t4.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. /*
  2. * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. * - Redistributions in binary form must reproduce the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer in the documentation and/or other materials
  20. * provided with the distribution.
  21. *
  22. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29. * SOFTWARE.
  30. */
  31. #ifndef __T4_H__
  32. #define __T4_H__
  33. #include "t4_hw.h"
  34. #include "t4_regs.h"
  35. #include "t4_msg.h"
  36. #include "t4fw_ri_api.h"
  37. #define T4_MAX_NUM_QP (1<<16)
  38. #define T4_MAX_NUM_CQ (1<<15)
  39. #define T4_MAX_NUM_PD (1<<15)
  40. #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
  41. #define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES)
  42. #define T4_MAX_IQ_SIZE (65520 - 1)
  43. #define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES)
  44. #define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1)
  45. #define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1)
  46. #define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1)
  47. #define T4_MAX_NUM_STAG (1<<15)
  48. #define T4_MAX_MR_SIZE (~0ULL - 1)
  49. #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */
  50. #define T4_STAG_UNSET 0xffffffff
  51. #define T4_FW_MAJ 0
  52. #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
  53. #define A_PCIE_MA_SYNC 0x30b4
  54. struct t4_status_page {
  55. __be32 rsvd1; /* flit 0 - hw owns */
  56. __be16 rsvd2;
  57. __be16 qid;
  58. __be16 cidx;
  59. __be16 pidx;
  60. u8 qp_err; /* flit 1 - sw owns */
  61. u8 db_off;
  62. };
  63. #define T4_EQ_ENTRY_SIZE 64
  64. #define T4_SQ_NUM_SLOTS 5
  65. #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
  66. #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  67. sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  68. #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  69. sizeof(struct fw_ri_immd)))
  70. #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
  71. sizeof(struct fw_ri_rdma_write_wr) - \
  72. sizeof(struct fw_ri_immd)))
  73. #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
  74. sizeof(struct fw_ri_rdma_write_wr) - \
  75. sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  76. #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
  77. sizeof(struct fw_ri_immd)) & ~31UL)
  78. #define T4_MAX_FR_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
  79. #define T4_RQ_NUM_SLOTS 2
  80. #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
  81. #define T4_MAX_RECV_SGE 4
  82. union t4_wr {
  83. struct fw_ri_res_wr res;
  84. struct fw_ri_wr ri;
  85. struct fw_ri_rdma_write_wr write;
  86. struct fw_ri_send_wr send;
  87. struct fw_ri_rdma_read_wr read;
  88. struct fw_ri_bind_mw_wr bind;
  89. struct fw_ri_fr_nsmr_wr fr;
  90. struct fw_ri_inv_lstag_wr inv;
  91. struct t4_status_page status;
  92. __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
  93. };
  94. union t4_recv_wr {
  95. struct fw_ri_recv_wr recv;
  96. struct t4_status_page status;
  97. __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
  98. };
  99. static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
  100. enum fw_wr_opcodes opcode, u8 flags, u8 len16)
  101. {
  102. wqe->send.opcode = (u8)opcode;
  103. wqe->send.flags = flags;
  104. wqe->send.wrid = wrid;
  105. wqe->send.r1[0] = 0;
  106. wqe->send.r1[1] = 0;
  107. wqe->send.r1[2] = 0;
  108. wqe->send.len16 = len16;
  109. }
  110. /* CQE/AE status codes */
  111. #define T4_ERR_SUCCESS 0x0
  112. #define T4_ERR_STAG 0x1 /* STAG invalid: either the */
  113. /* STAG is offlimt, being 0, */
  114. /* or STAG_key mismatch */
  115. #define T4_ERR_PDID 0x2 /* PDID mismatch */
  116. #define T4_ERR_QPID 0x3 /* QPID mismatch */
  117. #define T4_ERR_ACCESS 0x4 /* Invalid access right */
  118. #define T4_ERR_WRAP 0x5 /* Wrap error */
  119. #define T4_ERR_BOUND 0x6 /* base and bounds voilation */
  120. #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
  121. /* shared memory region */
  122. #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
  123. /* shared memory region */
  124. #define T4_ERR_ECC 0x9 /* ECC error detected */
  125. #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
  126. /* reading PSTAG for a MW */
  127. /* Invalidate */
  128. #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
  129. /* software error */
  130. #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
  131. #define T4_ERR_CRC 0x10 /* CRC error */
  132. #define T4_ERR_MARKER 0x11 /* Marker error */
  133. #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
  134. #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
  135. #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
  136. #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
  137. #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
  138. #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
  139. #define T4_ERR_MSN 0x18 /* MSN error */
  140. #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
  141. #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
  142. /* or READ_REQ */
  143. #define T4_ERR_MSN_GAP 0x1B
  144. #define T4_ERR_MSN_RANGE 0x1C
  145. #define T4_ERR_IRD_OVERFLOW 0x1D
  146. #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
  147. /* software error */
  148. #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
  149. /* mismatch) */
  150. /*
  151. * CQE defs
  152. */
  153. struct t4_cqe {
  154. __be32 header;
  155. __be32 len;
  156. union {
  157. struct {
  158. __be32 stag;
  159. __be32 msn;
  160. } rcqe;
  161. struct {
  162. u32 nada1;
  163. u16 nada2;
  164. u16 cidx;
  165. } scqe;
  166. struct {
  167. __be32 wrid_hi;
  168. __be32 wrid_low;
  169. } gen;
  170. } u;
  171. __be64 reserved;
  172. __be64 bits_type_ts;
  173. };
  174. /* macros for flit 0 of the cqe */
  175. #define S_CQE_QPID 12
  176. #define M_CQE_QPID 0xFFFFF
  177. #define G_CQE_QPID(x) ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
  178. #define V_CQE_QPID(x) ((x)<<S_CQE_QPID)
  179. #define S_CQE_SWCQE 11
  180. #define M_CQE_SWCQE 0x1
  181. #define G_CQE_SWCQE(x) ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
  182. #define V_CQE_SWCQE(x) ((x)<<S_CQE_SWCQE)
  183. #define S_CQE_STATUS 5
  184. #define M_CQE_STATUS 0x1F
  185. #define G_CQE_STATUS(x) ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
  186. #define V_CQE_STATUS(x) ((x)<<S_CQE_STATUS)
  187. #define S_CQE_TYPE 4
  188. #define M_CQE_TYPE 0x1
  189. #define G_CQE_TYPE(x) ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
  190. #define V_CQE_TYPE(x) ((x)<<S_CQE_TYPE)
  191. #define S_CQE_OPCODE 0
  192. #define M_CQE_OPCODE 0xF
  193. #define G_CQE_OPCODE(x) ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
  194. #define V_CQE_OPCODE(x) ((x)<<S_CQE_OPCODE)
  195. #define SW_CQE(x) (G_CQE_SWCQE(be32_to_cpu((x)->header)))
  196. #define CQE_QPID(x) (G_CQE_QPID(be32_to_cpu((x)->header)))
  197. #define CQE_TYPE(x) (G_CQE_TYPE(be32_to_cpu((x)->header)))
  198. #define SQ_TYPE(x) (CQE_TYPE((x)))
  199. #define RQ_TYPE(x) (!CQE_TYPE((x)))
  200. #define CQE_STATUS(x) (G_CQE_STATUS(be32_to_cpu((x)->header)))
  201. #define CQE_OPCODE(x) (G_CQE_OPCODE(be32_to_cpu((x)->header)))
  202. #define CQE_SEND_OPCODE(x)( \
  203. (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
  204. (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
  205. (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
  206. (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
  207. #define CQE_LEN(x) (be32_to_cpu((x)->len))
  208. /* used for RQ completion processing */
  209. #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
  210. #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
  211. /* used for SQ completion processing */
  212. #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
  213. /* generic accessor macros */
  214. #define CQE_WRID_HI(x) ((x)->u.gen.wrid_hi)
  215. #define CQE_WRID_LOW(x) ((x)->u.gen.wrid_low)
  216. /* macros for flit 3 of the cqe */
  217. #define S_CQE_GENBIT 63
  218. #define M_CQE_GENBIT 0x1
  219. #define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
  220. #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
  221. #define S_CQE_OVFBIT 62
  222. #define M_CQE_OVFBIT 0x1
  223. #define G_CQE_OVFBIT(x) ((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
  224. #define S_CQE_IQTYPE 60
  225. #define M_CQE_IQTYPE 0x3
  226. #define G_CQE_IQTYPE(x) ((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
  227. #define M_CQE_TS 0x0fffffffffffffffULL
  228. #define G_CQE_TS(x) ((x) & M_CQE_TS)
  229. #define CQE_OVFBIT(x) ((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
  230. #define CQE_GENBIT(x) ((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
  231. #define CQE_TS(x) (G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
  232. struct t4_swsqe {
  233. u64 wr_id;
  234. struct t4_cqe cqe;
  235. int read_len;
  236. int opcode;
  237. int complete;
  238. int signaled;
  239. u16 idx;
  240. };
  241. static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
  242. {
  243. #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
  244. return pgprot_writecombine(prot);
  245. #else
  246. return pgprot_noncached(prot);
  247. #endif
  248. }
  249. static inline int t4_ocqp_supported(void)
  250. {
  251. #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
  252. return 1;
  253. #else
  254. return 0;
  255. #endif
  256. }
  257. enum {
  258. T4_SQ_ONCHIP = (1<<0),
  259. };
  260. struct t4_sq {
  261. union t4_wr *queue;
  262. dma_addr_t dma_addr;
  263. DEFINE_DMA_UNMAP_ADDR(mapping);
  264. unsigned long phys_addr;
  265. struct t4_swsqe *sw_sq;
  266. struct t4_swsqe *oldest_read;
  267. u64 udb;
  268. size_t memsize;
  269. u32 qid;
  270. u16 in_use;
  271. u16 size;
  272. u16 cidx;
  273. u16 pidx;
  274. u16 wq_pidx;
  275. u16 flags;
  276. };
  277. struct t4_swrqe {
  278. u64 wr_id;
  279. };
  280. struct t4_rq {
  281. union t4_recv_wr *queue;
  282. dma_addr_t dma_addr;
  283. DEFINE_DMA_UNMAP_ADDR(mapping);
  284. struct t4_swrqe *sw_rq;
  285. u64 udb;
  286. size_t memsize;
  287. u32 qid;
  288. u32 msn;
  289. u32 rqt_hwaddr;
  290. u16 rqt_size;
  291. u16 in_use;
  292. u16 size;
  293. u16 cidx;
  294. u16 pidx;
  295. u16 wq_pidx;
  296. };
  297. struct t4_wq {
  298. struct t4_sq sq;
  299. struct t4_rq rq;
  300. void __iomem *db;
  301. void __iomem *gts;
  302. struct c4iw_rdev *rdev;
  303. };
  304. static inline int t4_rqes_posted(struct t4_wq *wq)
  305. {
  306. return wq->rq.in_use;
  307. }
  308. static inline int t4_rq_empty(struct t4_wq *wq)
  309. {
  310. return wq->rq.in_use == 0;
  311. }
  312. static inline int t4_rq_full(struct t4_wq *wq)
  313. {
  314. return wq->rq.in_use == (wq->rq.size - 1);
  315. }
  316. static inline u32 t4_rq_avail(struct t4_wq *wq)
  317. {
  318. return wq->rq.size - 1 - wq->rq.in_use;
  319. }
  320. static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
  321. {
  322. wq->rq.in_use++;
  323. if (++wq->rq.pidx == wq->rq.size)
  324. wq->rq.pidx = 0;
  325. wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
  326. if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
  327. wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
  328. }
  329. static inline void t4_rq_consume(struct t4_wq *wq)
  330. {
  331. wq->rq.in_use--;
  332. wq->rq.msn++;
  333. if (++wq->rq.cidx == wq->rq.size)
  334. wq->rq.cidx = 0;
  335. }
  336. static inline int t4_sq_onchip(struct t4_sq *sq)
  337. {
  338. return sq->flags & T4_SQ_ONCHIP;
  339. }
  340. static inline int t4_sq_empty(struct t4_wq *wq)
  341. {
  342. return wq->sq.in_use == 0;
  343. }
  344. static inline int t4_sq_full(struct t4_wq *wq)
  345. {
  346. return wq->sq.in_use == (wq->sq.size - 1);
  347. }
  348. static inline u32 t4_sq_avail(struct t4_wq *wq)
  349. {
  350. return wq->sq.size - 1 - wq->sq.in_use;
  351. }
  352. static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
  353. {
  354. wq->sq.in_use++;
  355. if (++wq->sq.pidx == wq->sq.size)
  356. wq->sq.pidx = 0;
  357. wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
  358. if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
  359. wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
  360. }
  361. static inline void t4_sq_consume(struct t4_wq *wq)
  362. {
  363. wq->sq.in_use--;
  364. if (++wq->sq.cidx == wq->sq.size)
  365. wq->sq.cidx = 0;
  366. }
  367. static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc)
  368. {
  369. wmb();
  370. writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
  371. }
  372. static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc)
  373. {
  374. wmb();
  375. writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
  376. }
  377. static inline int t4_wq_in_error(struct t4_wq *wq)
  378. {
  379. return wq->rq.queue[wq->rq.size].status.qp_err;
  380. }
  381. static inline void t4_set_wq_in_error(struct t4_wq *wq)
  382. {
  383. wq->rq.queue[wq->rq.size].status.qp_err = 1;
  384. }
  385. static inline void t4_disable_wq_db(struct t4_wq *wq)
  386. {
  387. wq->rq.queue[wq->rq.size].status.db_off = 1;
  388. }
  389. static inline void t4_enable_wq_db(struct t4_wq *wq)
  390. {
  391. wq->rq.queue[wq->rq.size].status.db_off = 0;
  392. }
  393. static inline int t4_wq_db_enabled(struct t4_wq *wq)
  394. {
  395. return !wq->rq.queue[wq->rq.size].status.db_off;
  396. }
  397. struct t4_cq {
  398. struct t4_cqe *queue;
  399. dma_addr_t dma_addr;
  400. DEFINE_DMA_UNMAP_ADDR(mapping);
  401. struct t4_cqe *sw_queue;
  402. void __iomem *gts;
  403. struct c4iw_rdev *rdev;
  404. u64 ugts;
  405. size_t memsize;
  406. __be64 bits_type_ts;
  407. u32 cqid;
  408. u16 size; /* including status page */
  409. u16 cidx;
  410. u16 sw_pidx;
  411. u16 sw_cidx;
  412. u16 sw_in_use;
  413. u16 cidx_inc;
  414. u8 gen;
  415. u8 error;
  416. };
  417. static inline int t4_arm_cq(struct t4_cq *cq, int se)
  418. {
  419. u32 val;
  420. while (cq->cidx_inc > CIDXINC_MASK) {
  421. val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
  422. INGRESSQID(cq->cqid);
  423. writel(val, cq->gts);
  424. cq->cidx_inc -= CIDXINC_MASK;
  425. }
  426. val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
  427. INGRESSQID(cq->cqid);
  428. writel(val, cq->gts);
  429. cq->cidx_inc = 0;
  430. return 0;
  431. }
  432. static inline void t4_swcq_produce(struct t4_cq *cq)
  433. {
  434. cq->sw_in_use++;
  435. if (++cq->sw_pidx == cq->size)
  436. cq->sw_pidx = 0;
  437. }
  438. static inline void t4_swcq_consume(struct t4_cq *cq)
  439. {
  440. cq->sw_in_use--;
  441. if (++cq->sw_cidx == cq->size)
  442. cq->sw_cidx = 0;
  443. }
  444. static inline void t4_hwcq_consume(struct t4_cq *cq)
  445. {
  446. cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
  447. if (++cq->cidx_inc == (cq->size >> 4)) {
  448. u32 val;
  449. val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) |
  450. INGRESSQID(cq->cqid);
  451. writel(val, cq->gts);
  452. cq->cidx_inc = 0;
  453. }
  454. if (++cq->cidx == cq->size) {
  455. cq->cidx = 0;
  456. cq->gen ^= 1;
  457. }
  458. }
  459. static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
  460. {
  461. return (CQE_GENBIT(cqe) == cq->gen);
  462. }
  463. static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
  464. {
  465. int ret;
  466. u16 prev_cidx;
  467. if (cq->cidx == 0)
  468. prev_cidx = cq->size - 1;
  469. else
  470. prev_cidx = cq->cidx - 1;
  471. if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
  472. ret = -EOVERFLOW;
  473. cq->error = 1;
  474. printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
  475. } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
  476. *cqe = &cq->queue[cq->cidx];
  477. ret = 0;
  478. } else
  479. ret = -ENODATA;
  480. return ret;
  481. }
  482. static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
  483. {
  484. if (cq->sw_in_use)
  485. return &cq->sw_queue[cq->sw_cidx];
  486. return NULL;
  487. }
  488. static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
  489. {
  490. int ret = 0;
  491. if (cq->error)
  492. ret = -ENODATA;
  493. else if (cq->sw_in_use)
  494. *cqe = &cq->sw_queue[cq->sw_cidx];
  495. else
  496. ret = t4_next_hw_cqe(cq, cqe);
  497. return ret;
  498. }
  499. static inline int t4_cq_in_error(struct t4_cq *cq)
  500. {
  501. return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
  502. }
  503. static inline void t4_set_cq_in_error(struct t4_cq *cq)
  504. {
  505. ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
  506. }
  507. #endif