread_slab",
  1549. .read_u64 = cpuset_read_u64,
  1550. .write_u64 = cpuset_write_u64,
  1551. .private = FILE_SPREAD_SLAB,
  1552. },
  1553. };
  1554. static struct cftype cft_memory_pressure_enabled = {
  1555. .name = "memory_pressure_enabled",
  1556. .read_u64 = cpuset_read_u64,
  1557. .write_u64 = cpuset_write_u64,
  1558. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1559. };
  1560. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1561. {
  1562. int err;
  1563. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1564. if (err)
  1565. return err;
  1566. /* memory_pressure_enabled is in root cpuset only */
  1567. if (!cont->parent)
  1568. err = cgroup_add_file(cont, ss,
  1569. &cft_memory_pressure_enabled);
  1570. return err;
  1571. }
  1572. /*
  1573. * post_clone() is called during cgroup_create() when the
  1574. * clone_children mount argument was specified. The cgroup
  1575. * can not yet have any tasks.
  1576. *
  1577. * Currently we refuse to set up the cgroup - thereby
  1578. * refusing the task to be entered, and as a result refusing
  1579. * the sys_unshare() or clone() which initiated it - if any
  1580. * sibling cpusets have exclusive cpus or mem.
  1581. *
  1582. * If this becomes a problem for some users who wish to
  1583. * allow that scenario, then cpuset_post_clone() could be
  1584. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1585. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1586. * held.
  1587. */
  1588. static void cpuset_post_clone(struct cgroup *cgroup)
  1589. {
  1590. struct cgroup *parent, *child;
  1591. struct cpuset *cs, *parent_cs;
  1592. parent = cgroup->parent;
  1593. list_for_each_entry(child, &parent->children, sibling) {
  1594. cs = cgroup_cs(child);
  1595. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1596. return;
  1597. }
  1598. cs = cgroup_cs(cgroup);
  1599. parent_cs = cgroup_cs(parent);
  1600. mutex_lock(&callback_mutex);
  1601. cs->mems_allowed = parent_cs->mems_allowed;
  1602. cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
  1603. mutex_unlock(&callback_mutex);
  1604. return;
  1605. }
  1606. /*
  1607. * cpuset_create - create a cpuset
  1608. * cont: control group that the new cpuset will be part of
  1609. */
  1610. static struct cgroup_subsys_state *cpuset_create(struct cgroup *cont)
  1611. {
  1612. struct cpuset *cs;
  1613. struct cpuset *parent;
  1614. if (!cont->parent) {
  1615. return &top_cpuset.css;
  1616. }
  1617. parent = cgroup_cs(cont->parent);
  1618. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1619. if (!cs)
  1620. return ERR_PTR(-ENOMEM);
  1621. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1622. kfree(cs);
  1623. return ERR_PTR(-ENOMEM);
  1624. }
  1625. cs->flags = 0;
  1626. if (is_spread_page(parent))
  1627. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1628. if (is_spread_slab(parent))
  1629. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1630. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1631. cpumask_clear(cs->cpus_allowed);
  1632. nodes_clear(cs->mems_allowed);
  1633. fmeter_init(&cs->fmeter);
  1634. cs->relax_domain_level = -1;
  1635. cs->parent = parent;
  1636. number_of_cpusets++;
  1637. return &cs->css ;
  1638. }
  1639. /*
  1640. * If the cpuset being removed has its flag 'sched_load_balance'
  1641. * enabled, then simulate turning sched_load_balance off, which
  1642. * will call async_rebuild_sched_domains().
  1643. */
  1644. static void cpuset_destroy(struct cgroup *cont)
  1645. {
  1646. struct cpuset *cs = cgroup_cs(cont);
  1647. if (is_sched_load_balance(cs))
  1648. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1649. number_of_cpusets--;
  1650. free_cpumask_var(cs->cpus_allowed);
  1651. kfree(cs);
  1652. }
  1653. struct cgroup_subsys cpuset_subsys = {
  1654. .name = "cpuset",
  1655. .create = cpuset_create,
  1656. .destroy = cpuset_destroy,
  1657. .can_attach = cpuset_can_attach,
  1658. .allow_attach = cpuset_allow_attach,
  1659. .attach = cpuset_attach,
  1660. .populate = cpuset_populate,
  1661. .post_clone = cpuset_post_clone,
  1662. .subsys_id = cpuset_subsys_id,
  1663. .early_init = 1,
  1664. };
  1665. /**
  1666. * cpuset_init - initialize cpusets at system boot
  1667. *
  1668. * Description: Initialize top_cpuset and the cpuset internal file system,
  1669. **/
  1670. int __init cpuset_init(void)
  1671. {
  1672. int err = 0;
  1673. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1674. BUG();
  1675. cpumask_setall(top_cpuset.cpus_allowed);
  1676. nodes_setall(top_cpuset.mems_allowed);
  1677. fmeter_init(&top_cpuset.fmeter);
  1678. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1679. top_cpuset.relax_domain_level = -1;
  1680. err = register_filesystem(&cpuset_fs_type);
  1681. if (err < 0)
  1682. return err;
  1683. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1684. BUG();
  1685. number_of_cpusets = 1;
  1686. return 0;
  1687. }
  1688. /**
  1689. * cpuset_do_move_task - move a given task to another cpuset
  1690. * @tsk: pointer to task_struct the task to move
  1691. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1692. *
  1693. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1694. * Return nonzero to stop the walk through the tasks.
  1695. */
  1696. static void cpuset_do_move_task(struct task_struct *tsk,
  1697. struct cgroup_scanner *scan)
  1698. {
  1699. struct cgroup *new_cgroup = scan->data;
  1700. cgroup_attach_task(new_cgroup, tsk);
  1701. }
  1702. /**
  1703. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1704. * @from: cpuset in which the tasks currently reside
  1705. * @to: cpuset to which the tasks will be moved
  1706. *
  1707. * Called with cgroup_mutex held
  1708. * callback_mutex must not be held, as cpuset_attach() will take it.
  1709. *
  1710. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1711. * calling callback functions for each.
  1712. */
  1713. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1714. {
  1715. struct cgroup_scanner scan;
  1716. scan.cg = from->css.cgroup;
  1717. scan.test_task = NULL; /* select all tasks in cgroup */
  1718. scan.process_task = cpuset_do_move_task;
  1719. scan.heap = NULL;
  1720. scan.data = to->css.cgroup;
  1721. if (cgroup_scan_tasks(&scan))
  1722. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1723. "cgroup_scan_tasks failed\n");
  1724. }
  1725. /*
  1726. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1727. * or memory nodes, we need to walk over the cpuset hierarchy,
  1728. * removing that CPU or node from all cpusets. If this removes the
  1729. * last CPU or node from a cpuset, then move the tasks in the empty
  1730. * cpuset to its next-highest non-empty parent.
  1731. *
  1732. * Called with cgroup_mutex held
  1733. * callback_mutex must not be held, as cpuset_attach() will take it.
  1734. */
  1735. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1736. {
  1737. struct cpuset *parent;
  1738. /*
  1739. * The cgroup's css_sets list is in use if there are tasks
  1740. * in the cpuset; the list is empty if there are none;
  1741. * the cs->css.refcnt seems always 0.
  1742. */
  1743. if (list_empty(&cs->css.cgroup->css_sets))
  1744. return;
  1745. /*
  1746. * Find its next-highest non-empty parent, (top cpuset
  1747. * has online cpus, so can't be empty).
  1748. */
  1749. parent = cs->parent;
  1750. while (cpumask_empty(parent->cpus_allowed) ||
  1751. nodes_empty(parent->mems_allowed))
  1752. parent = parent->parent;
  1753. move_member_tasks_to_cpuset(cs, parent);
  1754. }
  1755. /*
  1756. * Walk the specified cpuset subtree and look for empty cpusets.
  1757. * The tasks of such cpuset must be moved to a parent cpuset.
  1758. *
  1759. * Called with cgroup_mutex held. We take callback_mutex to modify
  1760. * cpus_allowed and mems_allowed.
  1761. *
  1762. * This walk processes the tree from top to bottom, completing one layer
  1763. * before dropping down to the next. It always processes a node before
  1764. * any of its children.
  1765. *
  1766. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1767. * that has tasks along with an empty 'mems'. But if we did see such
  1768. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1769. */
  1770. static void scan_for_empty_cpusets(struct cpuset *root)
  1771. {
  1772. LIST_HEAD(queue);
  1773. struct cpuset *cp; /* scans cpusets being updated */
  1774. struct cpuset *child; /* scans child cpusets of cp */
  1775. struct cgroup *cont;
  1776. static nodemask_t oldmems; /* protected by cgroup_mutex */
  1777. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1778. while (!list_empty(&queue)) {
  1779. cp = list_first_entry(&queue, struct cpuset, stack_list);
  1780. list_del(queue.next);
  1781. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1782. child = cgroup_cs(cont);
  1783. list_add_tail(&child->stack_list, &queue);
  1784. }
  1785. /* Continue past cpusets with all cpus, mems online */
  1786. if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) &&
  1787. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1788. continue;
  1789. oldmems = cp->mems_allowed;
  1790. /* Remove offline cpus and mems from this cpuset. */
  1791. mutex_lock(&callback_mutex);
  1792. cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
  1793. cpu_active_mask);
  1794. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1795. node_states[N_HIGH_MEMORY]);
  1796. mutex_unlock(&callback_mutex);
  1797. /* Move tasks from the empty cpuset to a parent */
  1798. if (cpumask_empty(cp->cpus_allowed) ||
  1799. nodes_empty(cp->mems_allowed))
  1800. remove_tasks_in_empty_cpuset(cp);
  1801. else {
  1802. update_tasks_cpumask(cp, NULL);
  1803. update_tasks_nodemask(cp, &oldmems, NULL);
  1804. }
  1805. }
  1806. }
  1807. /*
  1808. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1809. * period. This is necessary in order to make cpusets transparent
  1810. * (of no affect) on systems that are actively using CPU hotplug
  1811. * but making no active use of cpusets.
  1812. *
  1813. * The only exception to this is suspend/resume, where we don't
  1814. * modify cpusets at all.
  1815. *
  1816. * This routine ensures that top_cpuset.cpus_allowed tracks
  1817. * cpu_active_mask on each CPU hotplug (cpuhp) event.
  1818. *
  1819. * Called within get_online_cpus(). Needs to call cgroup_lock()
  1820. * before calling generate_sched_domains().
  1821. */
  1822. void cpuset_update_active_cpus(void)
  1823. {
  1824. struct sched_domain_attr *attr;
  1825. cpumask_var_t *doms;
  1826. int ndoms;
  1827. cgroup_lock();
  1828. mutex_lock(&callback_mutex);
  1829. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  1830. mutex_unlock(&callback_mutex);
  1831. scan_for_empty_cpusets(&top_cpuset);
  1832. ndoms = generate_sched_domains(&doms, &attr);
  1833. cgroup_unlock();
  1834. /* Have scheduler rebuild the domains */
  1835. partition_sched_domains(ndoms, doms, attr);
  1836. }
  1837. #ifdef CONFIG_MEMORY_HOTPLUG
  1838. /*
  1839. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1840. * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
  1841. * See also the previous routine cpuset_track_online_cpus().
  1842. */
  1843. static int cpuset_track_online_nodes(struct notifier_block *self,
  1844. unsigned long action, void *arg)
  1845. {
  1846. static nodemask_t oldmems; /* protected by cgroup_mutex */
  1847. cgroup_lock();
  1848. switch (action) {
  1849. case MEM_ONLINE:
  1850. oldmems = top_cpuset.mems_allowed;
  1851. mutex_lock(&callback_mutex);
  1852. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1853. mutex_unlock(&callback_mutex);
  1854. update_tasks_nodemask(&top_cpuset, &oldmems, NULL);
  1855. break;
  1856. case MEM_OFFLINE:
  1857. /*
  1858. * needn't update top_cpuset.mems_allowed explicitly because
  1859. * scan_for_empty_cpusets() will update it.
  1860. */
  1861. scan_for_empty_cpusets(&top_cpuset);
  1862. break;
  1863. default:
  1864. break;
  1865. }
  1866. cgroup_unlock();
  1867. return NOTIFY_OK;
  1868. }
  1869. #endif
  1870. /**
  1871. * cpuset_init_smp - initialize cpus_allowed
  1872. *
  1873. * Description: Finish top cpuset after cpu, node maps are initialized
  1874. **/
  1875. void __init cpuset_init_smp(void)
  1876. {
  1877. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  1878. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1879. hotplug_memory_notifier(cpuset_track_online_nodes, 10);
  1880. cpuset_wq = create_singlethread_workqueue("cpuset");
  1881. BUG_ON(!cpuset_wq);
  1882. }
  1883. /**
  1884. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1885. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1886. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  1887. *
  1888. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  1889. * attached to the specified @tsk. Guaranteed to return some non-empty
  1890. * subset of cpu_online_mask, even if this means going outside the
  1891. * tasks cpuset.
  1892. **/
  1893. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  1894. {
  1895. mutex_lock(&callback_mutex);
  1896. task_lock(tsk);
  1897. guarantee_online_cpus(task_cs(tsk), pmask);
  1898. task_unlock(tsk);
  1899. mutex_unlock(&callback_mutex);
  1900. }
  1901. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  1902. {
  1903. const struct cpuset *cs;
  1904. rcu_read_lock();
  1905. cs = task_cs(tsk);
  1906. if (cs)
  1907. do_set_cpus_allowed(tsk, cs->cpus_allowed);
  1908. rcu_read_unlock();
  1909. /*
  1910. * We own tsk->cpus_allowed, nobody can change it under us.
  1911. *
  1912. * But we used cs && cs->cpus_allowed lockless and thus can
  1913. * race with cgroup_attach_task() or update_cpumask() and get
  1914. * the wrong tsk->cpus_allowed. However, both cases imply the
  1915. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  1916. * which takes task_rq_lock().
  1917. *
  1918. * If we are called after it dropped the lock we must see all
  1919. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  1920. * set any mask even if it is not right from task_cs() pov,
  1921. * the pending set_cpus_allowed_ptr() will fix things.
  1922. *
  1923. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  1924. * if required.
  1925. */
  1926. }
  1927. void cpuset_init_current_mems_allowed(void)
  1928. {
  1929. nodes_setall(current->mems_allowed);
  1930. }
  1931. /**
  1932. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1933. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1934. *
  1935. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1936. * attached to the specified @tsk. Guaranteed to return some non-empty
  1937. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1938. * tasks cpuset.
  1939. **/
  1940. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1941. {
  1942. nodemask_t mask;
  1943. mutex_lock(&callback_mutex);
  1944. task_lock(tsk);
  1945. guarantee_online_mems(task_cs(tsk), &mask);
  1946. task_unlock(tsk);
  1947. mutex_unlock(&callback_mutex);
  1948. return mask;
  1949. }
  1950. /**
  1951. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1952. * @nodemask: the nodemask to be checked
  1953. *
  1954. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1955. */
  1956. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1957. {
  1958. return nodes_intersects(*nodemask, current->mems_allowed);
  1959. }
  1960. /*
  1961. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1962. * mem_hardwall ancestor to the specified cpuset. Call holding
  1963. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1964. * (an unusual configuration), then returns the root cpuset.
  1965. */
  1966. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1967. {
  1968. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1969. cs = cs->parent;
  1970. return cs;
  1971. }
  1972. /**
  1973. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  1974. * @node: is this an allowed node?
  1975. * @gfp_mask: memory allocation flags
  1976. *
  1977. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  1978. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  1979. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  1980. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  1981. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  1982. * flag, yes.
  1983. * Otherwise, no.
  1984. *
  1985. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  1986. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  1987. * might sleep, and might allow a node from an enclosing cpuset.
  1988. *
  1989. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  1990. * cpusets, and never sleeps.
  1991. *
  1992. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1993. * by forcibly using a zonelist starting at a specified node, and by
  1994. * (in get_page_from_freelist()) refusing to consider the zones for
  1995. * any node on the zonelist except the first. By the time any such
  1996. * calls get to this routine, we should just shut up and say 'yes'.
  1997. *
  1998. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1999. * and do not allow allocations outside the current tasks cpuset
  2000. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2001. * GFP_KERNEL allocations are not so marked, so can escape to the
  2002. * nearest enclosing hardwalled ancestor cpuset.
  2003. *
  2004. * Scanning up parent cpusets requires callback_mutex. The
  2005. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2006. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2007. * current tasks mems_allowed came up empty on the first pass over
  2008. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2009. * cpuset are short of memory, might require taking the callback_mutex
  2010. * mutex.
  2011. *
  2012. * The first call here from mm/page_alloc:get_page_from_freelist()
  2013. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2014. * so no allocation on a node outside the cpuset is allowed (unless
  2015. * in interrupt, of course).
  2016. *
  2017. * The second pass through get_page_from_freelist() doesn't even call
  2018. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2019. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2020. * in alloc_flags. That logic and the checks below have the combined
  2021. * affect that:
  2022. * in_interrupt - any node ok (current task context irrelevant)
  2023. * GFP_ATOMIC - any node ok
  2024. * TIF_MEMDIE - any node ok
  2025. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2026. * GFP_USER - only nodes in current tasks mems allowed ok.
  2027. *
  2028. * Rule:
  2029. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  2030. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  2031. * the code that might scan up ancestor cpusets and sleep.
  2032. */
  2033. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  2034. {
  2035. const struct cpuset *cs; /* current cpuset ancestors */
  2036. int allowed; /* is allocation in zone z allowed? */
  2037. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2038. return 1;
  2039. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2040. if (node_isset(node, current->mems_allowed))
  2041. return 1;
  2042. /*
  2043. * Allow tasks that have access to memory reserves because they have
  2044. * been OOM killed to get memory anywhere.
  2045. */
  2046. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2047. return 1;
  2048. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2049. return 0;
  2050. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2051. return 1;
  2052. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2053. mutex_lock(&callback_mutex);
  2054. task_lock(current);
  2055. cs = nearest_hardwall_ancestor(task_cs(current));
  2056. allowed = node_isset(node, cs->mems_allowed);
  2057. task_unlock(current);
  2058. mutex_unlock(&callback_mutex);
  2059. return allowed;
  2060. }
  2061. /*
  2062. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2063. * @node: is this an allowed node?
  2064. * @gfp_mask: memory allocation flags
  2065. *
  2066. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2067. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2068. * yes. If the task has been OOM killed and has access to memory reserves as
  2069. * specified by the TIF_MEMDIE flag, yes.
  2070. * Otherwise, no.
  2071. *
  2072. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2073. * by forcibly using a zonelist starting at a specified node, and by
  2074. * (in get_page_from_freelist()) refusing to consider the zones for
  2075. * any node on the zonelist except the first. By the time any such
  2076. * calls get to this routine, we should just shut up and say 'yes'.
  2077. *
  2078. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2079. * this variant requires that the node be in the current task's
  2080. * mems_allowed or that we're in interrupt. It does not scan up the
  2081. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2082. * It never sleeps.
  2083. */
  2084. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2085. {
  2086. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2087. return 1;
  2088. if (node_isset(node, current->mems_allowed))
  2089. return 1;
  2090. /*
  2091. * Allow tasks that have access to memory reserves because they have
  2092. * been OOM killed to get memory anywhere.
  2093. */
  2094. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2095. return 1;
  2096. return 0;
  2097. }
  2098. /**
  2099. * cpuset_unlock - release lock on cpuset changes
  2100. *
  2101. * Undo the lock taken in a previous cpuset_lock() call.
  2102. */
  2103. void cpuset_unlock(void)
  2104. {
  2105. mutex_unlock(&callback_mutex);
  2106. }
  2107. /**
  2108. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2109. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2110. *
  2111. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2112. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2113. * and if the memory allocation used cpuset_mem_spread_node()
  2114. * to determine on which node to start looking, as it will for
  2115. * certain page cache or slab cache pages such as used for file
  2116. * system buffers and inode caches, then instead of starting on the
  2117. * local node to look for a free page, rather spread the starting
  2118. * node around the tasks mems_allowed nodes.
  2119. *
  2120. * We don't have to worry about the returned node being offline
  2121. * because "it can't happen", and even if it did, it would be ok.
  2122. *
  2123. * The routines calling guarantee_online_mems() are careful to
  2124. * only set nodes in task->mems_allowed that are online. So it
  2125. * should not be possible for the following code to return an
  2126. * offline node. But if it did, that would be ok, as this routine
  2127. * is not returning the node where the allocation must be, only
  2128. * the node where the search should start. The zonelist passed to
  2129. * __alloc_pages() will include all nodes. If the slab allocator
  2130. * is passed an offline node, it will fall back to the local node.
  2131. * See kmem_cache_alloc_node().
  2132. */
  2133. static int cpuset_spread_node(int *rotor)
  2134. {
  2135. int node;
  2136. node = next_node(*rotor, current->mems_allowed);
  2137. if (node == MAX_NUMNODES)
  2138. node = first_node(current->mems_allowed);
  2139. *rotor = node;
  2140. return node;
  2141. }
  2142. int cpuset_mem_spread_node(void)
  2143. {
  2144. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2145. current->cpuset_mem_spread_rotor =
  2146. node_random(&current->mems_allowed);
  2147. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2148. }
  2149. int cpuset_slab_spread_node(void)
  2150. {
  2151. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2152. current->cpuset_slab_spread_rotor =
  2153. node_random(&current->mems_allowed);
  2154. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2155. }
  2156. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2157. /**
  2158. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2159. * @tsk1: pointer to task_struct of some task.
  2160. * @tsk2: pointer to task_struct of some other task.
  2161. *
  2162. * Description: Return true if @tsk1's mems_allowed intersects the
  2163. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2164. * one of the task's memory usage might impact the memory available
  2165. * to the other.
  2166. **/
  2167. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2168. const struct task_struct *tsk2)
  2169. {
  2170. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2171. }
  2172. /**
  2173. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2174. * @task: pointer to task_struct of some task.
  2175. *
  2176. * Description: Prints @task's name, cpuset name, and cached copy of its
  2177. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2178. * dereferencing task_cs(task).
  2179. */
  2180. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2181. {
  2182. struct dentry *dentry;
  2183. dentry = task_cs(tsk)->css.cgroup->dentry;
  2184. spin_lock(&cpuset_buffer_lock);
  2185. if (!dentry) {
  2186. strcpy(cpuset_name, "/");
  2187. } else {
  2188. spin_lock(&dentry->d_lock);
  2189. strlcpy(cpuset_name, (const char *)dentry->d_name.name,
  2190. CPUSET_NAME_LEN);
  2191. spin_unlock(&dentry->d_lock);
  2192. }
  2193. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2194. tsk->mems_allowed);
  2195. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2196. tsk->comm, cpuset_name, cpuset_nodelist);
  2197. spin_unlock(&cpuset_buffer_lock);
  2198. }
  2199. /*
  2200. * Collection of memory_pressure is suppressed unless
  2201. * this flag is enabled by writing "1" to the special
  2202. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2203. */
  2204. int cpuset_memory_pressure_enabled __read_mostly;
  2205. /**
  2206. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2207. *
  2208. * Keep a running average of the rate of synchronous (direct)
  2209. * page reclaim efforts initiated by tasks in each cpuset.
  2210. *
  2211. * This represents the rate at which some task in the cpuset
  2212. * ran low on memory on all nodes it was allowed to use, and
  2213. * had to enter the kernels page reclaim code in an effort to
  2214. * create more free memory by tossing clean pages or swapping
  2215. * or writing dirty pages.
  2216. *
  2217. * Display to user space in the per-cpuset read-only file
  2218. * "memory_pressure". Value displayed is an integer
  2219. * representing the recent rate of entry into the synchronous
  2220. * (direct) page reclaim by any task attached to the cpuset.
  2221. **/
  2222. void __cpuset_memory_pressure_bump(void)
  2223. {
  2224. task_lock(current);
  2225. fmeter_markevent(&task_cs(current)->fmeter);
  2226. task_unlock(current);
  2227. }
  2228. #ifdef CONFIG_PROC_PID_CPUSET
  2229. /*
  2230. * proc_cpuset_show()
  2231. * - Print tasks cpuset path into seq_file.
  2232. * - Used for /proc/<pid>/cpuset.
  2233. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2234. * doesn't really matter if tsk->cpuset changes after we read it,
  2235. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2236. * anyway.
  2237. */
  2238. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2239. {
  2240. struct pid *pid;
  2241. struct task_struct *tsk;
  2242. char *buf;
  2243. struct cgroup_subsys_state *css;
  2244. int retval;
  2245. retval = -ENOMEM;
  2246. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2247. if (!buf)
  2248. goto out;
  2249. retval = -ESRCH;
  2250. pid = m->private;
  2251. tsk = get_pid_task(pid, PIDTYPE_PID);
  2252. if (!tsk)
  2253. goto out_free;
  2254. retval = -EINVAL;
  2255. cgroup_lock();
  2256. css = task_subsys_state(tsk, cpuset_subsys_id);
  2257. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2258. if (retval < 0)
  2259. goto out_unlock;
  2260. seq_puts(m, buf);
  2261. seq_putc(m, '\n');
  2262. out_unlock:
  2263. cgroup_unlock();
  2264. put_task_struct(tsk);
  2265. out_free:
  2266. kfree(buf);
  2267. out:
  2268. return retval;
  2269. }
  2270. static int cpuset_open(struct inode *inode, struct file *file)
  2271. {
  2272. struct pid *pid = PROC_I(inode)->pid;
  2273. return single_open(file, proc_cpuset_show, pid);
  2274. }
  2275. const struct file_operations proc_cpuset_operations = {
  2276. .open = cpuset_open,
  2277. .read = seq_read,
  2278. .llseek = seq_lseek,
  2279. .release = single_release,
  2280. };
  2281. #endif /* CONFIG_PROC_PID_CPUSET */
  2282. /* Display task mems_allowed in /proc/<pid>/status file. */
  2283. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2284. {
  2285. seq_printf(m, "Mems_allowed:\t");
  2286. seq_nodemask(m, &task->mems_allowed);
  2287. seq_printf(m, "\n");
  2288. seq_printf(m, "Mems_allowed_list:\t");
  2289. seq_nodemask_list(m, &task->mems_allowed);
  2290. seq_printf(m, "\n");
  2291. }