process.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. /*
  2. * This file handles the architecture dependent parts of process handling.
  3. *
  4. * Copyright IBM Corp. 1999,2009
  5. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
  6. * Hartmut Penner <hp@de.ibm.com>,
  7. * Denis Joseph Barrow,
  8. */
  9. #include <linux/compiler.h>
  10. #include <linux/cpu.h>
  11. #include <linux/sched.h>
  12. #include <linux/kernel.h>
  13. #include <linux/mm.h>
  14. #include <linux/elfcore.h>
  15. #include <linux/smp.h>
  16. #include <linux/slab.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/tick.h>
  19. #include <linux/personality.h>
  20. #include <linux/syscalls.h>
  21. #include <linux/compat.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/random.h>
  24. #include <linux/module.h>
  25. #include <asm/io.h>
  26. #include <asm/processor.h>
  27. #include <asm/irq.h>
  28. #include <asm/timer.h>
  29. #include <asm/nmi.h>
  30. #include <asm/smp.h>
  31. #include <asm/switch_to.h>
  32. #include "entry.h"
  33. asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
  34. /*
  35. * Return saved PC of a blocked thread. used in kernel/sched.
  36. * resume in entry.S does not create a new stack frame, it
  37. * just stores the registers %r6-%r15 to the frame given by
  38. * schedule. We want to return the address of the caller of
  39. * schedule, so we have to walk the backchain one time to
  40. * find the frame schedule() store its return address.
  41. */
  42. unsigned long thread_saved_pc(struct task_struct *tsk)
  43. {
  44. struct stack_frame *sf, *low, *high;
  45. if (!tsk || !task_stack_page(tsk))
  46. return 0;
  47. low = task_stack_page(tsk);
  48. high = (struct stack_frame *) task_pt_regs(tsk);
  49. sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
  50. if (sf <= low || sf > high)
  51. return 0;
  52. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  53. if (sf <= low || sf > high)
  54. return 0;
  55. return sf->gprs[8];
  56. }
  57. /*
  58. * The idle loop on a S390...
  59. */
  60. static void default_idle(void)
  61. {
  62. if (cpu_is_offline(smp_processor_id()))
  63. cpu_die();
  64. local_irq_disable();
  65. if (need_resched()) {
  66. local_irq_enable();
  67. return;
  68. }
  69. local_mcck_disable();
  70. if (test_thread_flag(TIF_MCCK_PENDING)) {
  71. local_mcck_enable();
  72. local_irq_enable();
  73. return;
  74. }
  75. /* Halt the cpu and keep track of cpu time accounting. */
  76. vtime_stop_cpu();
  77. }
  78. void cpu_idle(void)
  79. {
  80. for (;;) {
  81. tick_nohz_idle_enter();
  82. rcu_idle_enter();
  83. while (!need_resched() && !test_thread_flag(TIF_MCCK_PENDING))
  84. default_idle();
  85. rcu_idle_exit();
  86. tick_nohz_idle_exit();
  87. if (test_thread_flag(TIF_MCCK_PENDING))
  88. s390_handle_mcck();
  89. schedule_preempt_disabled();
  90. }
  91. }
  92. extern void __kprobes kernel_thread_starter(void);
  93. asm(
  94. ".section .kprobes.text, \"ax\"\n"
  95. ".global kernel_thread_starter\n"
  96. "kernel_thread_starter:\n"
  97. " la 2,0(10)\n"
  98. " basr 14,9\n"
  99. " la 2,0\n"
  100. " br 11\n"
  101. ".previous\n");
  102. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  103. {
  104. struct pt_regs regs;
  105. memset(&regs, 0, sizeof(regs));
  106. regs.psw.mask = psw_kernel_bits |
  107. PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
  108. regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
  109. regs.gprs[9] = (unsigned long) fn;
  110. regs.gprs[10] = (unsigned long) arg;
  111. regs.gprs[11] = (unsigned long) do_exit;
  112. regs.orig_gpr2 = -1;
  113. /* Ok, create the new process.. */
  114. return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
  115. 0, &regs, 0, NULL, NULL);
  116. }
  117. EXPORT_SYMBOL(kernel_thread);
  118. /*
  119. * Free current thread data structures etc..
  120. */
  121. void exit_thread(void)
  122. {
  123. }
  124. void flush_thread(void)
  125. {
  126. }
  127. void release_thread(struct task_struct *dead_task)
  128. {
  129. }
  130. int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
  131. unsigned long unused,
  132. struct task_struct *p, struct pt_regs *regs)
  133. {
  134. struct thread_info *ti;
  135. struct fake_frame
  136. {
  137. struct stack_frame sf;
  138. struct pt_regs childregs;
  139. } *frame;
  140. frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
  141. p->thread.ksp = (unsigned long) frame;
  142. /* Store access registers to kernel stack of new process. */
  143. frame->childregs = *regs;
  144. frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
  145. frame->childregs.gprs[15] = new_stackp;
  146. frame->sf.back_chain = 0;
  147. /* new return point is ret_from_fork */
  148. frame->sf.gprs[8] = (unsigned long) ret_from_fork;
  149. /* fake return stack for resume(), don't go back to schedule */
  150. frame->sf.gprs[9] = (unsigned long) frame;
  151. /* Save access registers to new thread structure. */
  152. save_access_regs(&p->thread.acrs[0]);
  153. #ifndef CONFIG_64BIT
  154. /*
  155. * save fprs to current->thread.fp_regs to merge them with
  156. * the emulated registers and then copy the result to the child.
  157. */
  158. save_fp_regs(&current->thread.fp_regs);
  159. memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
  160. sizeof(s390_fp_regs));
  161. /* Set a new TLS ? */
  162. if (clone_flags & CLONE_SETTLS)
  163. p->thread.acrs[0] = regs->gprs[6];
  164. #else /* CONFIG_64BIT */
  165. /* Save the fpu registers to new thread structure. */
  166. save_fp_regs(&p->thread.fp_regs);
  167. /* Set a new TLS ? */
  168. if (clone_flags & CLONE_SETTLS) {
  169. if (is_compat_task()) {
  170. p->thread.acrs[0] = (unsigned int) regs->gprs[6];
  171. } else {
  172. p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
  173. p->thread.acrs[1] = (unsigned int) regs->gprs[6];
  174. }
  175. }
  176. #endif /* CONFIG_64BIT */
  177. /* start new process with ar4 pointing to the correct address space */
  178. p->thread.mm_segment = get_fs();
  179. /* Don't copy debug registers */
  180. memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
  181. memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
  182. clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
  183. clear_tsk_thread_flag(p, TIF_PER_TRAP);
  184. /* Initialize per thread user and system timer values */
  185. ti = task_thread_info(p);
  186. ti->user_timer = 0;
  187. ti->system_timer = 0;
  188. return 0;
  189. }
  190. SYSCALL_DEFINE0(fork)
  191. {
  192. struct pt_regs *regs = task_pt_regs(current);
  193. return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
  194. }
  195. SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
  196. int __user *, parent_tidptr, int __user *, child_tidptr)
  197. {
  198. struct pt_regs *regs = task_pt_regs(current);
  199. if (!newsp)
  200. newsp = regs->gprs[15];
  201. return do_fork(clone_flags, newsp, regs, 0,
  202. parent_tidptr, child_tidptr);
  203. }
  204. /*
  205. * This is trivial, and on the face of it looks like it
  206. * could equally well be done in user mode.
  207. *
  208. * Not so, for quite unobvious reasons - register pressure.
  209. * In user mode vfork() cannot have a stack frame, and if
  210. * done by calling the "clone()" system call directly, you
  211. * do not have enough call-clobbered registers to hold all
  212. * the information you need.
  213. */
  214. SYSCALL_DEFINE0(vfork)
  215. {
  216. struct pt_regs *regs = task_pt_regs(current);
  217. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
  218. regs->gprs[15], regs, 0, NULL, NULL);
  219. }
  220. asmlinkage void execve_tail(void)
  221. {
  222. current->thread.fp_regs.fpc = 0;
  223. if (MACHINE_HAS_IEEE)
  224. asm volatile("sfpc %0" : : "d" (0));
  225. }
  226. /*
  227. * sys_execve() executes a new program.
  228. */
  229. SYSCALL_DEFINE3(execve, const char __user *, name,
  230. const char __user *const __user *, argv,
  231. const char __user *const __user *, envp)
  232. {
  233. struct pt_regs *regs = task_pt_regs(current);
  234. char *filename;
  235. long rc;
  236. filename = getname(name);
  237. rc = PTR_ERR(filename);
  238. if (IS_ERR(filename))
  239. return rc;
  240. rc = do_execve(filename, argv, envp, regs);
  241. if (rc)
  242. goto out;
  243. execve_tail();
  244. rc = regs->gprs[2];
  245. out:
  246. putname(filename);
  247. return rc;
  248. }
  249. /*
  250. * fill in the FPU structure for a core dump.
  251. */
  252. int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
  253. {
  254. #ifndef CONFIG_64BIT
  255. /*
  256. * save fprs to current->thread.fp_regs to merge them with
  257. * the emulated registers and then copy the result to the dump.
  258. */
  259. save_fp_regs(&current->thread.fp_regs);
  260. memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
  261. #else /* CONFIG_64BIT */
  262. save_fp_regs(fpregs);
  263. #endif /* CONFIG_64BIT */
  264. return 1;
  265. }
  266. EXPORT_SYMBOL(dump_fpu);
  267. unsigned long get_wchan(struct task_struct *p)
  268. {
  269. struct stack_frame *sf, *low, *high;
  270. unsigned long return_address;
  271. int count;
  272. if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
  273. return 0;
  274. low = task_stack_page(p);
  275. high = (struct stack_frame *) task_pt_regs(p);
  276. sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
  277. if (sf <= low || sf > high)
  278. return 0;
  279. for (count = 0; count < 16; count++) {
  280. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  281. if (sf <= low || sf > high)
  282. return 0;
  283. return_address = sf->gprs[8] & PSW_ADDR_INSN;
  284. if (!in_sched_functions(return_address))
  285. return return_address;
  286. }
  287. return 0;
  288. }
  289. unsigned long arch_align_stack(unsigned long sp)
  290. {
  291. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  292. sp -= get_random_int() & ~PAGE_MASK;
  293. return sp & ~0xf;
  294. }
  295. static inline unsigned long brk_rnd(void)
  296. {
  297. /* 8MB for 32bit, 1GB for 64bit */
  298. if (is_32bit_task())
  299. return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
  300. else
  301. return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
  302. }
  303. unsigned long arch_randomize_brk(struct mm_struct *mm)
  304. {
  305. unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
  306. if (ret < mm->brk)
  307. return mm->brk;
  308. return ret;
  309. }
  310. unsigned long randomize_et_dyn(unsigned long base)
  311. {
  312. unsigned long ret = PAGE_ALIGN(base + brk_rnd());
  313. if (!(current->flags & PF_RANDOMIZE))
  314. return base;
  315. if (ret < base)
  316. return base;
  317. return ret;
  318. }