uaccess.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503
  1. /*
  2. * include/asm-xtensa/uaccess.h
  3. *
  4. * User space memory access functions
  5. *
  6. * These routines provide basic accessing functions to the user memory
  7. * space for the kernel. This header file provides functions such as:
  8. *
  9. * This file is subject to the terms and conditions of the GNU General Public
  10. * License. See the file "COPYING" in the main directory of this archive
  11. * for more details.
  12. *
  13. * Copyright (C) 2001 - 2005 Tensilica Inc.
  14. */
  15. #ifndef _XTENSA_UACCESS_H
  16. #define _XTENSA_UACCESS_H
  17. #include <linux/errno.h>
  18. #ifndef __ASSEMBLY__
  19. #include <linux/prefetch.h>
  20. #endif
  21. #include <asm/types.h>
  22. #define VERIFY_READ 0
  23. #define VERIFY_WRITE 1
  24. #ifdef __ASSEMBLY__
  25. #include <asm/current.h>
  26. #include <asm/asm-offsets.h>
  27. #include <asm/processor.h>
  28. /*
  29. * These assembly macros mirror the C macros that follow below. They
  30. * should always have identical functionality. See
  31. * arch/xtensa/kernel/sys.S for usage.
  32. */
  33. #define KERNEL_DS 0
  34. #define USER_DS 1
  35. #define get_ds (KERNEL_DS)
  36. /*
  37. * get_fs reads current->thread.current_ds into a register.
  38. * On Entry:
  39. * <ad> anything
  40. * <sp> stack
  41. * On Exit:
  42. * <ad> contains current->thread.current_ds
  43. */
  44. .macro get_fs ad, sp
  45. GET_CURRENT(\ad,\sp)
  46. l32i \ad, \ad, THREAD_CURRENT_DS
  47. .endm
  48. /*
  49. * set_fs sets current->thread.current_ds to some value.
  50. * On Entry:
  51. * <at> anything (temp register)
  52. * <av> value to write
  53. * <sp> stack
  54. * On Exit:
  55. * <at> destroyed (actually, current)
  56. * <av> preserved, value to write
  57. */
  58. .macro set_fs at, av, sp
  59. GET_CURRENT(\at,\sp)
  60. s32i \av, \at, THREAD_CURRENT_DS
  61. .endm
  62. /*
  63. * kernel_ok determines whether we should bypass addr/size checking.
  64. * See the equivalent C-macro version below for clarity.
  65. * On success, kernel_ok branches to a label indicated by parameter
  66. * <success>. This implies that the macro falls through to the next
  67. * insruction on an error.
  68. *
  69. * Note that while this macro can be used independently, we designed
  70. * in for optimal use in the access_ok macro below (i.e., we fall
  71. * through on error).
  72. *
  73. * On Entry:
  74. * <at> anything (temp register)
  75. * <success> label to branch to on success; implies
  76. * fall-through macro on error
  77. * <sp> stack pointer
  78. * On Exit:
  79. * <at> destroyed (actually, current->thread.current_ds)
  80. */
  81. #if ((KERNEL_DS != 0) || (USER_DS == 0))
  82. # error Assembly macro kernel_ok fails
  83. #endif
  84. .macro kernel_ok at, sp, success
  85. get_fs \at, \sp
  86. beqz \at, \success
  87. .endm
  88. /*
  89. * user_ok determines whether the access to user-space memory is allowed.
  90. * See the equivalent C-macro version below for clarity.
  91. *
  92. * On error, user_ok branches to a label indicated by parameter
  93. * <error>. This implies that the macro falls through to the next
  94. * instruction on success.
  95. *
  96. * Note that while this macro can be used independently, we designed
  97. * in for optimal use in the access_ok macro below (i.e., we fall
  98. * through on success).
  99. *
  100. * On Entry:
  101. * <aa> register containing memory address
  102. * <as> register containing memory size
  103. * <at> temp register
  104. * <error> label to branch to on error; implies fall-through
  105. * macro on success
  106. * On Exit:
  107. * <aa> preserved
  108. * <as> preserved
  109. * <at> destroyed (actually, (TASK_SIZE + 1 - size))
  110. */
  111. .macro user_ok aa, as, at, error
  112. movi \at, __XTENSA_UL_CONST(TASK_SIZE)
  113. bgeu \as, \at, \error
  114. sub \at, \at, \as
  115. bgeu \aa, \at, \error
  116. .endm
  117. /*
  118. * access_ok determines whether a memory access is allowed. See the
  119. * equivalent C-macro version below for clarity.
  120. *
  121. * On error, access_ok branches to a label indicated by parameter
  122. * <error>. This implies that the macro falls through to the next
  123. * instruction on success.
  124. *
  125. * Note that we assume success is the common case, and we optimize the
  126. * branch fall-through case on success.
  127. *
  128. * On Entry:
  129. * <aa> register containing memory address
  130. * <as> register containing memory size
  131. * <at> temp register
  132. * <sp>
  133. * <error> label to branch to on error; implies fall-through
  134. * macro on success
  135. * On Exit:
  136. * <aa> preserved
  137. * <as> preserved
  138. * <at> destroyed
  139. */
  140. .macro access_ok aa, as, at, sp, error
  141. kernel_ok \at, \sp, .Laccess_ok_\@
  142. user_ok \aa, \as, \at, \error
  143. .Laccess_ok_\@:
  144. .endm
  145. #else /* __ASSEMBLY__ not defined */
  146. #include <linux/sched.h>
  147. /*
  148. * The fs value determines whether argument validity checking should
  149. * be performed or not. If get_fs() == USER_DS, checking is
  150. * performed, with get_fs() == KERNEL_DS, checking is bypassed.
  151. *
  152. * For historical reasons (Data Segment Register?), these macros are
  153. * grossly misnamed.
  154. */
  155. #define KERNEL_DS ((mm_segment_t) { 0 })
  156. #define USER_DS ((mm_segment_t) { 1 })
  157. #define get_ds() (KERNEL_DS)
  158. #define get_fs() (current->thread.current_ds)
  159. #define set_fs(val) (current->thread.current_ds = (val))
  160. #define segment_eq(a,b) ((a).seg == (b).seg)
  161. #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
  162. #define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))
  163. #define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size)))
  164. #define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size))
  165. /*
  166. * These are the main single-value transfer routines. They
  167. * automatically use the right size if we just have the right pointer
  168. * type.
  169. *
  170. * This gets kind of ugly. We want to return _two_ values in
  171. * "get_user()" and yet we don't want to do any pointers, because that
  172. * is too much of a performance impact. Thus we have a few rather ugly
  173. * macros here, and hide all the uglyness from the user.
  174. *
  175. * Careful to not
  176. * (a) re-use the arguments for side effects (sizeof is ok)
  177. * (b) require any knowledge of processes at this stage
  178. */
  179. #define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr)))
  180. #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)))
  181. /*
  182. * The "__xxx" versions of the user access functions are versions that
  183. * do not verify the address space, that must have been done previously
  184. * with a separate "access_ok()" call (this is used when we do multiple
  185. * accesses to the same area of user memory).
  186. */
  187. #define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr)))
  188. #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
  189. extern long __put_user_bad(void);
  190. #define __put_user_nocheck(x,ptr,size) \
  191. ({ \
  192. long __pu_err; \
  193. __put_user_size((x),(ptr),(size),__pu_err); \
  194. __pu_err; \
  195. })
  196. #define __put_user_check(x,ptr,size) \
  197. ({ \
  198. long __pu_err = -EFAULT; \
  199. __typeof__(*(ptr)) *__pu_addr = (ptr); \
  200. if (access_ok(VERIFY_WRITE,__pu_addr,size)) \
  201. __put_user_size((x),__pu_addr,(size),__pu_err); \
  202. __pu_err; \
  203. })
  204. #define __put_user_size(x,ptr,size,retval) \
  205. do { \
  206. int __cb; \
  207. retval = 0; \
  208. switch (size) { \
  209. case 1: __put_user_asm(x,ptr,retval,1,"s8i",__cb); break; \
  210. case 2: __put_user_asm(x,ptr,retval,2,"s16i",__cb); break; \
  211. case 4: __put_user_asm(x,ptr,retval,4,"s32i",__cb); break; \
  212. case 8: { \
  213. __typeof__(*ptr) __v64 = x; \
  214. retval = __copy_to_user(ptr,&__v64,8); \
  215. break; \
  216. } \
  217. default: __put_user_bad(); \
  218. } \
  219. } while (0)
  220. /*
  221. * Consider a case of a user single load/store would cause both an
  222. * unaligned exception and an MMU-related exception (unaligned
  223. * exceptions happen first):
  224. *
  225. * User code passes a bad variable ptr to a system call.
  226. * Kernel tries to access the variable.
  227. * Unaligned exception occurs.
  228. * Unaligned exception handler tries to make aligned accesses.
  229. * Double exception occurs for MMU-related cause (e.g., page not mapped).
  230. * do_page_fault() thinks the fault address belongs to the kernel, not the
  231. * user, and panics.
  232. *
  233. * The kernel currently prohibits user unaligned accesses. We use the
  234. * __check_align_* macros to check for unaligned addresses before
  235. * accessing user space so we don't crash the kernel. Both
  236. * __put_user_asm and __get_user_asm use these alignment macros, so
  237. * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in
  238. * sync.
  239. */
  240. #define __check_align_1 ""
  241. #define __check_align_2 \
  242. " _bbci.l %3, 0, 1f \n" \
  243. " movi %0, %4 \n" \
  244. " _j 2f \n"
  245. #define __check_align_4 \
  246. " _bbsi.l %3, 0, 0f \n" \
  247. " _bbci.l %3, 1, 1f \n" \
  248. "0: movi %0, %4 \n" \
  249. " _j 2f \n"
  250. /*
  251. * We don't tell gcc that we are accessing memory, but this is OK
  252. * because we do not write to any memory gcc knows about, so there
  253. * are no aliasing issues.
  254. *
  255. * WARNING: If you modify this macro at all, verify that the
  256. * __check_align_* macros still work.
  257. */
  258. #define __put_user_asm(x, addr, err, align, insn, cb) \
  259. __asm__ __volatile__( \
  260. __check_align_##align \
  261. "1: "insn" %2, %3, 0 \n" \
  262. "2: \n" \
  263. " .section .fixup,\"ax\" \n" \
  264. " .align 4 \n" \
  265. "4: \n" \
  266. " .long 2b \n" \
  267. "5: \n" \
  268. " l32r %1, 4b \n" \
  269. " movi %0, %4 \n" \
  270. " jx %1 \n" \
  271. " .previous \n" \
  272. " .section __ex_table,\"a\" \n" \
  273. " .long 1b, 5b \n" \
  274. " .previous" \
  275. :"=r" (err), "=r" (cb) \
  276. :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err))
  277. #define __get_user_nocheck(x,ptr,size) \
  278. ({ \
  279. long __gu_err, __gu_val; \
  280. __get_user_size(__gu_val,(ptr),(size),__gu_err); \
  281. (x) = (__typeof__(*(ptr)))__gu_val; \
  282. __gu_err; \
  283. })
  284. #define __get_user_check(x,ptr,size) \
  285. ({ \
  286. long __gu_err = -EFAULT, __gu_val = 0; \
  287. const __typeof__(*(ptr)) *__gu_addr = (ptr); \
  288. if (access_ok(VERIFY_READ,__gu_addr,size)) \
  289. __get_user_size(__gu_val,__gu_addr,(size),__gu_err); \
  290. (x) = (__typeof__(*(ptr)))__gu_val; \
  291. __gu_err; \
  292. })
  293. extern long __get_user_bad(void);
  294. #define __get_user_size(x,ptr,size,retval) \
  295. do { \
  296. int __cb; \
  297. retval = 0; \
  298. switch (size) { \
  299. case 1: __get_user_asm(x,ptr,retval,1,"l8ui",__cb); break; \
  300. case 2: __get_user_asm(x,ptr,retval,2,"l16ui",__cb); break; \
  301. case 4: __get_user_asm(x,ptr,retval,4,"l32i",__cb); break; \
  302. case 8: retval = __copy_from_user(&x,ptr,8); break; \
  303. default: (x) = __get_user_bad(); \
  304. } \
  305. } while (0)
  306. /*
  307. * WARNING: If you modify this macro at all, verify that the
  308. * __check_align_* macros still work.
  309. */
  310. #define __get_user_asm(x, addr, err, align, insn, cb) \
  311. __asm__ __volatile__( \
  312. __check_align_##align \
  313. "1: "insn" %2, %3, 0 \n" \
  314. "2: \n" \
  315. " .section .fixup,\"ax\" \n" \
  316. " .align 4 \n" \
  317. "4: \n" \
  318. " .long 2b \n" \
  319. "5: \n" \
  320. " l32r %1, 4b \n" \
  321. " movi %2, 0 \n" \
  322. " movi %0, %4 \n" \
  323. " jx %1 \n" \
  324. " .previous \n" \
  325. " .section __ex_table,\"a\" \n" \
  326. " .long 1b, 5b \n" \
  327. " .previous" \
  328. :"=r" (err), "=r" (cb), "=r" (x) \
  329. :"r" (addr), "i" (-EFAULT), "0" (err))
  330. /*
  331. * Copy to/from user space
  332. */
  333. /*
  334. * We use a generic, arbitrary-sized copy subroutine. The Xtensa
  335. * architecture would cause heavy code bloat if we tried to inline
  336. * these functions and provide __constant_copy_* equivalents like the
  337. * i386 versions. __xtensa_copy_user is quite efficient. See the
  338. * .fixup section of __xtensa_copy_user for a discussion on the
  339. * X_zeroing equivalents for Xtensa.
  340. */
  341. extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n);
  342. #define __copy_user(to,from,size) __xtensa_copy_user(to,from,size)
  343. static inline unsigned long
  344. __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
  345. {
  346. return __copy_user(to,from,n);
  347. }
  348. static inline unsigned long
  349. __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
  350. {
  351. return __copy_user(to,from,n);
  352. }
  353. static inline unsigned long
  354. __generic_copy_to_user(void *to, const void *from, unsigned long n)
  355. {
  356. prefetch(from);
  357. if (access_ok(VERIFY_WRITE, to, n))
  358. return __copy_user(to,from,n);
  359. return n;
  360. }
  361. static inline unsigned long
  362. __generic_copy_from_user(void *to, const void *from, unsigned long n)
  363. {
  364. prefetchw(to);
  365. if (access_ok(VERIFY_READ, from, n))
  366. return __copy_user(to,from,n);
  367. else
  368. memset(to, 0, n);
  369. return n;
  370. }
  371. #define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n))
  372. #define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n))
  373. #define __copy_to_user(to,from,n) __generic_copy_to_user_nocheck((to),(from),(n))
  374. #define __copy_from_user(to,from,n) __generic_copy_from_user_nocheck((to),(from),(n))
  375. #define __copy_to_user_inatomic __copy_to_user
  376. #define __copy_from_user_inatomic __copy_from_user
  377. /*
  378. * We need to return the number of bytes not cleared. Our memset()
  379. * returns zero if a problem occurs while accessing user-space memory.
  380. * In that event, return no memory cleared. Otherwise, zero for
  381. * success.
  382. */
  383. static inline unsigned long
  384. __xtensa_clear_user(void *addr, unsigned long size)
  385. {
  386. if ( ! memset(addr, 0, size) )
  387. return size;
  388. return 0;
  389. }
  390. static inline unsigned long
  391. clear_user(void *addr, unsigned long size)
  392. {
  393. if (access_ok(VERIFY_WRITE, addr, size))
  394. return __xtensa_clear_user(addr, size);
  395. return size ? -EFAULT : 0;
  396. }
  397. #define __clear_user __xtensa_clear_user
  398. extern long __strncpy_user(char *, const char *, long);
  399. #define __strncpy_from_user __strncpy_user
  400. static inline long
  401. strncpy_from_user(char *dst, const char *src, long count)
  402. {
  403. if (access_ok(VERIFY_READ, src, 1))
  404. return __strncpy_from_user(dst, src, count);
  405. return -EFAULT;
  406. }
  407. #define strlen_user(str) strnlen_user((str), TASK_SIZE - 1)
  408. /*
  409. * Return the size of a string (including the ending 0!)
  410. */
  411. extern long __strnlen_user(const char *, long);
  412. static inline long strnlen_user(const char *str, long len)
  413. {
  414. unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1;
  415. if ((unsigned long)str > top)
  416. return 0;
  417. return __strnlen_user(str, len);
  418. }
  419. struct exception_table_entry
  420. {
  421. unsigned long insn, fixup;
  422. };
  423. /* Returns 0 if exception not found and fixup.unit otherwise. */
  424. extern unsigned long search_exception_table(unsigned long addr);
  425. extern void sort_exception_table(void);
  426. /* Returns the new pc */
  427. #define fixup_exception(map_reg, fixup_unit, pc) \
  428. ({ \
  429. fixup_unit; \
  430. })
  431. #endif /* __ASSEMBLY__ */
  432. #endif /* _XTENSA_UACCESS_H */