spi-fsl-espi.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753
  1. /*
  2. * Freescale eSPI controller driver.
  3. *
  4. * Copyright 2010 Freescale Semiconductor, Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the
  8. * Free Software Foundation; either version 2 of the License, or (at your
  9. * option) any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/irq.h>
  14. #include <linux/spi/spi.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/fsl_devices.h>
  17. #include <linux/mm.h>
  18. #include <linux/of.h>
  19. #include <linux/of_platform.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/err.h>
  22. #include <sysdev/fsl_soc.h>
  23. #include "spi-fsl-lib.h"
  24. /* eSPI Controller registers */
  25. struct fsl_espi_reg {
  26. __be32 mode; /* 0x000 - eSPI mode register */
  27. __be32 event; /* 0x004 - eSPI event register */
  28. __be32 mask; /* 0x008 - eSPI mask register */
  29. __be32 command; /* 0x00c - eSPI command register */
  30. __be32 transmit; /* 0x010 - eSPI transmit FIFO access register*/
  31. __be32 receive; /* 0x014 - eSPI receive FIFO access register*/
  32. u8 res[8]; /* 0x018 - 0x01c reserved */
  33. __be32 csmode[4]; /* 0x020 - 0x02c eSPI cs mode register */
  34. };
  35. struct fsl_espi_transfer {
  36. const void *tx_buf;
  37. void *rx_buf;
  38. unsigned len;
  39. unsigned n_tx;
  40. unsigned n_rx;
  41. unsigned actual_length;
  42. int status;
  43. };
  44. /* eSPI Controller mode register definitions */
  45. #define SPMODE_ENABLE (1 << 31)
  46. #define SPMODE_LOOP (1 << 30)
  47. #define SPMODE_TXTHR(x) ((x) << 8)
  48. #define SPMODE_RXTHR(x) ((x) << 0)
  49. /* eSPI Controller CS mode register definitions */
  50. #define CSMODE_CI_INACTIVEHIGH (1 << 31)
  51. #define CSMODE_CP_BEGIN_EDGECLK (1 << 30)
  52. #define CSMODE_REV (1 << 29)
  53. #define CSMODE_DIV16 (1 << 28)
  54. #define CSMODE_PM(x) ((x) << 24)
  55. #define CSMODE_POL_1 (1 << 20)
  56. #define CSMODE_LEN(x) ((x) << 16)
  57. #define CSMODE_BEF(x) ((x) << 12)
  58. #define CSMODE_AFT(x) ((x) << 8)
  59. #define CSMODE_CG(x) ((x) << 3)
  60. /* Default mode/csmode for eSPI controller */
  61. #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3))
  62. #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
  63. | CSMODE_AFT(0) | CSMODE_CG(1))
  64. /* SPIE register values */
  65. #define SPIE_NE 0x00000200 /* Not empty */
  66. #define SPIE_NF 0x00000100 /* Not full */
  67. /* SPIM register values */
  68. #define SPIM_NE 0x00000200 /* Not empty */
  69. #define SPIM_NF 0x00000100 /* Not full */
  70. #define SPIE_RXCNT(reg) ((reg >> 24) & 0x3F)
  71. #define SPIE_TXCNT(reg) ((reg >> 16) & 0x3F)
  72. /* SPCOM register values */
  73. #define SPCOM_CS(x) ((x) << 30)
  74. #define SPCOM_TRANLEN(x) ((x) << 0)
  75. #define SPCOM_TRANLEN_MAX 0xFFFF /* Max transaction length */
  76. static void fsl_espi_change_mode(struct spi_device *spi)
  77. {
  78. struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
  79. struct spi_mpc8xxx_cs *cs = spi->controller_state;
  80. struct fsl_espi_reg *reg_base = mspi->reg_base;
  81. __be32 __iomem *mode = &reg_base->csmode[spi->chip_select];
  82. __be32 __iomem *espi_mode = &reg_base->mode;
  83. u32 tmp;
  84. unsigned long flags;
  85. /* Turn off IRQs locally to minimize time that SPI is disabled. */
  86. local_irq_save(flags);
  87. /* Turn off SPI unit prior changing mode */
  88. tmp = mpc8xxx_spi_read_reg(espi_mode);
  89. mpc8xxx_spi_write_reg(espi_mode, tmp & ~SPMODE_ENABLE);
  90. mpc8xxx_spi_write_reg(mode, cs->hw_mode);
  91. mpc8xxx_spi_write_reg(espi_mode, tmp);
  92. local_irq_restore(flags);
  93. }
  94. static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi)
  95. {
  96. u32 data;
  97. u16 data_h;
  98. u16 data_l;
  99. const u32 *tx = mpc8xxx_spi->tx;
  100. if (!tx)
  101. return 0;
  102. data = *tx++ << mpc8xxx_spi->tx_shift;
  103. data_l = data & 0xffff;
  104. data_h = (data >> 16) & 0xffff;
  105. swab16s(&data_l);
  106. swab16s(&data_h);
  107. data = data_h | data_l;
  108. mpc8xxx_spi->tx = tx;
  109. return data;
  110. }
  111. static int fsl_espi_setup_transfer(struct spi_device *spi,
  112. struct spi_transfer *t)
  113. {
  114. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
  115. int bits_per_word = 0;
  116. u8 pm;
  117. u32 hz = 0;
  118. struct spi_mpc8xxx_cs *cs = spi->controller_state;
  119. if (t) {
  120. bits_per_word = t->bits_per_word;
  121. hz = t->speed_hz;
  122. }
  123. /* spi_transfer level calls that work per-word */
  124. if (!bits_per_word)
  125. bits_per_word = spi->bits_per_word;
  126. /* Make sure its a bit width we support [4..16] */
  127. if ((bits_per_word < 4) || (bits_per_word > 16))
  128. return -EINVAL;
  129. if (!hz)
  130. hz = spi->max_speed_hz;
  131. cs->rx_shift = 0;
  132. cs->tx_shift = 0;
  133. cs->get_rx = mpc8xxx_spi_rx_buf_u32;
  134. cs->get_tx = mpc8xxx_spi_tx_buf_u32;
  135. if (bits_per_word <= 8) {
  136. cs->rx_shift = 8 - bits_per_word;
  137. } else if (bits_per_word <= 16) {
  138. cs->rx_shift = 16 - bits_per_word;
  139. if (spi->mode & SPI_LSB_FIRST)
  140. cs->get_tx = fsl_espi_tx_buf_lsb;
  141. } else {
  142. return -EINVAL;
  143. }
  144. mpc8xxx_spi->rx_shift = cs->rx_shift;
  145. mpc8xxx_spi->tx_shift = cs->tx_shift;
  146. mpc8xxx_spi->get_rx = cs->get_rx;
  147. mpc8xxx_spi->get_tx = cs->get_tx;
  148. bits_per_word = bits_per_word - 1;
  149. /* mask out bits we are going to set */
  150. cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
  151. cs->hw_mode |= CSMODE_LEN(bits_per_word);
  152. if ((mpc8xxx_spi->spibrg / hz) > 64) {
  153. cs->hw_mode |= CSMODE_DIV16;
  154. pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4);
  155. WARN_ONCE(pm > 33, "%s: Requested speed is too low: %d Hz. "
  156. "Will use %d Hz instead.\n", dev_name(&spi->dev),
  157. hz, mpc8xxx_spi->spibrg / (4 * 16 * (32 + 1)));
  158. if (pm > 33)
  159. pm = 33;
  160. } else {
  161. pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4);
  162. }
  163. if (pm)
  164. pm--;
  165. if (pm < 2)
  166. pm = 2;
  167. cs->hw_mode |= CSMODE_PM(pm);
  168. fsl_espi_change_mode(spi);
  169. return 0;
  170. }
  171. static int fsl_espi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t,
  172. unsigned int len)
  173. {
  174. u32 word;
  175. struct fsl_espi_reg *reg_base = mspi->reg_base;
  176. mspi->count = len;
  177. /* enable rx ints */
  178. mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);
  179. /* transmit word */
  180. word = mspi->get_tx(mspi);
  181. mpc8xxx_spi_write_reg(&reg_base->transmit, word);
  182. return 0;
  183. }
  184. static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
  185. {
  186. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
  187. struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
  188. unsigned int len = t->len;
  189. u8 bits_per_word;
  190. int ret;
  191. bits_per_word = spi->bits_per_word;
  192. if (t->bits_per_word)
  193. bits_per_word = t->bits_per_word;
  194. mpc8xxx_spi->len = t->len;
  195. len = roundup(len, 4) / 4;
  196. mpc8xxx_spi->tx = t->tx_buf;
  197. mpc8xxx_spi->rx = t->rx_buf;
  198. INIT_COMPLETION(mpc8xxx_spi->done);
  199. /* Set SPCOM[CS] and SPCOM[TRANLEN] field */
  200. if ((t->len - 1) > SPCOM_TRANLEN_MAX) {
  201. dev_err(mpc8xxx_spi->dev, "Transaction length (%d)"
  202. " beyond the SPCOM[TRANLEN] field\n", t->len);
  203. return -EINVAL;
  204. }
  205. mpc8xxx_spi_write_reg(&reg_base->command,
  206. (SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1)));
  207. ret = fsl_espi_cpu_bufs(mpc8xxx_spi, t, len);
  208. if (ret)
  209. return ret;
  210. wait_for_completion(&mpc8xxx_spi->done);
  211. /* disable rx ints */
  212. mpc8xxx_spi_write_reg(&reg_base->mask, 0);
  213. return mpc8xxx_spi->count;
  214. }
  215. static inline void fsl_espi_addr2cmd(unsigned int addr, u8 *cmd)
  216. {
  217. if (cmd) {
  218. cmd[1] = (u8)(addr >> 16);
  219. cmd[2] = (u8)(addr >> 8);
  220. cmd[3] = (u8)(addr >> 0);
  221. }
  222. }
  223. static inline unsigned int fsl_espi_cmd2addr(u8 *cmd)
  224. {
  225. if (cmd)
  226. return cmd[1] << 16 | cmd[2] << 8 | cmd[3] << 0;
  227. return 0;
  228. }
  229. static void fsl_espi_do_trans(struct spi_message *m,
  230. struct fsl_espi_transfer *tr)
  231. {
  232. struct spi_device *spi = m->spi;
  233. struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
  234. struct fsl_espi_transfer *espi_trans = tr;
  235. struct spi_message message;
  236. struct spi_transfer *t, *first, trans;
  237. int status = 0;
  238. spi_message_init(&message);
  239. memset(&trans, 0, sizeof(trans));
  240. first = list_first_entry(&m->transfers, struct spi_transfer,
  241. transfer_list);
  242. list_for_each_entry(t, &m->transfers, transfer_list) {
  243. if ((first->bits_per_word != t->bits_per_word) ||
  244. (first->speed_hz != t->speed_hz)) {
  245. espi_trans->status = -EINVAL;
  246. dev_err(mspi->dev, "bits_per_word/speed_hz should be"
  247. " same for the same SPI transfer\n");
  248. return;
  249. }
  250. trans.speed_hz = t->speed_hz;
  251. trans.bits_per_word = t->bits_per_word;
  252. trans.delay_usecs = max(first->delay_usecs, t->delay_usecs);
  253. }
  254. trans.len = espi_trans->len;
  255. trans.tx_buf = espi_trans->tx_buf;
  256. trans.rx_buf = espi_trans->rx_buf;
  257. spi_message_add_tail(&trans, &message);
  258. list_for_each_entry(t, &message.transfers, transfer_list) {
  259. if (t->bits_per_word || t->speed_hz) {
  260. status = -EINVAL;
  261. status = fsl_espi_setup_transfer(spi, t);
  262. if (status < 0)
  263. break;
  264. }
  265. if (t->len)
  266. status = fsl_espi_bufs(spi, t);
  267. if (status) {
  268. status = -EMSGSIZE;
  269. break;
  270. }
  271. if (t->delay_usecs)
  272. udelay(t->delay_usecs);
  273. }
  274. espi_trans->status = status;
  275. fsl_espi_setup_transfer(spi, NULL);
  276. }
  277. static void fsl_espi_cmd_trans(struct spi_message *m,
  278. struct fsl_espi_transfer *trans, u8 *rx_buff)
  279. {
  280. struct spi_transfer *t;
  281. u8 *local_buf;
  282. int i = 0;
  283. struct fsl_espi_transfer *espi_trans = trans;
  284. local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
  285. if (!local_buf) {
  286. espi_trans->status = -ENOMEM;
  287. return;
  288. }
  289. list_for_each_entry(t, &m->transfers, transfer_list) {
  290. if (t->tx_buf) {
  291. memcpy(local_buf + i, t->tx_buf, t->len);
  292. i += t->len;
  293. }
  294. }
  295. espi_trans->tx_buf = local_buf;
  296. espi_trans->rx_buf = local_buf + espi_trans->n_tx;
  297. fsl_espi_do_trans(m, espi_trans);
  298. espi_trans->actual_length = espi_trans->len;
  299. kfree(local_buf);
  300. }
  301. static void fsl_espi_rw_trans(struct spi_message *m,
  302. struct fsl_espi_transfer *trans, u8 *rx_buff)
  303. {
  304. struct fsl_espi_transfer *espi_trans = trans;
  305. unsigned int n_tx = espi_trans->n_tx;
  306. unsigned int n_rx = espi_trans->n_rx;
  307. struct spi_transfer *t;
  308. u8 *local_buf;
  309. u8 *rx_buf = rx_buff;
  310. unsigned int trans_len;
  311. unsigned int addr;
  312. int i, pos, loop;
  313. local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
  314. if (!local_buf) {
  315. espi_trans->status = -ENOMEM;
  316. return;
  317. }
  318. for (pos = 0, loop = 0; pos < n_rx; pos += trans_len, loop++) {
  319. trans_len = n_rx - pos;
  320. if (trans_len > SPCOM_TRANLEN_MAX - n_tx)
  321. trans_len = SPCOM_TRANLEN_MAX - n_tx;
  322. i = 0;
  323. list_for_each_entry(t, &m->transfers, transfer_list) {
  324. if (t->tx_buf) {
  325. memcpy(local_buf + i, t->tx_buf, t->len);
  326. i += t->len;
  327. }
  328. }
  329. if (pos > 0) {
  330. addr = fsl_espi_cmd2addr(local_buf);
  331. addr += pos;
  332. fsl_espi_addr2cmd(addr, local_buf);
  333. }
  334. espi_trans->n_tx = n_tx;
  335. espi_trans->n_rx = trans_len;
  336. espi_trans->len = trans_len + n_tx;
  337. espi_trans->tx_buf = local_buf;
  338. espi_trans->rx_buf = local_buf + n_tx;
  339. fsl_espi_do_trans(m, espi_trans);
  340. memcpy(rx_buf + pos, espi_trans->rx_buf + n_tx, trans_len);
  341. if (loop > 0)
  342. espi_trans->actual_length += espi_trans->len - n_tx;
  343. else
  344. espi_trans->actual_length += espi_trans->len;
  345. }
  346. kfree(local_buf);
  347. }
  348. static void fsl_espi_do_one_msg(struct spi_message *m)
  349. {
  350. struct spi_transfer *t;
  351. u8 *rx_buf = NULL;
  352. unsigned int n_tx = 0;
  353. unsigned int n_rx = 0;
  354. struct fsl_espi_transfer espi_trans;
  355. list_for_each_entry(t, &m->transfers, transfer_list) {
  356. if (t->tx_buf)
  357. n_tx += t->len;
  358. if (t->rx_buf) {
  359. n_rx += t->len;
  360. rx_buf = t->rx_buf;
  361. }
  362. }
  363. espi_trans.n_tx = n_tx;
  364. espi_trans.n_rx = n_rx;
  365. espi_trans.len = n_tx + n_rx;
  366. espi_trans.actual_length = 0;
  367. espi_trans.status = 0;
  368. if (!rx_buf)
  369. fsl_espi_cmd_trans(m, &espi_trans, NULL);
  370. else
  371. fsl_espi_rw_trans(m, &espi_trans, rx_buf);
  372. m->actual_length = espi_trans.actual_length;
  373. m->status = espi_trans.status;
  374. m->complete(m->context);
  375. }
  376. static int fsl_espi_setup(struct spi_device *spi)
  377. {
  378. struct mpc8xxx_spi *mpc8xxx_spi;
  379. struct fsl_espi_reg *reg_base;
  380. int retval;
  381. u32 hw_mode;
  382. u32 loop_mode;
  383. struct spi_mpc8xxx_cs *cs = spi->controller_state;
  384. if (!spi->max_speed_hz)
  385. return -EINVAL;
  386. if (!cs) {
  387. cs = kzalloc(sizeof *cs, GFP_KERNEL);
  388. if (!cs)
  389. return -ENOMEM;
  390. spi->controller_state = cs;
  391. }
  392. mpc8xxx_spi = spi_master_get_devdata(spi->master);
  393. reg_base = mpc8xxx_spi->reg_base;
  394. hw_mode = cs->hw_mode; /* Save original settings */
  395. cs->hw_mode = mpc8xxx_spi_read_reg(
  396. &reg_base->csmode[spi->chip_select]);
  397. /* mask out bits we are going to set */
  398. cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
  399. | CSMODE_REV);
  400. if (spi->mode & SPI_CPHA)
  401. cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
  402. if (spi->mode & SPI_CPOL)
  403. cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
  404. if (!(spi->mode & SPI_LSB_FIRST))
  405. cs->hw_mode |= CSMODE_REV;
  406. /* Handle the loop mode */
  407. loop_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
  408. loop_mode &= ~SPMODE_LOOP;
  409. if (spi->mode & SPI_LOOP)
  410. loop_mode |= SPMODE_LOOP;
  411. mpc8xxx_spi_write_reg(&reg_base->mode, loop_mode);
  412. retval = fsl_espi_setup_transfer(spi, NULL);
  413. if (retval < 0) {
  414. cs->hw_mode = hw_mode; /* Restore settings */
  415. return retval;
  416. }
  417. return 0;
  418. }
  419. void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
  420. {
  421. struct fsl_espi_reg *reg_base = mspi->reg_base;
  422. /* We need handle RX first */
  423. if (events & SPIE_NE) {
  424. u32 rx_data, tmp;
  425. u8 rx_data_8;
  426. /* Spin until RX is done */
  427. while (SPIE_RXCNT(events) < min(4, mspi->len)) {
  428. cpu_relax();
  429. events = mpc8xxx_spi_read_reg(&reg_base->event);
  430. }
  431. if (mspi->len >= 4) {
  432. rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
  433. } else {
  434. tmp = mspi->len;
  435. rx_data = 0;
  436. while (tmp--) {
  437. rx_data_8 = in_8((u8 *)&reg_base->receive);
  438. rx_data |= (rx_data_8 << (tmp * 8));
  439. }
  440. rx_data <<= (4 - mspi->len) * 8;
  441. }
  442. mspi->len -= 4;
  443. if (mspi->rx)
  444. mspi->get_rx(rx_data, mspi);
  445. }
  446. if (!(events & SPIE_NF)) {
  447. int ret;
  448. /* spin until TX is done */
  449. ret = spin_event_timeout(((events = mpc8xxx_spi_read_reg(
  450. &reg_base->event)) & SPIE_NF) == 0, 1000, 0);
  451. if (!ret) {
  452. dev_err(mspi->dev, "tired waiting for SPIE_NF\n");
  453. return;
  454. }
  455. }
  456. /* Clear the events */
  457. mpc8xxx_spi_write_reg(&reg_base->event, events);
  458. mspi->count -= 1;
  459. if (mspi->count) {
  460. u32 word = mspi->get_tx(mspi);
  461. mpc8xxx_spi_write_reg(&reg_base->transmit, word);
  462. } else {
  463. complete(&mspi->done);
  464. }
  465. }
  466. static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
  467. {
  468. struct mpc8xxx_spi *mspi = context_data;
  469. struct fsl_espi_reg *reg_base = mspi->reg_base;
  470. irqreturn_t ret = IRQ_NONE;
  471. u32 events;
  472. /* Get interrupt events(tx/rx) */
  473. events = mpc8xxx_spi_read_reg(&reg_base->event);
  474. if (events)
  475. ret = IRQ_HANDLED;
  476. dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);
  477. fsl_espi_cpu_irq(mspi, events);
  478. return ret;
  479. }
  480. static void fsl_espi_remove(struct mpc8xxx_spi *mspi)
  481. {
  482. iounmap(mspi->reg_base);
  483. }
  484. static struct spi_master * __devinit fsl_espi_probe(struct device *dev,
  485. struct resource *mem, unsigned int irq)
  486. {
  487. struct fsl_spi_platform_data *pdata = dev->platform_data;
  488. struct spi_master *master;
  489. struct mpc8xxx_spi *mpc8xxx_spi;
  490. struct fsl_espi_reg *reg_base;
  491. u32 regval;
  492. int i, ret = 0;
  493. master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
  494. if (!master) {
  495. ret = -ENOMEM;
  496. goto err;
  497. }
  498. dev_set_drvdata(dev, master);
  499. ret = mpc8xxx_spi_probe(dev, mem, irq);
  500. if (ret)
  501. goto err_probe;
  502. master->setup = fsl_espi_setup;
  503. mpc8xxx_spi = spi_master_get_devdata(master);
  504. mpc8xxx_spi->spi_do_one_msg = fsl_espi_do_one_msg;
  505. mpc8xxx_spi->spi_remove = fsl_espi_remove;
  506. mpc8xxx_spi->reg_base = ioremap(mem->start, resource_size(mem));
  507. if (!mpc8xxx_spi->reg_base) {
  508. ret = -ENOMEM;
  509. goto err_probe;
  510. }
  511. reg_base = mpc8xxx_spi->reg_base;
  512. /* Register for SPI Interrupt */
  513. ret = request_irq(mpc8xxx_spi->irq, fsl_espi_irq,
  514. 0, "fsl_espi", mpc8xxx_spi);
  515. if (ret)
  516. goto free_irq;
  517. if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
  518. mpc8xxx_spi->rx_shift = 16;
  519. mpc8xxx_spi->tx_shift = 24;
  520. }
  521. /* SPI controller initializations */
  522. mpc8xxx_spi_write_reg(&reg_base->mode, 0);
  523. mpc8xxx_spi_write_reg(&reg_base->mask, 0);
  524. mpc8xxx_spi_write_reg(&reg_base->command, 0);
  525. mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
  526. /* Init eSPI CS mode register */
  527. for (i = 0; i < pdata->max_chipselect; i++)
  528. mpc8xxx_spi_write_reg(&reg_base->csmode[i], CSMODE_INIT_VAL);
  529. /* Enable SPI interface */
  530. regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
  531. mpc8xxx_spi_write_reg(&reg_base->mode, regval);
  532. ret = spi_register_master(master);
  533. if (ret < 0)
  534. goto unreg_master;
  535. dev_info(dev, "at 0x%p (irq = %d)\n", reg_base, mpc8xxx_spi->irq);
  536. return master;
  537. unreg_master:
  538. free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
  539. free_irq:
  540. iounmap(mpc8xxx_spi->reg_base);
  541. err_probe:
  542. spi_master_put(master);
  543. err:
  544. return ERR_PTR(ret);
  545. }
  546. static int of_fsl_espi_get_chipselects(struct device *dev)
  547. {
  548. struct device_node *np = dev->of_node;
  549. struct fsl_spi_platform_data *pdata = dev->platform_data;
  550. const u32 *prop;
  551. int len;
  552. prop = of_get_property(np, "fsl,espi-num-chipselects", &len);
  553. if (!prop || len < sizeof(*prop)) {
  554. dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
  555. return -EINVAL;
  556. }
  557. pdata->max_chipselect = *prop;
  558. pdata->cs_control = NULL;
  559. return 0;
  560. }
  561. static int __devinit of_fsl_espi_probe(struct platform_device *ofdev)
  562. {
  563. struct device *dev = &ofdev->dev;
  564. struct device_node *np = ofdev->dev.of_node;
  565. struct spi_master *master;
  566. struct resource mem;
  567. struct resource irq;
  568. int ret = -ENOMEM;
  569. ret = of_mpc8xxx_spi_probe(ofdev);
  570. if (ret)
  571. return ret;
  572. ret = of_fsl_espi_get_chipselects(dev);
  573. if (ret)
  574. goto err;
  575. ret = of_address_to_resource(np, 0, &mem);
  576. if (ret)
  577. goto err;
  578. ret = of_irq_to_resource(np, 0, &irq);
  579. if (!ret) {
  580. ret = -EINVAL;
  581. goto err;
  582. }
  583. master = fsl_espi_probe(dev, &mem, irq.start);
  584. if (IS_ERR(master)) {
  585. ret = PTR_ERR(master);
  586. goto err;
  587. }
  588. return 0;
  589. err:
  590. return ret;
  591. }
  592. static int __devexit of_fsl_espi_remove(struct platform_device *dev)
  593. {
  594. return mpc8xxx_spi_remove(&dev->dev);
  595. }
  596. static const struct of_device_id of_fsl_espi_match[] = {
  597. { .compatible = "fsl,mpc8536-espi" },
  598. {}
  599. };
  600. MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
  601. static struct platform_driver fsl_espi_driver = {
  602. .driver = {
  603. .name = "fsl_espi",
  604. .owner = THIS_MODULE,
  605. .of_match_table = of_fsl_espi_match,
  606. },
  607. .probe = of_fsl_espi_probe,
  608. .remove = __devexit_p(of_fsl_espi_remove),
  609. };
  610. module_platform_driver(fsl_espi_driver);
  611. MODULE_AUTHOR("Mingkai Hu");
  612. MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
  613. MODULE_LICENSE("GPL");