fair.c 144 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <trace/events/sched.h>
  29. #include "sched.h"
  30. /*
  31. * Targeted preemption latency for CPU-bound tasks:
  32. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  33. *
  34. * NOTE: this latency value is not the same as the concept of
  35. * 'timeslice length' - timeslices in CFS are of variable length
  36. * and have no persistent notion like in traditional, time-slice
  37. * based scheduling concepts.
  38. *
  39. * (to see the precise effective timeslice length of your workload,
  40. * run vmstat and monitor the context-switches (cs) field)
  41. */
  42. unsigned int sysctl_sched_latency = 6000000ULL;
  43. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  44. /*
  45. * The initial- and re-scaling of tunables is configurable
  46. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  47. *
  48. * Options are:
  49. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  50. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  51. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  52. */
  53. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  54. = SCHED_TUNABLESCALING_LOG;
  55. /*
  56. * Minimal preemption granularity for CPU-bound tasks:
  57. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  58. */
  59. unsigned int sysctl_sched_min_granularity = 750000ULL;
  60. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  61. /*
  62. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  63. */
  64. static unsigned int sched_nr_latency = 8;
  65. /*
  66. * After fork, child runs first. If set to 0 (default) then
  67. * parent will (try to) run first.
  68. */
  69. unsigned int sysctl_sched_child_runs_first __read_mostly;
  70. /*
  71. * Controls whether, when SD_SHARE_PKG_RESOURCES is on, if all
  72. * tasks go to idle CPUs when woken. If this is off, note that the
  73. * per-task flag PF_WAKE_ON_IDLE can still cause a task to go to an
  74. * idle CPU upon being woken.
  75. */
  76. unsigned int __read_mostly sysctl_sched_wake_to_idle;
  77. /*
  78. * SCHED_OTHER wake-up granularity.
  79. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  80. *
  81. * This option delays the preemption effects of decoupled workloads
  82. * and reduces their over-scheduling. Synchronous workloads will still
  83. * have immediate wakeup/sleep latencies.
  84. */
  85. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  86. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  87. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  88. /*
  89. * The exponential sliding window over which load is averaged for shares
  90. * distribution.
  91. * (default: 10msec)
  92. */
  93. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  94. #ifdef CONFIG_CFS_BANDWIDTH
  95. /*
  96. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  97. * each time a cfs_rq requests quota.
  98. *
  99. * Note: in the case that the slice exceeds the runtime remaining (either due
  100. * to consumption or the quota being specified to be smaller than the slice)
  101. * we will always only issue the remaining available time.
  102. *
  103. * default: 5 msec, units: microseconds
  104. */
  105. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  106. #endif
  107. /*
  108. * Increase the granularity value when there are more CPUs,
  109. * because with more CPUs the 'effective latency' as visible
  110. * to users decreases. But the relationship is not linear,
  111. * so pick a second-best guess by going with the log2 of the
  112. * number of CPUs.
  113. *
  114. * This idea comes from the SD scheduler of Con Kolivas:
  115. */
  116. static int get_update_sysctl_factor(void)
  117. {
  118. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  119. unsigned int factor;
  120. switch (sysctl_sched_tunable_scaling) {
  121. case SCHED_TUNABLESCALING_NONE:
  122. factor = 1;
  123. break;
  124. case SCHED_TUNABLESCALING_LINEAR:
  125. factor = cpus;
  126. break;
  127. case SCHED_TUNABLESCALING_LOG:
  128. default:
  129. factor = 1 + ilog2(cpus);
  130. break;
  131. }
  132. return factor;
  133. }
  134. static void update_sysctl(void)
  135. {
  136. unsigned int factor = get_update_sysctl_factor();
  137. #define SET_SYSCTL(name) \
  138. (sysctl_##name = (factor) * normalized_sysctl_##name)
  139. SET_SYSCTL(sched_min_granularity);
  140. SET_SYSCTL(sched_latency);
  141. SET_SYSCTL(sched_wakeup_granularity);
  142. #undef SET_SYSCTL
  143. }
  144. void sched_init_granularity(void)
  145. {
  146. update_sysctl();
  147. }
  148. #if BITS_PER_LONG == 32
  149. # define WMULT_CONST (~0UL)
  150. #else
  151. # define WMULT_CONST (1UL << 32)
  152. #endif
  153. #define WMULT_SHIFT 32
  154. /*
  155. * Shift right and round:
  156. */
  157. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  158. /*
  159. * delta *= weight / lw
  160. */
  161. static unsigned long
  162. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  163. struct load_weight *lw)
  164. {
  165. u64 tmp;
  166. /*
  167. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  168. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  169. * 2^SCHED_LOAD_RESOLUTION.
  170. */
  171. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  172. tmp = (u64)delta_exec * scale_load_down(weight);
  173. else
  174. tmp = (u64)delta_exec;
  175. if (!lw->inv_weight) {
  176. unsigned long w = scale_load_down(lw->weight);
  177. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  178. lw->inv_weight = 1;
  179. else if (unlikely(!w))
  180. lw->inv_weight = WMULT_CONST;
  181. else
  182. lw->inv_weight = WMULT_CONST / w;
  183. }
  184. /*
  185. * Check whether we'd overflow the 64-bit multiplication:
  186. */
  187. if (unlikely(tmp > WMULT_CONST))
  188. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  189. WMULT_SHIFT/2);
  190. else
  191. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  192. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  193. }
  194. const struct sched_class fair_sched_class;
  195. /**************************************************************
  196. * CFS operations on generic schedulable entities:
  197. */
  198. #ifdef CONFIG_FAIR_GROUP_SCHED
  199. /* cpu runqueue to which this cfs_rq is attached */
  200. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  201. {
  202. return cfs_rq->rq;
  203. }
  204. /* An entity is a task if it doesn't "own" a runqueue */
  205. #define entity_is_task(se) (!se->my_q)
  206. static inline struct task_struct *task_of(struct sched_entity *se)
  207. {
  208. #ifdef CONFIG_SCHED_DEBUG
  209. WARN_ON_ONCE(!entity_is_task(se));
  210. #endif
  211. return container_of(se, struct task_struct, se);
  212. }
  213. /* Walk up scheduling entities hierarchy */
  214. #define for_each_sched_entity(se) \
  215. for (; se; se = se->parent)
  216. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  217. {
  218. return p->se.cfs_rq;
  219. }
  220. /* runqueue on which this entity is (to be) queued */
  221. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  222. {
  223. return se->cfs_rq;
  224. }
  225. /* runqueue "owned" by this group */
  226. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  227. {
  228. return grp->my_q;
  229. }
  230. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  231. {
  232. if (!cfs_rq->on_list) {
  233. /*
  234. * Ensure we either appear before our parent (if already
  235. * enqueued) or force our parent to appear after us when it is
  236. * enqueued. The fact that we always enqueue bottom-up
  237. * reduces this to two cases.
  238. */
  239. if (cfs_rq->tg->parent &&
  240. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  241. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  242. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  243. } else {
  244. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  245. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  246. }
  247. cfs_rq->on_list = 1;
  248. }
  249. }
  250. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  251. {
  252. if (cfs_rq->on_list) {
  253. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  254. cfs_rq->on_list = 0;
  255. }
  256. }
  257. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  258. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  259. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  260. /* Do the two (enqueued) entities belong to the same group ? */
  261. static inline int
  262. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  263. {
  264. if (se->cfs_rq == pse->cfs_rq)
  265. return 1;
  266. return 0;
  267. }
  268. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  269. {
  270. return se->parent;
  271. }
  272. /* return depth at which a sched entity is present in the hierarchy */
  273. static inline int depth_se(struct sched_entity *se)
  274. {
  275. int depth = 0;
  276. for_each_sched_entity(se)
  277. depth++;
  278. return depth;
  279. }
  280. static void
  281. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  282. {
  283. int se_depth, pse_depth;
  284. /*
  285. * preemption test can be made between sibling entities who are in the
  286. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  287. * both tasks until we find their ancestors who are siblings of common
  288. * parent.
  289. */
  290. /* First walk up until both entities are at same depth */
  291. se_depth = depth_se(*se);
  292. pse_depth = depth_se(*pse);
  293. while (se_depth > pse_depth) {
  294. se_depth--;
  295. *se = parent_entity(*se);
  296. }
  297. while (pse_depth > se_depth) {
  298. pse_depth--;
  299. *pse = parent_entity(*pse);
  300. }
  301. while (!is_same_group(*se, *pse)) {
  302. *se = parent_entity(*se);
  303. *pse = parent_entity(*pse);
  304. }
  305. }
  306. #else /* !CONFIG_FAIR_GROUP_SCHED */
  307. static inline struct task_struct *task_of(struct sched_entity *se)
  308. {
  309. return container_of(se, struct task_struct, se);
  310. }
  311. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  312. {
  313. return container_of(cfs_rq, struct rq, cfs);
  314. }
  315. #define entity_is_task(se) 1
  316. #define for_each_sched_entity(se) \
  317. for (; se; se = NULL)
  318. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  319. {
  320. return &task_rq(p)->cfs;
  321. }
  322. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  323. {
  324. struct task_struct *p = task_of(se);
  325. struct rq *rq = task_rq(p);
  326. return &rq->cfs;
  327. }
  328. /* runqueue "owned" by this group */
  329. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  330. {
  331. return NULL;
  332. }
  333. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  334. {
  335. }
  336. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  337. {
  338. }
  339. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  340. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  341. static inline int
  342. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  343. {
  344. return 1;
  345. }
  346. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  347. {
  348. return NULL;
  349. }
  350. static inline void
  351. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  352. {
  353. }
  354. #endif /* CONFIG_FAIR_GROUP_SCHED */
  355. static __always_inline
  356. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
  357. /**************************************************************
  358. * Scheduling class tree data structure manipulation methods:
  359. */
  360. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  361. {
  362. s64 delta = (s64)(vruntime - min_vruntime);
  363. if (delta > 0)
  364. min_vruntime = vruntime;
  365. return min_vruntime;
  366. }
  367. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  368. {
  369. s64 delta = (s64)(vruntime - min_vruntime);
  370. if (delta < 0)
  371. min_vruntime = vruntime;
  372. return min_vruntime;
  373. }
  374. static inline int entity_before(struct sched_entity *a,
  375. struct sched_entity *b)
  376. {
  377. return (s64)(a->vruntime - b->vruntime) < 0;
  378. }
  379. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  380. {
  381. u64 vruntime = cfs_rq->min_vruntime;
  382. if (cfs_rq->curr)
  383. vruntime = cfs_rq->curr->vruntime;
  384. if (cfs_rq->rb_leftmost) {
  385. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  386. struct sched_entity,
  387. run_node);
  388. if (!cfs_rq->curr)
  389. vruntime = se->vruntime;
  390. else
  391. vruntime = min_vruntime(vruntime, se->vruntime);
  392. }
  393. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  394. #ifndef CONFIG_64BIT
  395. smp_wmb();
  396. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  397. #endif
  398. }
  399. /*
  400. * Enqueue an entity into the rb-tree:
  401. */
  402. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  403. {
  404. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  405. struct rb_node *parent = NULL;
  406. struct sched_entity *entry;
  407. int leftmost = 1;
  408. /*
  409. * Find the right place in the rbtree:
  410. */
  411. while (*link) {
  412. parent = *link;
  413. entry = rb_entry(parent, struct sched_entity, run_node);
  414. /*
  415. * We dont care about collisions. Nodes with
  416. * the same key stay together.
  417. */
  418. if (entity_before(se, entry)) {
  419. link = &parent->rb_left;
  420. } else {
  421. link = &parent->rb_right;
  422. leftmost = 0;
  423. }
  424. }
  425. /*
  426. * Maintain a cache of leftmost tree entries (it is frequently
  427. * used):
  428. */
  429. if (leftmost)
  430. cfs_rq->rb_leftmost = &se->run_node;
  431. rb_link_node(&se->run_node, parent, link);
  432. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  433. }
  434. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  435. {
  436. if (cfs_rq->rb_leftmost == &se->run_node) {
  437. struct rb_node *next_node;
  438. next_node = rb_next(&se->run_node);
  439. cfs_rq->rb_leftmost = next_node;
  440. }
  441. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  442. }
  443. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  444. {
  445. struct rb_node *left = cfs_rq->rb_leftmost;
  446. if (!left)
  447. return NULL;
  448. return rb_entry(left, struct sched_entity, run_node);
  449. }
  450. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  451. {
  452. struct rb_node *next = rb_next(&se->run_node);
  453. if (!next)
  454. return NULL;
  455. return rb_entry(next, struct sched_entity, run_node);
  456. }
  457. #ifdef CONFIG_SCHED_DEBUG
  458. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  459. {
  460. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  461. if (!last)
  462. return NULL;
  463. return rb_entry(last, struct sched_entity, run_node);
  464. }
  465. /**************************************************************
  466. * Scheduling class statistics methods:
  467. */
  468. int sched_proc_update_handler(struct ctl_table *table, int write,
  469. void __user *buffer, size_t *lenp,
  470. loff_t *ppos)
  471. {
  472. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  473. int factor = get_update_sysctl_factor();
  474. if (ret || !write)
  475. return ret;
  476. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  477. sysctl_sched_min_granularity);
  478. #define WRT_SYSCTL(name) \
  479. (normalized_sysctl_##name = sysctl_##name / (factor))
  480. WRT_SYSCTL(sched_min_granularity);
  481. WRT_SYSCTL(sched_latency);
  482. WRT_SYSCTL(sched_wakeup_granularity);
  483. #undef WRT_SYSCTL
  484. return 0;
  485. }
  486. #endif
  487. /*
  488. * delta /= w
  489. */
  490. static inline unsigned long
  491. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  492. {
  493. if (unlikely(se->load.weight != NICE_0_LOAD))
  494. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  495. return delta;
  496. }
  497. /*
  498. * The idea is to set a period in which each task runs once.
  499. *
  500. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  501. * this period because otherwise the slices get too small.
  502. *
  503. * p = (nr <= nl) ? l : l*nr/nl
  504. */
  505. static u64 __sched_period(unsigned long nr_running)
  506. {
  507. u64 period = sysctl_sched_latency;
  508. unsigned long nr_latency = sched_nr_latency;
  509. if (unlikely(nr_running > nr_latency)) {
  510. period = sysctl_sched_min_granularity;
  511. period *= nr_running;
  512. }
  513. return period;
  514. }
  515. /*
  516. * We calculate the wall-time slice from the period by taking a part
  517. * proportional to the weight.
  518. *
  519. * s = p*P[w/rw]
  520. */
  521. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  522. {
  523. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  524. for_each_sched_entity(se) {
  525. struct load_weight *load;
  526. struct load_weight lw;
  527. cfs_rq = cfs_rq_of(se);
  528. load = &cfs_rq->load;
  529. if (unlikely(!se->on_rq)) {
  530. lw = cfs_rq->load;
  531. update_load_add(&lw, se->load.weight);
  532. load = &lw;
  533. }
  534. slice = calc_delta_mine(slice, se->load.weight, load);
  535. }
  536. return slice;
  537. }
  538. /*
  539. * We calculate the vruntime slice of a to be inserted task
  540. *
  541. * vs = s/w
  542. */
  543. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  544. {
  545. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  546. }
  547. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  548. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  549. /*
  550. * Update the current task's runtime statistics. Skip current tasks that
  551. * are not in our scheduling class.
  552. */
  553. static inline void
  554. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  555. unsigned long delta_exec)
  556. {
  557. unsigned long delta_exec_weighted;
  558. schedstat_set(curr->statistics.exec_max,
  559. max((u64)delta_exec, curr->statistics.exec_max));
  560. curr->sum_exec_runtime += delta_exec;
  561. schedstat_add(cfs_rq, exec_clock, delta_exec);
  562. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  563. curr->vruntime += delta_exec_weighted;
  564. update_min_vruntime(cfs_rq);
  565. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  566. cfs_rq->load_unacc_exec_time += delta_exec;
  567. #endif
  568. }
  569. static void update_curr(struct cfs_rq *cfs_rq)
  570. {
  571. struct sched_entity *curr = cfs_rq->curr;
  572. u64 now = rq_of(cfs_rq)->clock_task;
  573. unsigned long delta_exec;
  574. if (unlikely(!curr))
  575. return;
  576. /*
  577. * Get the amount of time the current task was running
  578. * since the last time we changed load (this cannot
  579. * overflow on 32 bits):
  580. */
  581. delta_exec = (unsigned long)(now - curr->exec_start);
  582. if (!delta_exec)
  583. return;
  584. __update_curr(cfs_rq, curr, delta_exec);
  585. curr->exec_start = now;
  586. if (entity_is_task(curr)) {
  587. struct task_struct *curtask = task_of(curr);
  588. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  589. cpuacct_charge(curtask, delta_exec);
  590. account_group_exec_runtime(curtask, delta_exec);
  591. }
  592. account_cfs_rq_runtime(cfs_rq, delta_exec);
  593. }
  594. static inline void
  595. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  596. {
  597. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  598. }
  599. /*
  600. * Task is being enqueued - update stats:
  601. */
  602. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  603. {
  604. /*
  605. * Are we enqueueing a waiting task? (for current tasks
  606. * a dequeue/enqueue event is a NOP)
  607. */
  608. if (se != cfs_rq->curr)
  609. update_stats_wait_start(cfs_rq, se);
  610. }
  611. static void
  612. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  613. {
  614. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  615. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  616. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  617. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  618. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  619. #ifdef CONFIG_SCHEDSTATS
  620. if (entity_is_task(se)) {
  621. trace_sched_stat_wait(task_of(se),
  622. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  623. }
  624. #endif
  625. schedstat_set(se->statistics.wait_start, 0);
  626. }
  627. static inline void
  628. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  629. {
  630. /*
  631. * Mark the end of the wait period if dequeueing a
  632. * waiting task:
  633. */
  634. if (se != cfs_rq->curr)
  635. update_stats_wait_end(cfs_rq, se);
  636. }
  637. /*
  638. * We are picking a new current task - update its stats:
  639. */
  640. static inline void
  641. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  642. {
  643. /*
  644. * We are starting a new run period:
  645. */
  646. se->exec_start = rq_of(cfs_rq)->clock_task;
  647. }
  648. /**************************************************
  649. * Scheduling class queueing methods:
  650. */
  651. static void
  652. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  653. {
  654. update_load_add(&cfs_rq->load, se->load.weight);
  655. if (!parent_entity(se))
  656. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  657. #ifdef CONFIG_SMP
  658. if (entity_is_task(se))
  659. list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
  660. #endif
  661. cfs_rq->nr_running++;
  662. }
  663. static void
  664. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  665. {
  666. update_load_sub(&cfs_rq->load, se->load.weight);
  667. if (!parent_entity(se))
  668. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  669. if (entity_is_task(se))
  670. list_del_init(&se->group_node);
  671. cfs_rq->nr_running--;
  672. }
  673. #ifdef CONFIG_FAIR_GROUP_SCHED
  674. /* we need this in update_cfs_load and load-balance functions below */
  675. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  676. # ifdef CONFIG_SMP
  677. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  678. int global_update)
  679. {
  680. struct task_group *tg = cfs_rq->tg;
  681. long load_avg;
  682. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  683. load_avg -= cfs_rq->load_contribution;
  684. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  685. atomic_add(load_avg, &tg->load_weight);
  686. cfs_rq->load_contribution += load_avg;
  687. }
  688. }
  689. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  690. {
  691. u64 period = sysctl_sched_shares_window;
  692. u64 now, delta;
  693. unsigned long load = cfs_rq->load.weight;
  694. if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
  695. return;
  696. now = rq_of(cfs_rq)->clock_task;
  697. delta = now - cfs_rq->load_stamp;
  698. /* truncate load history at 4 idle periods */
  699. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  700. now - cfs_rq->load_last > 4 * period) {
  701. cfs_rq->load_period = 0;
  702. cfs_rq->load_avg = 0;
  703. delta = period - 1;
  704. }
  705. cfs_rq->load_stamp = now;
  706. cfs_rq->load_unacc_exec_time = 0;
  707. cfs_rq->load_period += delta;
  708. if (load) {
  709. cfs_rq->load_last = now;
  710. cfs_rq->load_avg += delta * load;
  711. }
  712. /* consider updating load contribution on each fold or truncate */
  713. if (global_update || cfs_rq->load_period > period
  714. || !cfs_rq->load_period)
  715. update_cfs_rq_load_contribution(cfs_rq, global_update);
  716. while (cfs_rq->load_period > period) {
  717. /*
  718. * Inline assembly required to prevent the compiler
  719. * optimising this loop into a divmod call.
  720. * See __iter_div_u64_rem() for another example of this.
  721. */
  722. asm("" : "+rm" (cfs_rq->load_period));
  723. cfs_rq->load_period /= 2;
  724. cfs_rq->load_avg /= 2;
  725. }
  726. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  727. list_del_leaf_cfs_rq(cfs_rq);
  728. }
  729. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  730. {
  731. long tg_weight;
  732. /*
  733. * Use this CPU's actual weight instead of the last load_contribution
  734. * to gain a more accurate current total weight. See
  735. * update_cfs_rq_load_contribution().
  736. */
  737. tg_weight = atomic_read(&tg->load_weight);
  738. tg_weight -= cfs_rq->load_contribution;
  739. tg_weight += cfs_rq->load.weight;
  740. return tg_weight;
  741. }
  742. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  743. {
  744. long tg_weight, load, shares;
  745. tg_weight = calc_tg_weight(tg, cfs_rq);
  746. load = cfs_rq->load.weight;
  747. shares = (tg->shares * load);
  748. if (tg_weight)
  749. shares /= tg_weight;
  750. if (shares < MIN_SHARES)
  751. shares = MIN_SHARES;
  752. if (shares > tg->shares)
  753. shares = tg->shares;
  754. return shares;
  755. }
  756. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  757. {
  758. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  759. update_cfs_load(cfs_rq, 0);
  760. update_cfs_shares(cfs_rq);
  761. }
  762. }
  763. # else /* CONFIG_SMP */
  764. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  765. {
  766. }
  767. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  768. {
  769. return tg->shares;
  770. }
  771. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  772. {
  773. }
  774. # endif /* CONFIG_SMP */
  775. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  776. unsigned long weight)
  777. {
  778. if (se->on_rq) {
  779. /* commit outstanding execution time */
  780. if (cfs_rq->curr == se)
  781. update_curr(cfs_rq);
  782. account_entity_dequeue(cfs_rq, se);
  783. }
  784. update_load_set(&se->load, weight);
  785. if (se->on_rq)
  786. account_entity_enqueue(cfs_rq, se);
  787. }
  788. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  789. {
  790. struct task_group *tg;
  791. struct sched_entity *se;
  792. long shares;
  793. tg = cfs_rq->tg;
  794. se = tg->se[cpu_of(rq_of(cfs_rq))];
  795. if (!se || throttled_hierarchy(cfs_rq))
  796. return;
  797. #ifndef CONFIG_SMP
  798. if (likely(se->load.weight == tg->shares))
  799. return;
  800. #endif
  801. shares = calc_cfs_shares(cfs_rq, tg);
  802. reweight_entity(cfs_rq_of(se), se, shares);
  803. }
  804. #else /* CONFIG_FAIR_GROUP_SCHED */
  805. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  806. {
  807. }
  808. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  809. {
  810. }
  811. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  812. {
  813. }
  814. #endif /* CONFIG_FAIR_GROUP_SCHED */
  815. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  816. {
  817. #ifdef CONFIG_SCHEDSTATS
  818. struct task_struct *tsk = NULL;
  819. if (entity_is_task(se))
  820. tsk = task_of(se);
  821. if (se->statistics.sleep_start) {
  822. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  823. if ((s64)delta < 0)
  824. delta = 0;
  825. if (unlikely(delta > se->statistics.sleep_max))
  826. se->statistics.sleep_max = delta;
  827. se->statistics.sleep_start = 0;
  828. se->statistics.sum_sleep_runtime += delta;
  829. if (tsk) {
  830. account_scheduler_latency(tsk, delta >> 10, 1);
  831. trace_sched_stat_sleep(tsk, delta);
  832. }
  833. }
  834. if (se->statistics.block_start) {
  835. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  836. if ((s64)delta < 0)
  837. delta = 0;
  838. if (unlikely(delta > se->statistics.block_max))
  839. se->statistics.block_max = delta;
  840. se->statistics.block_start = 0;
  841. se->statistics.sum_sleep_runtime += delta;
  842. if (tsk) {
  843. if (tsk->in_iowait) {
  844. se->statistics.iowait_sum += delta;
  845. se->statistics.iowait_count++;
  846. trace_sched_stat_iowait(tsk, delta);
  847. }
  848. trace_sched_stat_blocked(tsk, delta);
  849. /*
  850. * Blocking time is in units of nanosecs, so shift by
  851. * 20 to get a milliseconds-range estimation of the
  852. * amount of time that the task spent sleeping:
  853. */
  854. if (unlikely(prof_on == SLEEP_PROFILING)) {
  855. profile_hits(SLEEP_PROFILING,
  856. (void *)get_wchan(tsk),
  857. delta >> 20);
  858. }
  859. account_scheduler_latency(tsk, delta >> 10, 0);
  860. }
  861. }
  862. #endif
  863. }
  864. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  865. {
  866. #ifdef CONFIG_SCHED_DEBUG
  867. s64 d = se->vruntime - cfs_rq->min_vruntime;
  868. if (d < 0)
  869. d = -d;
  870. if (d > 3*sysctl_sched_latency)
  871. schedstat_inc(cfs_rq, nr_spread_over);
  872. #endif
  873. }
  874. static void
  875. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  876. {
  877. u64 vruntime = cfs_rq->min_vruntime;
  878. /*
  879. * The 'current' period is already promised to the current tasks,
  880. * however the extra weight of the new task will slow them down a
  881. * little, place the new task so that it fits in the slot that
  882. * stays open at the end.
  883. */
  884. if (initial && sched_feat(START_DEBIT))
  885. vruntime += sched_vslice(cfs_rq, se);
  886. /* sleeps up to a single latency don't count. */
  887. if (!initial) {
  888. unsigned long thresh = sysctl_sched_latency;
  889. /*
  890. * Halve their sleep time's effect, to allow
  891. * for a gentler effect of sleepers:
  892. */
  893. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  894. thresh >>= 1;
  895. vruntime -= thresh;
  896. }
  897. /* ensure we never gain time by being placed backwards. */
  898. vruntime = max_vruntime(se->vruntime, vruntime);
  899. se->vruntime = vruntime;
  900. }
  901. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  902. static void
  903. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  904. {
  905. /*
  906. * Update the normalized vruntime before updating min_vruntime
  907. * through callig update_curr().
  908. */
  909. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  910. se->vruntime += cfs_rq->min_vruntime;
  911. /*
  912. * Update run-time statistics of the 'current'.
  913. */
  914. update_curr(cfs_rq);
  915. update_cfs_load(cfs_rq, 0);
  916. account_entity_enqueue(cfs_rq, se);
  917. update_cfs_shares(cfs_rq);
  918. if (flags & ENQUEUE_WAKEUP) {
  919. place_entity(cfs_rq, se, 0);
  920. enqueue_sleeper(cfs_rq, se);
  921. }
  922. update_stats_enqueue(cfs_rq, se);
  923. check_spread(cfs_rq, se);
  924. if (se != cfs_rq->curr)
  925. __enqueue_entity(cfs_rq, se);
  926. se->on_rq = 1;
  927. if (cfs_rq->nr_running == 1) {
  928. list_add_leaf_cfs_rq(cfs_rq);
  929. check_enqueue_throttle(cfs_rq);
  930. }
  931. }
  932. static void __clear_buddies_last(struct sched_entity *se)
  933. {
  934. for_each_sched_entity(se) {
  935. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  936. if (cfs_rq->last == se)
  937. cfs_rq->last = NULL;
  938. else
  939. break;
  940. }
  941. }
  942. static void __clear_buddies_next(struct sched_entity *se)
  943. {
  944. for_each_sched_entity(se) {
  945. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  946. if (cfs_rq->next == se)
  947. cfs_rq->next = NULL;
  948. else
  949. break;
  950. }
  951. }
  952. static void __clear_buddies_skip(struct sched_entity *se)
  953. {
  954. for_each_sched_entity(se) {
  955. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  956. if (cfs_rq->skip == se)
  957. cfs_rq->skip = NULL;
  958. else
  959. break;
  960. }
  961. }
  962. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  963. {
  964. if (cfs_rq->last == se)
  965. __clear_buddies_last(se);
  966. if (cfs_rq->next == se)
  967. __clear_buddies_next(se);
  968. if (cfs_rq->skip == se)
  969. __clear_buddies_skip(se);
  970. }
  971. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  972. static void
  973. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  974. {
  975. /*
  976. * Update run-time statistics of the 'current'.
  977. */
  978. update_curr(cfs_rq);
  979. update_stats_dequeue(cfs_rq, se);
  980. if (flags & DEQUEUE_SLEEP) {
  981. #ifdef CONFIG_SCHEDSTATS
  982. if (entity_is_task(se)) {
  983. struct task_struct *tsk = task_of(se);
  984. if (tsk->state & TASK_INTERRUPTIBLE)
  985. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  986. if (tsk->state & TASK_UNINTERRUPTIBLE)
  987. se->statistics.block_start = rq_of(cfs_rq)->clock;
  988. }
  989. #endif
  990. }
  991. clear_buddies(cfs_rq, se);
  992. if (se != cfs_rq->curr)
  993. __dequeue_entity(cfs_rq, se);
  994. se->on_rq = 0;
  995. update_cfs_load(cfs_rq, 0);
  996. account_entity_dequeue(cfs_rq, se);
  997. /*
  998. * Normalize the entity after updating the min_vruntime because the
  999. * update can refer to the ->curr item and we need to reflect this
  1000. * movement in our normalized position.
  1001. */
  1002. if (!(flags & DEQUEUE_SLEEP))
  1003. se->vruntime -= cfs_rq->min_vruntime;
  1004. /* return excess runtime on last dequeue */
  1005. return_cfs_rq_runtime(cfs_rq);
  1006. update_min_vruntime(cfs_rq);
  1007. update_cfs_shares(cfs_rq);
  1008. }
  1009. /*
  1010. * Preempt the current task with a newly woken task if needed:
  1011. */
  1012. static void
  1013. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  1014. {
  1015. unsigned long ideal_runtime, delta_exec;
  1016. struct sched_entity *se;
  1017. s64 delta;
  1018. ideal_runtime = sched_slice(cfs_rq, curr);
  1019. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1020. if (delta_exec > ideal_runtime) {
  1021. resched_task(rq_of(cfs_rq)->curr);
  1022. /*
  1023. * The current task ran long enough, ensure it doesn't get
  1024. * re-elected due to buddy favours.
  1025. */
  1026. clear_buddies(cfs_rq, curr);
  1027. return;
  1028. }
  1029. /*
  1030. * Ensure that a task that missed wakeup preemption by a
  1031. * narrow margin doesn't have to wait for a full slice.
  1032. * This also mitigates buddy induced latencies under load.
  1033. */
  1034. if (delta_exec < sysctl_sched_min_granularity)
  1035. return;
  1036. se = __pick_first_entity(cfs_rq);
  1037. delta = curr->vruntime - se->vruntime;
  1038. if (delta < 0)
  1039. return;
  1040. if (delta > ideal_runtime)
  1041. resched_task(rq_of(cfs_rq)->curr);
  1042. }
  1043. static void
  1044. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1045. {
  1046. /* 'current' is not kept within the tree. */
  1047. if (se->on_rq) {
  1048. /*
  1049. * Any task has to be enqueued before it get to execute on
  1050. * a CPU. So account for the time it spent waiting on the
  1051. * runqueue.
  1052. */
  1053. update_stats_wait_end(cfs_rq, se);
  1054. __dequeue_entity(cfs_rq, se);
  1055. }
  1056. update_stats_curr_start(cfs_rq, se);
  1057. cfs_rq->curr = se;
  1058. #ifdef CONFIG_SCHEDSTATS
  1059. /*
  1060. * Track our maximum slice length, if the CPU's load is at
  1061. * least twice that of our own weight (i.e. dont track it
  1062. * when there are only lesser-weight tasks around):
  1063. */
  1064. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  1065. se->statistics.slice_max = max(se->statistics.slice_max,
  1066. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  1067. }
  1068. #endif
  1069. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  1070. }
  1071. static int
  1072. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  1073. /*
  1074. * Pick the next process, keeping these things in mind, in this order:
  1075. * 1) keep things fair between processes/task groups
  1076. * 2) pick the "next" process, since someone really wants that to run
  1077. * 3) pick the "last" process, for cache locality
  1078. * 4) do not run the "skip" process, if something else is available
  1079. */
  1080. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  1081. {
  1082. struct sched_entity *se = __pick_first_entity(cfs_rq);
  1083. struct sched_entity *left = se;
  1084. /*
  1085. * Avoid running the skip buddy, if running something else can
  1086. * be done without getting too unfair.
  1087. */
  1088. if (cfs_rq->skip == se) {
  1089. struct sched_entity *second = __pick_next_entity(se);
  1090. if (second && wakeup_preempt_entity(second, left) < 1)
  1091. se = second;
  1092. }
  1093. /*
  1094. * Prefer last buddy, try to return the CPU to a preempted task.
  1095. */
  1096. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1097. se = cfs_rq->last;
  1098. /*
  1099. * Someone really wants this to run. If it's not unfair, run it.
  1100. */
  1101. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1102. se = cfs_rq->next;
  1103. clear_buddies(cfs_rq, se);
  1104. return se;
  1105. }
  1106. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1107. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1108. {
  1109. /*
  1110. * If still on the runqueue then deactivate_task()
  1111. * was not called and update_curr() has to be done:
  1112. */
  1113. if (prev->on_rq)
  1114. update_curr(cfs_rq);
  1115. /* throttle cfs_rqs exceeding runtime */
  1116. check_cfs_rq_runtime(cfs_rq);
  1117. check_spread(cfs_rq, prev);
  1118. if (prev->on_rq) {
  1119. update_stats_wait_start(cfs_rq, prev);
  1120. /* Put 'current' back into the tree. */
  1121. __enqueue_entity(cfs_rq, prev);
  1122. }
  1123. cfs_rq->curr = NULL;
  1124. }
  1125. static void
  1126. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1127. {
  1128. /*
  1129. * Update run-time statistics of the 'current'.
  1130. */
  1131. update_curr(cfs_rq);
  1132. /*
  1133. * Update share accounting for long-running entities.
  1134. */
  1135. update_entity_shares_tick(cfs_rq);
  1136. #ifdef CONFIG_SCHED_HRTICK
  1137. /*
  1138. * queued ticks are scheduled to match the slice, so don't bother
  1139. * validating it and just reschedule.
  1140. */
  1141. if (queued) {
  1142. resched_task(rq_of(cfs_rq)->curr);
  1143. return;
  1144. }
  1145. /*
  1146. * don't let the period tick interfere with the hrtick preemption
  1147. */
  1148. if (!sched_feat(DOUBLE_TICK) &&
  1149. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1150. return;
  1151. #endif
  1152. if (cfs_rq->nr_running > 1)
  1153. check_preempt_tick(cfs_rq, curr);
  1154. }
  1155. /**************************************************
  1156. * CFS bandwidth control machinery
  1157. */
  1158. #ifdef CONFIG_CFS_BANDWIDTH
  1159. #ifdef HAVE_JUMP_LABEL
  1160. static struct static_key __cfs_bandwidth_used;
  1161. static inline bool cfs_bandwidth_used(void)
  1162. {
  1163. return static_key_false(&__cfs_bandwidth_used);
  1164. }
  1165. void cfs_bandwidth_usage_inc(void)
  1166. {
  1167. static_key_slow_inc(&__cfs_bandwidth_used);
  1168. }
  1169. void cfs_bandwidth_usage_dec(void)
  1170. {
  1171. static_key_slow_dec(&__cfs_bandwidth_used);
  1172. }
  1173. #else /* HAVE_JUMP_LABEL */
  1174. static bool cfs_bandwidth_used(void)
  1175. {
  1176. return true;
  1177. }
  1178. void cfs_bandwidth_usage_inc(void) {}
  1179. void cfs_bandwidth_usage_dec(void) {}
  1180. #endif /* HAVE_JUMP_LABEL */
  1181. /*
  1182. * default period for cfs group bandwidth.
  1183. * default: 0.1s, units: nanoseconds
  1184. */
  1185. static inline u64 default_cfs_period(void)
  1186. {
  1187. return 100000000ULL;
  1188. }
  1189. static inline u64 sched_cfs_bandwidth_slice(void)
  1190. {
  1191. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1192. }
  1193. /*
  1194. * Replenish runtime according to assigned quota and update expiration time.
  1195. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1196. * additional synchronization around rq->lock.
  1197. *
  1198. * requires cfs_b->lock
  1199. */
  1200. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1201. {
  1202. u64 now;
  1203. if (cfs_b->quota == RUNTIME_INF)
  1204. return;
  1205. now = sched_clock_cpu(smp_processor_id());
  1206. cfs_b->runtime = cfs_b->quota;
  1207. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1208. }
  1209. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1210. {
  1211. return &tg->cfs_bandwidth;
  1212. }
  1213. /* returns 0 on failure to allocate runtime */
  1214. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1215. {
  1216. struct task_group *tg = cfs_rq->tg;
  1217. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1218. u64 amount = 0, min_amount, expires;
  1219. /* note: this is a positive sum as runtime_remaining <= 0 */
  1220. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1221. raw_spin_lock(&cfs_b->lock);
  1222. if (cfs_b->quota == RUNTIME_INF)
  1223. amount = min_amount;
  1224. else {
  1225. /*
  1226. * If the bandwidth pool has become inactive, then at least one
  1227. * period must have elapsed since the last consumption.
  1228. * Refresh the global state and ensure bandwidth timer becomes
  1229. * active.
  1230. */
  1231. if (!cfs_b->timer_active) {
  1232. __refill_cfs_bandwidth_runtime(cfs_b);
  1233. __start_cfs_bandwidth(cfs_b);
  1234. }
  1235. if (cfs_b->runtime > 0) {
  1236. amount = min(cfs_b->runtime, min_amount);
  1237. cfs_b->runtime -= amount;
  1238. cfs_b->idle = 0;
  1239. }
  1240. }
  1241. expires = cfs_b->runtime_expires;
  1242. raw_spin_unlock(&cfs_b->lock);
  1243. cfs_rq->runtime_remaining += amount;
  1244. /*
  1245. * we may have advanced our local expiration to account for allowed
  1246. * spread between our sched_clock and the one on which runtime was
  1247. * issued.
  1248. */
  1249. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1250. cfs_rq->runtime_expires = expires;
  1251. return cfs_rq->runtime_remaining > 0;
  1252. }
  1253. /*
  1254. * Note: This depends on the synchronization provided by sched_clock and the
  1255. * fact that rq->clock snapshots this value.
  1256. */
  1257. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1258. {
  1259. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1260. struct rq *rq = rq_of(cfs_rq);
  1261. /* if the deadline is ahead of our clock, nothing to do */
  1262. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1263. return;
  1264. if (cfs_rq->runtime_remaining < 0)
  1265. return;
  1266. /*
  1267. * If the local deadline has passed we have to consider the
  1268. * possibility that our sched_clock is 'fast' and the global deadline
  1269. * has not truly expired.
  1270. *
  1271. * Fortunately we can check determine whether this the case by checking
  1272. * whether the global deadline has advanced.
  1273. */
  1274. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1275. /* extend local deadline, drift is bounded above by 2 ticks */
  1276. cfs_rq->runtime_expires += TICK_NSEC;
  1277. } else {
  1278. /* global deadline is ahead, expiration has passed */
  1279. cfs_rq->runtime_remaining = 0;
  1280. }
  1281. }
  1282. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1283. unsigned long delta_exec)
  1284. {
  1285. /* dock delta_exec before expiring quota (as it could span periods) */
  1286. cfs_rq->runtime_remaining -= delta_exec;
  1287. expire_cfs_rq_runtime(cfs_rq);
  1288. if (likely(cfs_rq->runtime_remaining > 0))
  1289. return;
  1290. /*
  1291. * if we're unable to extend our runtime we resched so that the active
  1292. * hierarchy can be throttled
  1293. */
  1294. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1295. resched_task(rq_of(cfs_rq)->curr);
  1296. }
  1297. static __always_inline
  1298. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
  1299. {
  1300. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  1301. return;
  1302. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1303. }
  1304. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1305. {
  1306. return cfs_bandwidth_used() && cfs_rq->throttled;
  1307. }
  1308. /* check whether cfs_rq, or any parent, is throttled */
  1309. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1310. {
  1311. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  1312. }
  1313. /*
  1314. * Ensure that neither of the group entities corresponding to src_cpu or
  1315. * dest_cpu are members of a throttled hierarchy when performing group
  1316. * load-balance operations.
  1317. */
  1318. static inline int throttled_lb_pair(struct task_group *tg,
  1319. int src_cpu, int dest_cpu)
  1320. {
  1321. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1322. src_cfs_rq = tg->cfs_rq[src_cpu];
  1323. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1324. return throttled_hierarchy(src_cfs_rq) ||
  1325. throttled_hierarchy(dest_cfs_rq);
  1326. }
  1327. /* updated child weight may affect parent so we have to do this bottom up */
  1328. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1329. {
  1330. struct rq *rq = data;
  1331. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1332. cfs_rq->throttle_count--;
  1333. #ifdef CONFIG_SMP
  1334. if (!cfs_rq->throttle_count) {
  1335. u64 delta = rq->clock_task - cfs_rq->load_stamp;
  1336. /* leaving throttled state, advance shares averaging windows */
  1337. cfs_rq->load_stamp += delta;
  1338. cfs_rq->load_last += delta;
  1339. /* update entity weight now that we are on_rq again */
  1340. update_cfs_shares(cfs_rq);
  1341. }
  1342. #endif
  1343. return 0;
  1344. }
  1345. static int tg_throttle_down(struct task_group *tg, void *data)
  1346. {
  1347. struct rq *rq = data;
  1348. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1349. /* group is entering throttled state, record last load */
  1350. if (!cfs_rq->throttle_count)
  1351. update_cfs_load(cfs_rq, 0);
  1352. cfs_rq->throttle_count++;
  1353. return 0;
  1354. }
  1355. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1356. {
  1357. struct rq *rq = rq_of(cfs_rq);
  1358. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1359. struct sched_entity *se;
  1360. long task_delta, dequeue = 1;
  1361. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1362. /* account load preceding throttle */
  1363. rcu_read_lock();
  1364. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1365. rcu_read_unlock();
  1366. task_delta = cfs_rq->h_nr_running;
  1367. for_each_sched_entity(se) {
  1368. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1369. /* throttled entity or throttle-on-deactivate */
  1370. if (!se->on_rq)
  1371. break;
  1372. if (dequeue)
  1373. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1374. qcfs_rq->h_nr_running -= task_delta;
  1375. if (qcfs_rq->load.weight)
  1376. dequeue = 0;
  1377. }
  1378. if (!se)
  1379. rq->nr_running -= task_delta;
  1380. cfs_rq->throttled = 1;
  1381. cfs_rq->throttled_timestamp = rq->clock;
  1382. raw_spin_lock(&cfs_b->lock);
  1383. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1384. if (!cfs_b->timer_active)
  1385. __start_cfs_bandwidth(cfs_b);
  1386. raw_spin_unlock(&cfs_b->lock);
  1387. }
  1388. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1389. {
  1390. struct rq *rq = rq_of(cfs_rq);
  1391. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1392. struct sched_entity *se;
  1393. int enqueue = 1;
  1394. long task_delta;
  1395. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1396. cfs_rq->throttled = 0;
  1397. raw_spin_lock(&cfs_b->lock);
  1398. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
  1399. list_del_rcu(&cfs_rq->throttled_list);
  1400. raw_spin_unlock(&cfs_b->lock);
  1401. cfs_rq->throttled_timestamp = 0;
  1402. update_rq_clock(rq);
  1403. /* update hierarchical throttle state */
  1404. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1405. if (!cfs_rq->load.weight)
  1406. return;
  1407. task_delta = cfs_rq->h_nr_running;
  1408. for_each_sched_entity(se) {
  1409. if (se->on_rq)
  1410. enqueue = 0;
  1411. cfs_rq = cfs_rq_of(se);
  1412. if (enqueue)
  1413. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1414. cfs_rq->h_nr_running += task_delta;
  1415. if (cfs_rq_throttled(cfs_rq))
  1416. break;
  1417. }
  1418. if (!se)
  1419. rq->nr_running += task_delta;
  1420. /* determine whether we need to wake up potentially idle cpu */
  1421. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1422. resched_task(rq->curr);
  1423. }
  1424. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1425. u64 remaining, u64 expires)
  1426. {
  1427. struct cfs_rq *cfs_rq;
  1428. u64 runtime = remaining;
  1429. rcu_read_lock();
  1430. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1431. throttled_list) {
  1432. struct rq *rq = rq_of(cfs_rq);
  1433. raw_spin_lock(&rq->lock);
  1434. if (!cfs_rq_throttled(cfs_rq))
  1435. goto next;
  1436. runtime = -cfs_rq->runtime_remaining + 1;
  1437. if (runtime > remaining)
  1438. runtime = remaining;
  1439. remaining -= runtime;
  1440. cfs_rq->runtime_remaining += runtime;
  1441. cfs_rq->runtime_expires = expires;
  1442. /* we check whether we're throttled above */
  1443. if (cfs_rq->runtime_remaining > 0)
  1444. unthrottle_cfs_rq(cfs_rq);
  1445. next:
  1446. raw_spin_unlock(&rq->lock);
  1447. if (!remaining)
  1448. break;
  1449. }
  1450. rcu_read_unlock();
  1451. return remaining;
  1452. }
  1453. /*
  1454. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1455. * cfs_rqs as appropriate. If there has been no activity within the last
  1456. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1457. * used to track this state.
  1458. */
  1459. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1460. {
  1461. u64 runtime, runtime_expires;
  1462. int idle = 1, throttled;
  1463. raw_spin_lock(&cfs_b->lock);
  1464. /* no need to continue the timer with no bandwidth constraint */
  1465. if (cfs_b->quota == RUNTIME_INF)
  1466. goto out_unlock;
  1467. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1468. /* idle depends on !throttled (for the case of a large deficit) */
  1469. idle = cfs_b->idle && !throttled;
  1470. cfs_b->nr_periods += overrun;
  1471. /* if we're going inactive then everything else can be deferred */
  1472. if (idle)
  1473. goto out_unlock;
  1474. /*
  1475. * if we have relooped after returning idle once, we need to update our
  1476. * status as actually running, so that other cpus doing
  1477. * __start_cfs_bandwidth will stop trying to cancel us.
  1478. */
  1479. cfs_b->timer_active = 1;
  1480. __refill_cfs_bandwidth_runtime(cfs_b);
  1481. if (!throttled) {
  1482. /* mark as potentially idle for the upcoming period */
  1483. cfs_b->idle = 1;
  1484. goto out_unlock;
  1485. }
  1486. /* account preceding periods in which throttling occurred */
  1487. cfs_b->nr_throttled += overrun;
  1488. /*
  1489. * There are throttled entities so we must first use the new bandwidth
  1490. * to unthrottle them before making it generally available. This
  1491. * ensures that all existing debts will be paid before a new cfs_rq is
  1492. * allowed to run.
  1493. */
  1494. runtime = cfs_b->runtime;
  1495. runtime_expires = cfs_b->runtime_expires;
  1496. cfs_b->runtime = 0;
  1497. /*
  1498. * This check is repeated as we are holding onto the new bandwidth
  1499. * while we unthrottle. This can potentially race with an unthrottled
  1500. * group trying to acquire new bandwidth from the global pool.
  1501. */
  1502. while (throttled && runtime > 0) {
  1503. raw_spin_unlock(&cfs_b->lock);
  1504. /* we can't nest cfs_b->lock while distributing bandwidth */
  1505. runtime = distribute_cfs_runtime(cfs_b, runtime,
  1506. runtime_expires);
  1507. raw_spin_lock(&cfs_b->lock);
  1508. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1509. }
  1510. /* return (any) remaining runtime */
  1511. cfs_b->runtime = runtime;
  1512. /*
  1513. * While we are ensured activity in the period following an
  1514. * unthrottle, this also covers the case in which the new bandwidth is
  1515. * insufficient to cover the existing bandwidth deficit. (Forcing the
  1516. * timer to remain active while there are any throttled entities.)
  1517. */
  1518. cfs_b->idle = 0;
  1519. out_unlock:
  1520. if (idle)
  1521. cfs_b->timer_active = 0;
  1522. raw_spin_unlock(&cfs_b->lock);
  1523. return idle;
  1524. }
  1525. /* a cfs_rq won't donate quota below this amount */
  1526. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  1527. /* minimum remaining period time to redistribute slack quota */
  1528. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  1529. /* how long we wait to gather additional slack before distributing */
  1530. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  1531. /*
  1532. * Are we near the end of the current quota period?
  1533. *
  1534. * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
  1535. * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
  1536. * migrate_hrtimers, base is never cleared, so we are fine.
  1537. */
  1538. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  1539. {
  1540. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  1541. u64 remaining;
  1542. /* if the call-back is running a quota refresh is already occurring */
  1543. if (hrtimer_callback_running(refresh_timer))
  1544. return 1;
  1545. /* is a quota refresh about to occur? */
  1546. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  1547. if (remaining < min_expire)
  1548. return 1;
  1549. return 0;
  1550. }
  1551. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  1552. {
  1553. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  1554. /* if there's a quota refresh soon don't bother with slack */
  1555. if (runtime_refresh_within(cfs_b, min_left))
  1556. return;
  1557. start_bandwidth_timer(&cfs_b->slack_timer,
  1558. ns_to_ktime(cfs_bandwidth_slack_period));
  1559. }
  1560. /* we know any runtime found here is valid as update_curr() precedes return */
  1561. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1562. {
  1563. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1564. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  1565. if (slack_runtime <= 0)
  1566. return;
  1567. raw_spin_lock(&cfs_b->lock);
  1568. if (cfs_b->quota != RUNTIME_INF &&
  1569. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  1570. cfs_b->runtime += slack_runtime;
  1571. /* we are under rq->lock, defer unthrottling using a timer */
  1572. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  1573. !list_empty(&cfs_b->throttled_cfs_rq))
  1574. start_cfs_slack_bandwidth(cfs_b);
  1575. }
  1576. raw_spin_unlock(&cfs_b->lock);
  1577. /* even if it's not valid for return we don't want to try again */
  1578. cfs_rq->runtime_remaining -= slack_runtime;
  1579. }
  1580. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1581. {
  1582. if (!cfs_bandwidth_used())
  1583. return;
  1584. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  1585. return;
  1586. __return_cfs_rq_runtime(cfs_rq);
  1587. }
  1588. /*
  1589. * This is done with a timer (instead of inline with bandwidth return) since
  1590. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  1591. */
  1592. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  1593. {
  1594. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  1595. u64 expires;
  1596. /* confirm we're still not at a refresh boundary */
  1597. raw_spin_lock(&cfs_b->lock);
  1598. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
  1599. raw_spin_unlock(&cfs_b->lock);
  1600. return;
  1601. }
  1602. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  1603. runtime = cfs_b->runtime;
  1604. cfs_b->runtime = 0;
  1605. }
  1606. expires = cfs_b->runtime_expires;
  1607. raw_spin_unlock(&cfs_b->lock);
  1608. if (!runtime)
  1609. return;
  1610. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  1611. raw_spin_lock(&cfs_b->lock);
  1612. if (expires == cfs_b->runtime_expires)
  1613. cfs_b->runtime = runtime;
  1614. raw_spin_unlock(&cfs_b->lock);
  1615. }
  1616. /*
  1617. * When a group wakes up we want to make sure that its quota is not already
  1618. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  1619. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  1620. */
  1621. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  1622. {
  1623. if (!cfs_bandwidth_used())
  1624. return;
  1625. /* an active group must be handled by the update_curr()->put() path */
  1626. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  1627. return;
  1628. /* ensure the group is not already throttled */
  1629. if (cfs_rq_throttled(cfs_rq))
  1630. return;
  1631. /* update runtime allocation */
  1632. account_cfs_rq_runtime(cfs_rq, 0);
  1633. if (cfs_rq->runtime_remaining <= 0)
  1634. throttle_cfs_rq(cfs_rq);
  1635. }
  1636. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  1637. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1638. {
  1639. if (!cfs_bandwidth_used())
  1640. return;
  1641. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  1642. return;
  1643. /*
  1644. * it's possible for a throttled entity to be forced into a running
  1645. * state (e.g. set_curr_task), in this case we're finished.
  1646. */
  1647. if (cfs_rq_throttled(cfs_rq))
  1648. return;
  1649. throttle_cfs_rq(cfs_rq);
  1650. }
  1651. static inline u64 default_cfs_period(void);
  1652. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  1653. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
  1654. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  1655. {
  1656. struct cfs_bandwidth *cfs_b =
  1657. container_of(timer, struct cfs_bandwidth, slack_timer);
  1658. do_sched_cfs_slack_timer(cfs_b);
  1659. return HRTIMER_NORESTART;
  1660. }
  1661. extern const u64 max_cfs_quota_period;
  1662. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  1663. {
  1664. struct cfs_bandwidth *cfs_b =
  1665. container_of(timer, struct cfs_bandwidth, period_timer);
  1666. ktime_t now;
  1667. int overrun;
  1668. int idle = 0;
  1669. int count = 0;
  1670. for (;;) {
  1671. now = hrtimer_cb_get_time(timer);
  1672. overrun = hrtimer_forward(timer, now, cfs_b->period);
  1673. if (!overrun)
  1674. break;
  1675. if (++count > 3) {
  1676. u64 new, old = ktime_to_ns(cfs_b->period);
  1677. new = (old * 147) / 128; /* ~115% */
  1678. new = min(new, max_cfs_quota_period);
  1679. cfs_b->period = ns_to_ktime(new);
  1680. /* since max is 1s, this is limited to 1e9^2, which fits in u64 */
  1681. cfs_b->quota *= new;
  1682. cfs_b->quota = div64_u64(cfs_b->quota, old);
  1683. pr_warn_ratelimited(
  1684. "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
  1685. smp_processor_id(),
  1686. div_u64(new, NSEC_PER_USEC),
  1687. div_u64(cfs_b->quota, NSEC_PER_USEC));
  1688. /* reset count so we don't come right back in here */
  1689. count = 0;
  1690. }
  1691. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  1692. }
  1693. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  1694. }
  1695. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1696. {
  1697. raw_spin_lock_init(&cfs_b->lock);
  1698. cfs_b->runtime = 0;
  1699. cfs_b->quota = RUNTIME_INF;
  1700. cfs_b->period = ns_to_ktime(default_cfs_period());
  1701. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  1702. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1703. cfs_b->period_timer.function = sched_cfs_period_timer;
  1704. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1705. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  1706. }
  1707. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1708. {
  1709. cfs_rq->runtime_enabled = 0;
  1710. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  1711. }
  1712. /* requires cfs_b->lock, may release to reprogram timer */
  1713. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1714. {
  1715. /*
  1716. * The timer may be active because we're trying to set a new bandwidth
  1717. * period or because we're racing with the tear-down path
  1718. * (timer_active==0 becomes visible before the hrtimer call-back
  1719. * terminates). In either case we ensure that it's re-programmed
  1720. */
  1721. while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
  1722. hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
  1723. /* bounce the lock to allow do_sched_cfs_period_timer to run */
  1724. raw_spin_unlock(&cfs_b->lock);
  1725. cpu_relax();
  1726. raw_spin_lock(&cfs_b->lock);
  1727. /* if someone else restarted the timer then we're done */
  1728. if (cfs_b->timer_active)
  1729. return;
  1730. }
  1731. cfs_b->timer_active = 1;
  1732. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  1733. }
  1734. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1735. {
  1736. hrtimer_cancel(&cfs_b->period_timer);
  1737. hrtimer_cancel(&cfs_b->slack_timer);
  1738. }
  1739. static void unthrottle_offline_cfs_rqs(struct rq *rq)
  1740. {
  1741. struct cfs_rq *cfs_rq;
  1742. for_each_leaf_cfs_rq(rq, cfs_rq) {
  1743. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1744. if (!cfs_rq->runtime_enabled)
  1745. continue;
  1746. /*
  1747. * clock_task is not advancing so we just need to make sure
  1748. * there's some valid quota amount
  1749. */
  1750. cfs_rq->runtime_remaining = cfs_b->quota;
  1751. if (cfs_rq_throttled(cfs_rq))
  1752. unthrottle_cfs_rq(cfs_rq);
  1753. }
  1754. }
  1755. #else /* CONFIG_CFS_BANDWIDTH */
  1756. static __always_inline
  1757. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
  1758. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1759. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  1760. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1761. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1762. {
  1763. return 0;
  1764. }
  1765. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1766. {
  1767. return 0;
  1768. }
  1769. static inline int throttled_lb_pair(struct task_group *tg,
  1770. int src_cpu, int dest_cpu)
  1771. {
  1772. return 0;
  1773. }
  1774. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1775. #ifdef CONFIG_FAIR_GROUP_SCHED
  1776. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1777. #endif
  1778. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1779. {
  1780. return NULL;
  1781. }
  1782. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1783. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  1784. #endif /* CONFIG_CFS_BANDWIDTH */
  1785. /**************************************************
  1786. * CFS operations on tasks:
  1787. */
  1788. #ifdef CONFIG_SCHED_HRTICK
  1789. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1790. {
  1791. struct sched_entity *se = &p->se;
  1792. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1793. WARN_ON(task_rq(p) != rq);
  1794. if (rq->cfs.h_nr_running > 1) {
  1795. u64 slice = sched_slice(cfs_rq, se);
  1796. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1797. s64 delta = slice - ran;
  1798. if (delta < 0) {
  1799. if (rq->curr == p)
  1800. resched_task(p);
  1801. return;
  1802. }
  1803. /*
  1804. * Don't schedule slices shorter than 10000ns, that just
  1805. * doesn't make sense. Rely on vruntime for fairness.
  1806. */
  1807. if (rq->curr != p)
  1808. delta = max_t(s64, 10000LL, delta);
  1809. hrtick_start(rq, delta);
  1810. }
  1811. }
  1812. /*
  1813. * called from enqueue/dequeue and updates the hrtick when the
  1814. * current task is from our class.
  1815. */
  1816. static void hrtick_update(struct rq *rq)
  1817. {
  1818. struct task_struct *curr = rq->curr;
  1819. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  1820. return;
  1821. hrtick_start_fair(rq, curr);
  1822. }
  1823. #else /* !CONFIG_SCHED_HRTICK */
  1824. static inline void
  1825. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1826. {
  1827. }
  1828. static inline void hrtick_update(struct rq *rq)
  1829. {
  1830. }
  1831. #endif
  1832. /*
  1833. * The enqueue_task method is called before nr_running is
  1834. * increased. Here we update the fair scheduling stats and
  1835. * then put the task into the rbtree:
  1836. */
  1837. static void
  1838. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1839. {
  1840. struct cfs_rq *cfs_rq;
  1841. struct sched_entity *se = &p->se;
  1842. for_each_sched_entity(se) {
  1843. if (se->on_rq)
  1844. break;
  1845. cfs_rq = cfs_rq_of(se);
  1846. enqueue_entity(cfs_rq, se, flags);
  1847. /*
  1848. * end evaluation on encountering a throttled cfs_rq
  1849. *
  1850. * note: in the case of encountering a throttled cfs_rq we will
  1851. * post the final h_nr_running increment below.
  1852. */
  1853. if (cfs_rq_throttled(cfs_rq))
  1854. break;
  1855. cfs_rq->h_nr_running++;
  1856. flags = ENQUEUE_WAKEUP;
  1857. }
  1858. for_each_sched_entity(se) {
  1859. cfs_rq = cfs_rq_of(se);
  1860. cfs_rq->h_nr_running++;
  1861. if (cfs_rq_throttled(cfs_rq))
  1862. break;
  1863. update_cfs_load(cfs_rq, 0);
  1864. update_cfs_shares(cfs_rq);
  1865. }
  1866. if (!se)
  1867. inc_nr_running(rq);
  1868. hrtick_update(rq);
  1869. }
  1870. static void set_next_buddy(struct sched_entity *se);
  1871. /*
  1872. * The dequeue_task method is called before nr_running is
  1873. * decreased. We remove the task from the rbtree and
  1874. * update the fair scheduling stats:
  1875. */
  1876. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1877. {
  1878. struct cfs_rq *cfs_rq;
  1879. struct sched_entity *se = &p->se;
  1880. int task_sleep = flags & DEQUEUE_SLEEP;
  1881. for_each_sched_entity(se) {
  1882. cfs_rq = cfs_rq_of(se);
  1883. dequeue_entity(cfs_rq, se, flags);
  1884. /*
  1885. * end evaluation on encountering a throttled cfs_rq
  1886. *
  1887. * note: in the case of encountering a throttled cfs_rq we will
  1888. * post the final h_nr_running decrement below.
  1889. */
  1890. if (cfs_rq_throttled(cfs_rq))
  1891. break;
  1892. cfs_rq->h_nr_running--;
  1893. /* Don't dequeue parent if it has other entities besides us */
  1894. if (cfs_rq->load.weight) {
  1895. /*
  1896. * Bias pick_next to pick a task from this cfs_rq, as
  1897. * p is sleeping when it is within its sched_slice.
  1898. */
  1899. if (task_sleep && parent_entity(se))
  1900. set_next_buddy(parent_entity(se));
  1901. /* avoid re-evaluating load for this entity */
  1902. se = parent_entity(se);
  1903. break;
  1904. }
  1905. flags |= DEQUEUE_SLEEP;
  1906. }
  1907. for_each_sched_entity(se) {
  1908. cfs_rq = cfs_rq_of(se);
  1909. cfs_rq->h_nr_running--;
  1910. if (cfs_rq_throttled(cfs_rq))
  1911. break;
  1912. update_cfs_load(cfs_rq, 0);
  1913. update_cfs_shares(cfs_rq);
  1914. }
  1915. if (!se)
  1916. dec_nr_running(rq);
  1917. hrtick_update(rq);
  1918. }
  1919. #ifdef CONFIG_SMP
  1920. /* Used instead of source_load when we know the type == 0 */
  1921. static unsigned long weighted_cpuload(const int cpu)
  1922. {
  1923. return cpu_rq(cpu)->load.weight;
  1924. }
  1925. /*
  1926. * Return a low guess at the load of a migration-source cpu weighted
  1927. * according to the scheduling class and "nice" value.
  1928. *
  1929. * We want to under-estimate the load of migration sources, to
  1930. * balance conservatively.
  1931. */
  1932. static unsigned long source_load(int cpu, int type)
  1933. {
  1934. struct rq *rq = cpu_rq(cpu);
  1935. unsigned long total = weighted_cpuload(cpu);
  1936. if (type == 0 || !sched_feat(LB_BIAS))
  1937. return total;
  1938. return min(rq->cpu_load[type-1], total);
  1939. }
  1940. /*
  1941. * Return a high guess at the load of a migration-target cpu weighted
  1942. * according to the scheduling class and "nice" value.
  1943. */
  1944. static unsigned long target_load(int cpu, int type)
  1945. {
  1946. struct rq *rq = cpu_rq(cpu);
  1947. unsigned long total = weighted_cpuload(cpu);
  1948. if (type == 0 || !sched_feat(LB_BIAS))
  1949. return total;
  1950. return max(rq->cpu_load[type-1], total);
  1951. }
  1952. static unsigned long power_of(int cpu)
  1953. {
  1954. return cpu_rq(cpu)->cpu_power;
  1955. }
  1956. static unsigned long cpu_avg_load_per_task(int cpu)
  1957. {
  1958. struct rq *rq = cpu_rq(cpu);
  1959. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1960. if (nr_running)
  1961. return rq->load.weight / nr_running;
  1962. return 0;
  1963. }
  1964. static void record_wakee(struct task_struct *p)
  1965. {
  1966. /*
  1967. * Rough decay (wiping) for cost saving, don't worry
  1968. * about the boundary, really active task won't care
  1969. * about the loss.
  1970. */
  1971. if (jiffies > current->wakee_flip_decay_ts + HZ) {
  1972. current->wakee_flips = 0;
  1973. current->wakee_flip_decay_ts = jiffies;
  1974. }
  1975. if (current->last_wakee != p) {
  1976. current->last_wakee = p;
  1977. current->wakee_flips++;
  1978. }
  1979. }
  1980. static void task_waking_fair(struct task_struct *p)
  1981. {
  1982. struct sched_entity *se = &p->se;
  1983. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1984. u64 min_vruntime;
  1985. #ifndef CONFIG_64BIT
  1986. u64 min_vruntime_copy;
  1987. do {
  1988. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1989. smp_rmb();
  1990. min_vruntime = cfs_rq->min_vruntime;
  1991. } while (min_vruntime != min_vruntime_copy);
  1992. #else
  1993. min_vruntime = cfs_rq->min_vruntime;
  1994. #endif
  1995. se->vruntime -= min_vruntime;
  1996. record_wakee(p);
  1997. }
  1998. #ifdef CONFIG_FAIR_GROUP_SCHED
  1999. /*
  2000. * effective_load() calculates the load change as seen from the root_task_group
  2001. *
  2002. * Adding load to a group doesn't make a group heavier, but can cause movement
  2003. * of group shares between cpus. Assuming the shares were perfectly aligned one
  2004. * can calculate the shift in shares.
  2005. *
  2006. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  2007. * on this @cpu and results in a total addition (subtraction) of @wg to the
  2008. * total group weight.
  2009. *
  2010. * Given a runqueue weight distribution (rw_i) we can compute a shares
  2011. * distribution (s_i) using:
  2012. *
  2013. * s_i = rw_i / \Sum rw_j (1)
  2014. *
  2015. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  2016. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  2017. * shares distribution (s_i):
  2018. *
  2019. * rw_i = { 2, 4, 1, 0 }
  2020. * s_i = { 2/7, 4/7, 1/7, 0 }
  2021. *
  2022. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  2023. * task used to run on and the CPU the waker is running on), we need to
  2024. * compute the effect of waking a task on either CPU and, in case of a sync
  2025. * wakeup, compute the effect of the current task going to sleep.
  2026. *
  2027. * So for a change of @wl to the local @cpu with an overall group weight change
  2028. * of @wl we can compute the new shares distribution (s'_i) using:
  2029. *
  2030. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  2031. *
  2032. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  2033. * differences in waking a task to CPU 0. The additional task changes the
  2034. * weight and shares distributions like:
  2035. *
  2036. * rw'_i = { 3, 4, 1, 0 }
  2037. * s'_i = { 3/8, 4/8, 1/8, 0 }
  2038. *
  2039. * We can then compute the difference in effective weight by using:
  2040. *
  2041. * dw_i = S * (s'_i - s_i) (3)
  2042. *
  2043. * Where 'S' is the group weight as seen by its parent.
  2044. *
  2045. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  2046. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  2047. * 4/7) times the weight of the group.
  2048. */
  2049. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  2050. {
  2051. struct sched_entity *se = tg->se[cpu];
  2052. if (!tg->parent) /* the trivial, non-cgroup case */
  2053. return wl;
  2054. for_each_sched_entity(se) {
  2055. long w, W;
  2056. tg = se->my_q->tg;
  2057. /*
  2058. * W = @wg + \Sum rw_j
  2059. */
  2060. W = wg + calc_tg_weight(tg, se->my_q);
  2061. /*
  2062. * w = rw_i + @wl
  2063. */
  2064. w = se->my_q->load.weight + wl;
  2065. /*
  2066. * wl = S * s'_i; see (2)
  2067. */
  2068. if (W > 0 && w < W)
  2069. wl = (w * tg->shares) / W;
  2070. else
  2071. wl = tg->shares;
  2072. /*
  2073. * Per the above, wl is the new se->load.weight value; since
  2074. * those are clipped to [MIN_SHARES, ...) do so now. See
  2075. * calc_cfs_shares().
  2076. */
  2077. if (wl < MIN_SHARES)
  2078. wl = MIN_SHARES;
  2079. /*
  2080. * wl = dw_i = S * (s'_i - s_i); see (3)
  2081. */
  2082. wl -= se->load.weight;
  2083. /*
  2084. * Recursively apply this logic to all parent groups to compute
  2085. * the final effective load change on the root group. Since
  2086. * only the @tg group gets extra weight, all parent groups can
  2087. * only redistribute existing shares. @wl is the shift in shares
  2088. * resulting from this level per the above.
  2089. */
  2090. wg = 0;
  2091. }
  2092. return wl;
  2093. }
  2094. #else
  2095. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  2096. unsigned long wl, unsigned long wg)
  2097. {
  2098. return wl;
  2099. }
  2100. #endif
  2101. static int wake_wide(struct task_struct *p)
  2102. {
  2103. int factor = this_cpu_read(sd_llc_size);
  2104. /*
  2105. * Yeah, it's the switching-frequency, could means many wakee or
  2106. * rapidly switch, use factor here will just help to automatically
  2107. * adjust the loose-degree, so bigger node will lead to more pull.
  2108. */
  2109. if (p->wakee_flips > factor) {
  2110. /*
  2111. * wakee is somewhat hot, it needs certain amount of cpu
  2112. * resource, so if waker is far more hot, prefer to leave
  2113. * it alone.
  2114. */
  2115. if (current->wakee_flips > (factor * p->wakee_flips))
  2116. return 1;
  2117. }
  2118. return 0;
  2119. }
  2120. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  2121. {
  2122. s64 this_load, load;
  2123. int idx, this_cpu, prev_cpu;
  2124. unsigned long tl_per_task;
  2125. struct task_group *tg;
  2126. unsigned long weight;
  2127. int balanced;
  2128. /*
  2129. * If we wake multiple tasks be careful to not bounce
  2130. * ourselves around too much.
  2131. */
  2132. if (wake_wide(p))
  2133. return 0;
  2134. idx = sd->wake_idx;
  2135. this_cpu = smp_processor_id();
  2136. prev_cpu = task_cpu(p);
  2137. load = source_load(prev_cpu, idx);
  2138. this_load = target_load(this_cpu, idx);
  2139. /*
  2140. * If sync wakeup then subtract the (maximum possible)
  2141. * effect of the currently running task from the load
  2142. * of the current CPU:
  2143. */
  2144. if (sync) {
  2145. tg = task_group(current);
  2146. weight = current->se.load.weight;
  2147. this_load += effective_load(tg, this_cpu, -weight, -weight);
  2148. load += effective_load(tg, prev_cpu, 0, -weight);
  2149. }
  2150. tg = task_group(p);
  2151. weight = p->se.load.weight;
  2152. /*
  2153. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  2154. * due to the sync cause above having dropped this_load to 0, we'll
  2155. * always have an imbalance, but there's really nothing you can do
  2156. * about that, so that's good too.
  2157. *
  2158. * Otherwise check if either cpus are near enough in load to allow this
  2159. * task to be woken on this_cpu.
  2160. */
  2161. if (this_load > 0) {
  2162. s64 this_eff_load, prev_eff_load;
  2163. this_eff_load = 100;
  2164. this_eff_load *= power_of(prev_cpu);
  2165. this_eff_load *= this_load +
  2166. effective_load(tg, this_cpu, weight, weight);
  2167. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  2168. prev_eff_load *= power_of(this_cpu);
  2169. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  2170. balanced = this_eff_load <= prev_eff_load;
  2171. } else
  2172. balanced = true;
  2173. /*
  2174. * If the currently running task will sleep within
  2175. * a reasonable amount of time then attract this newly
  2176. * woken task:
  2177. */
  2178. if (sync && balanced)
  2179. return 1;
  2180. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  2181. tl_per_task = cpu_avg_load_per_task(this_cpu);
  2182. if (balanced ||
  2183. (this_load <= load &&
  2184. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  2185. /*
  2186. * This domain has SD_WAKE_AFFINE and
  2187. * p is cache cold in this domain, and
  2188. * there is no bad imbalance.
  2189. */
  2190. schedstat_inc(sd, ttwu_move_affine);
  2191. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  2192. return 1;
  2193. }
  2194. return 0;
  2195. }
  2196. /*
  2197. * find_idlest_group finds and returns the least busy CPU group within the
  2198. * domain.
  2199. */
  2200. static struct sched_group *
  2201. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  2202. int this_cpu, int load_idx)
  2203. {
  2204. struct sched_group *idlest = NULL, *group = sd->groups;
  2205. unsigned long min_load = ULONG_MAX, this_load = 0;
  2206. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2207. do {
  2208. unsigned long load, avg_load;
  2209. int local_group;
  2210. int i;
  2211. /* Skip over this group if it has no CPUs allowed */
  2212. if (!cpumask_intersects(sched_group_cpus(group),
  2213. tsk_cpus_allowed(p)))
  2214. continue;
  2215. local_group = cpumask_test_cpu(this_cpu,
  2216. sched_group_cpus(group));
  2217. /* Tally up the load of all CPUs in the group */
  2218. avg_load = 0;
  2219. for_each_cpu(i, sched_group_cpus(group)) {
  2220. /* Bias balancing toward cpus of our domain */
  2221. if (local_group)
  2222. load = source_load(i, load_idx);
  2223. else
  2224. load = target_load(i, load_idx);
  2225. avg_load += load;
  2226. }
  2227. /* Adjust by relative CPU power of the group */
  2228. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  2229. if (local_group) {
  2230. this_load = avg_load;
  2231. } else if (avg_load < min_load) {
  2232. min_load = avg_load;
  2233. idlest = group;
  2234. }
  2235. } while (group = group->next, group != sd->groups);
  2236. if (!idlest || 100*this_load < imbalance*min_load)
  2237. return NULL;
  2238. return idlest;
  2239. }
  2240. /*
  2241. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2242. */
  2243. static int
  2244. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  2245. {
  2246. unsigned long load, min_load = ULONG_MAX;
  2247. int idlest = -1;
  2248. int i;
  2249. /* Check if we have any choice: */
  2250. if (group->group_weight == 1)
  2251. return cpumask_first(sched_group_cpus(group));
  2252. /* Traverse only the allowed CPUs */
  2253. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  2254. load = weighted_cpuload(i);
  2255. if (load < min_load || (load == min_load && i == this_cpu)) {
  2256. min_load = load;
  2257. idlest = i;
  2258. }
  2259. }
  2260. return idlest;
  2261. }
  2262. /*
  2263. * Try and locate an idle CPU in the sched_domain.
  2264. */
  2265. static int select_idle_sibling(struct task_struct *p, int target)
  2266. {
  2267. int cpu = smp_processor_id();
  2268. int prev_cpu = task_cpu(p);
  2269. struct sched_domain *sd;
  2270. struct sched_group *sg;
  2271. int i;
  2272. /*
  2273. * If the task is going to be woken-up on this cpu and if it is
  2274. * already idle, then it is the right target.
  2275. */
  2276. if (target == cpu && idle_cpu(cpu))
  2277. return cpu;
  2278. /*
  2279. * If the task is going to be woken-up on the cpu where it previously
  2280. * ran and if it is currently idle, then it the right target.
  2281. */
  2282. if (target == prev_cpu && idle_cpu(prev_cpu))
  2283. return prev_cpu;
  2284. if (!sysctl_sched_wake_to_idle &&
  2285. !(current->flags & PF_WAKE_UP_IDLE) &&
  2286. !(p->flags & PF_WAKE_UP_IDLE))
  2287. return target;
  2288. /*
  2289. * Otherwise, iterate the domains and find an elegible idle cpu.
  2290. */
  2291. sd = rcu_dereference(per_cpu(sd_llc, target));
  2292. for_each_lower_domain(sd) {
  2293. sg = sd->groups;
  2294. do {
  2295. if (!cpumask_intersects(sched_group_cpus(sg),
  2296. tsk_cpus_allowed(p)))
  2297. goto next;
  2298. for_each_cpu(i, sched_group_cpus(sg)) {
  2299. if (!idle_cpu(i))
  2300. goto next;
  2301. }
  2302. target = cpumask_first_and(sched_group_cpus(sg),
  2303. tsk_cpus_allowed(p));
  2304. goto done;
  2305. next:
  2306. sg = sg->next;
  2307. } while (sg != sd->groups);
  2308. }
  2309. done:
  2310. return target;
  2311. }
  2312. /*
  2313. * sched_balance_self: balance the current task (running on cpu) in domains
  2314. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2315. * SD_BALANCE_EXEC.
  2316. *
  2317. * Balance, ie. select the least loaded group.
  2318. *
  2319. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2320. *
  2321. * preempt must be disabled.
  2322. */
  2323. static int
  2324. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  2325. {
  2326. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  2327. int cpu = smp_processor_id();
  2328. int prev_cpu = task_cpu(p);
  2329. int new_cpu = cpu;
  2330. int want_affine = 0;
  2331. int want_sd = 1;
  2332. int sync = wake_flags & WF_SYNC;
  2333. if (p->nr_cpus_allowed == 1)
  2334. return prev_cpu;
  2335. if (sd_flag & SD_BALANCE_WAKE) {
  2336. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2337. want_affine = 1;
  2338. new_cpu = prev_cpu;
  2339. }
  2340. rcu_read_lock();
  2341. for_each_domain(cpu, tmp) {
  2342. if (!(tmp->flags & SD_LOAD_BALANCE))
  2343. continue;
  2344. /*
  2345. * If power savings logic is enabled for a domain, see if we
  2346. * are not overloaded, if so, don't balance wider.
  2347. */
  2348. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  2349. unsigned long power = 0;
  2350. unsigned long nr_running = 0;
  2351. unsigned long capacity;
  2352. int i;
  2353. for_each_cpu(i, sched_domain_span(tmp)) {
  2354. power += power_of(i);
  2355. nr_running += cpu_rq(i)->cfs.nr_running;
  2356. }
  2357. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  2358. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  2359. nr_running /= 2;
  2360. if (nr_running < capacity)
  2361. want_sd = 0;
  2362. }
  2363. /*
  2364. * If both cpu and prev_cpu are part of this domain,
  2365. * cpu is a valid SD_WAKE_AFFINE target.
  2366. */
  2367. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2368. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2369. affine_sd = tmp;
  2370. want_affine = 0;
  2371. }
  2372. if (!want_sd && !want_affine)
  2373. break;
  2374. if (!(tmp->flags & sd_flag))
  2375. continue;
  2376. if (want_sd)
  2377. sd = tmp;
  2378. }
  2379. if (affine_sd) {
  2380. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  2381. prev_cpu = cpu;
  2382. new_cpu = select_idle_sibling(p, prev_cpu);
  2383. goto unlock;
  2384. }
  2385. while (sd) {
  2386. int load_idx = sd->forkexec_idx;
  2387. struct sched_group *group;
  2388. int weight;
  2389. if (!(sd->flags & sd_flag)) {
  2390. sd = sd->child;
  2391. continue;
  2392. }
  2393. if (sd_flag & SD_BALANCE_WAKE)
  2394. load_idx = sd->wake_idx;
  2395. group = find_idlest_group(sd, p, cpu, load_idx);
  2396. if (!group) {
  2397. sd = sd->child;
  2398. continue;
  2399. }
  2400. new_cpu = find_idlest_cpu(group, p, cpu);
  2401. if (new_cpu == -1 || new_cpu == cpu) {
  2402. /* Now try balancing at a lower domain level of cpu */
  2403. sd = sd->child;
  2404. continue;
  2405. }
  2406. /* Now try balancing at a lower domain level of new_cpu */
  2407. cpu = new_cpu;
  2408. weight = sd->span_weight;
  2409. sd = NULL;
  2410. for_each_domain(cpu, tmp) {
  2411. if (weight <= tmp->span_weight)
  2412. break;
  2413. if (tmp->flags & sd_flag)
  2414. sd = tmp;
  2415. }
  2416. /* while loop will break here if sd == NULL */
  2417. }
  2418. unlock:
  2419. rcu_read_unlock();
  2420. return new_cpu;
  2421. }
  2422. #endif /* CONFIG_SMP */
  2423. static unsigned long
  2424. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2425. {
  2426. unsigned long gran = sysctl_sched_wakeup_granularity;
  2427. /*
  2428. * Since its curr running now, convert the gran from real-time
  2429. * to virtual-time in his units.
  2430. *
  2431. * By using 'se' instead of 'curr' we penalize light tasks, so
  2432. * they get preempted easier. That is, if 'se' < 'curr' then
  2433. * the resulting gran will be larger, therefore penalizing the
  2434. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2435. * be smaller, again penalizing the lighter task.
  2436. *
  2437. * This is especially important for buddies when the leftmost
  2438. * task is higher priority than the buddy.
  2439. */
  2440. return calc_delta_fair(gran, se);
  2441. }
  2442. /*
  2443. * Should 'se' preempt 'curr'.
  2444. *
  2445. * |s1
  2446. * |s2
  2447. * |s3
  2448. * g
  2449. * |<--->|c
  2450. *
  2451. * w(c, s1) = -1
  2452. * w(c, s2) = 0
  2453. * w(c, s3) = 1
  2454. *
  2455. */
  2456. static int
  2457. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2458. {
  2459. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2460. if (vdiff <= 0)
  2461. return -1;
  2462. gran = wakeup_gran(curr, se);
  2463. if (vdiff > gran)
  2464. return 1;
  2465. return 0;
  2466. }
  2467. static void set_last_buddy(struct sched_entity *se)
  2468. {
  2469. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2470. return;
  2471. for_each_sched_entity(se)
  2472. cfs_rq_of(se)->last = se;
  2473. }
  2474. static void set_next_buddy(struct sched_entity *se)
  2475. {
  2476. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2477. return;
  2478. for_each_sched_entity(se)
  2479. cfs_rq_of(se)->next = se;
  2480. }
  2481. static void set_skip_buddy(struct sched_entity *se)
  2482. {
  2483. for_each_sched_entity(se)
  2484. cfs_rq_of(se)->skip = se;
  2485. }
  2486. /*
  2487. * Preempt the current task with a newly woken task if needed:
  2488. */
  2489. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2490. {
  2491. struct task_struct *curr = rq->curr;
  2492. struct sched_entity *se = &curr->se, *pse = &p->se;
  2493. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2494. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2495. int next_buddy_marked = 0;
  2496. if (unlikely(se == pse))
  2497. return;
  2498. /*
  2499. * This is possible from callers such as move_task(), in which we
  2500. * unconditionally check_prempt_curr() after an enqueue (which may have
  2501. * lead to a throttle). This both saves work and prevents false
  2502. * next-buddy nomination below.
  2503. */
  2504. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2505. return;
  2506. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2507. set_next_buddy(pse);
  2508. next_buddy_marked = 1;
  2509. }
  2510. /*
  2511. * We can come here with TIF_NEED_RESCHED already set from new task
  2512. * wake up path.
  2513. *
  2514. * Note: this also catches the edge-case of curr being in a throttled
  2515. * group (e.g. via set_curr_task), since update_curr() (in the
  2516. * enqueue of curr) will have resulted in resched being set. This
  2517. * prevents us from potentially nominating it as a false LAST_BUDDY
  2518. * below.
  2519. */
  2520. if (test_tsk_need_resched(curr))
  2521. return;
  2522. /* Idle tasks are by definition preempted by non-idle tasks. */
  2523. if (unlikely(curr->policy == SCHED_IDLE) &&
  2524. likely(p->policy != SCHED_IDLE))
  2525. goto preempt;
  2526. /*
  2527. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2528. * is driven by the tick):
  2529. */
  2530. if (unlikely(p->policy != SCHED_NORMAL))
  2531. return;
  2532. find_matching_se(&se, &pse);
  2533. update_curr(cfs_rq_of(se));
  2534. BUG_ON(!pse);
  2535. if (wakeup_preempt_entity(se, pse) == 1) {
  2536. /*
  2537. * Bias pick_next to pick the sched entity that is
  2538. * triggering this preemption.
  2539. */
  2540. if (!next_buddy_marked)
  2541. set_next_buddy(pse);
  2542. goto preempt;
  2543. }
  2544. return;
  2545. preempt:
  2546. resched_task(curr);
  2547. /*
  2548. * Only set the backward buddy when the current task is still
  2549. * on the rq. This can happen when a wakeup gets interleaved
  2550. * with schedule on the ->pre_schedule() or idle_balance()
  2551. * point, either of which can * drop the rq lock.
  2552. *
  2553. * Also, during early boot the idle thread is in the fair class,
  2554. * for obvious reasons its a bad idea to schedule back to it.
  2555. */
  2556. if (unlikely(!se->on_rq || curr == rq->idle))
  2557. return;
  2558. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  2559. set_last_buddy(se);
  2560. }
  2561. static struct task_struct *pick_next_task_fair(struct rq *rq)
  2562. {
  2563. struct task_struct *p;
  2564. struct cfs_rq *cfs_rq = &rq->cfs;
  2565. struct sched_entity *se;
  2566. if (!cfs_rq->nr_running)
  2567. return NULL;
  2568. do {
  2569. se = pick_next_entity(cfs_rq);
  2570. set_next_entity(cfs_rq, se);
  2571. cfs_rq = group_cfs_rq(se);
  2572. } while (cfs_rq);
  2573. p = task_of(se);
  2574. if (hrtick_enabled(rq))
  2575. hrtick_start_fair(rq, p);
  2576. return p;
  2577. }
  2578. /*
  2579. * Account for a descheduled task:
  2580. */
  2581. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  2582. {
  2583. struct sched_entity *se = &prev->se;
  2584. struct cfs_rq *cfs_rq;
  2585. for_each_sched_entity(se) {
  2586. cfs_rq = cfs_rq_of(se);
  2587. put_prev_entity(cfs_rq, se);
  2588. }
  2589. }
  2590. /*
  2591. * sched_yield() is very simple
  2592. *
  2593. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  2594. */
  2595. static void yield_task_fair(struct rq *rq)
  2596. {
  2597. struct task_struct *curr = rq->curr;
  2598. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2599. struct sched_entity *se = &curr->se;
  2600. /*
  2601. * Are we the only task in the tree?
  2602. */
  2603. if (unlikely(rq->nr_running == 1))
  2604. return;
  2605. clear_buddies(cfs_rq, se);
  2606. if (curr->policy != SCHED_BATCH) {
  2607. update_rq_clock(rq);
  2608. /*
  2609. * Update run-time statistics of the 'current'.
  2610. */
  2611. update_curr(cfs_rq);
  2612. /*
  2613. * Tell update_rq_clock() that we've just updated,
  2614. * so we don't do microscopic update in schedule()
  2615. * and double the fastpath cost.
  2616. */
  2617. rq->skip_clock_update = 1;
  2618. }
  2619. set_skip_buddy(se);
  2620. }
  2621. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  2622. {
  2623. struct sched_entity *se = &p->se;
  2624. /* throttled hierarchies are not runnable */
  2625. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  2626. return false;
  2627. /* Tell the scheduler that we'd really like pse to run next. */
  2628. set_next_buddy(se);
  2629. yield_task_fair(rq);
  2630. return true;
  2631. }
  2632. #ifdef CONFIG_SMP
  2633. /**************************************************
  2634. * Fair scheduling class load-balancing methods:
  2635. */
  2636. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  2637. #define LBF_ALL_PINNED 0x01
  2638. #define LBF_NEED_BREAK 0x02
  2639. struct lb_env {
  2640. struct sched_domain *sd;
  2641. int src_cpu;
  2642. struct rq *src_rq;
  2643. int dst_cpu;
  2644. struct rq *dst_rq;
  2645. enum cpu_idle_type idle;
  2646. long load_move;
  2647. unsigned int flags;
  2648. unsigned int loop;
  2649. unsigned int loop_break;
  2650. unsigned int loop_max;
  2651. };
  2652. static DEFINE_PER_CPU(bool, dbs_boost_needed);
  2653. /*
  2654. * move_task - move a task from one runqueue to another runqueue.
  2655. * Both runqueues must be locked.
  2656. */
  2657. static void move_task(struct task_struct *p, struct lb_env *env)
  2658. {
  2659. deactivate_task(env->src_rq, p, 0);
  2660. set_task_cpu(p, env->dst_cpu);
  2661. activate_task(env->dst_rq, p, 0);
  2662. check_preempt_curr(env->dst_rq, p, 0);
  2663. if (task_notify_on_migrate(p))
  2664. per_cpu(dbs_boost_needed, env->dst_cpu) = true;
  2665. }
  2666. /*
  2667. * Is this task likely cache-hot:
  2668. */
  2669. static int
  2670. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  2671. {
  2672. s64 delta;
  2673. if (p->sched_class != &fair_sched_class)
  2674. return 0;
  2675. if (unlikely(p->policy == SCHED_IDLE))
  2676. return 0;
  2677. /*
  2678. * Buddy candidates are cache hot:
  2679. */
  2680. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  2681. (&p->se == cfs_rq_of(&p->se)->next ||
  2682. &p->se == cfs_rq_of(&p->se)->last))
  2683. return 1;
  2684. if (sysctl_sched_migration_cost == -1)
  2685. return 1;
  2686. if (sysctl_sched_migration_cost == 0)
  2687. return 0;
  2688. delta = now - p->se.exec_start;
  2689. return delta < (s64)sysctl_sched_migration_cost;
  2690. }
  2691. /*
  2692. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2693. */
  2694. static
  2695. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  2696. {
  2697. int tsk_cache_hot = 0;
  2698. /*
  2699. * We do not migrate tasks that are:
  2700. * 1) running (obviously), or
  2701. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2702. * 3) are cache-hot on their current CPU.
  2703. */
  2704. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  2705. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  2706. return 0;
  2707. }
  2708. env->flags &= ~LBF_ALL_PINNED;
  2709. if (task_running(env->src_rq, p)) {
  2710. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  2711. return 0;
  2712. }
  2713. /*
  2714. * Aggressive migration if:
  2715. * 1) task is cache cold, or
  2716. * 2) too many balance attempts have failed.
  2717. */
  2718. tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
  2719. if (!tsk_cache_hot ||
  2720. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  2721. #ifdef CONFIG_SCHEDSTATS
  2722. if (tsk_cache_hot) {
  2723. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  2724. schedstat_inc(p, se.statistics.nr_forced_migrations);
  2725. }
  2726. #endif
  2727. return 1;
  2728. }
  2729. if (tsk_cache_hot) {
  2730. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  2731. return 0;
  2732. }
  2733. return 1;
  2734. }
  2735. /*
  2736. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2737. * part of active balancing operations within "domain".
  2738. * Returns 1 if successful and 0 otherwise.
  2739. *
  2740. * Called with both runqueues locked.
  2741. */
  2742. static int move_one_task(struct lb_env *env)
  2743. {
  2744. struct task_struct *p, *n;
  2745. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  2746. if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
  2747. continue;
  2748. if (!can_migrate_task(p, env))
  2749. continue;
  2750. move_task(p, env);
  2751. /*
  2752. * Right now, this is only the second place move_task()
  2753. * is called, so we can safely collect move_task()
  2754. * stats here rather than inside move_task().
  2755. */
  2756. schedstat_inc(env->sd, lb_gained[env->idle]);
  2757. return 1;
  2758. }
  2759. return 0;
  2760. }
  2761. static unsigned long task_h_load(struct task_struct *p);
  2762. static const unsigned int sched_nr_migrate_break = 32;
  2763. /*
  2764. * move_tasks tries to move up to load_move weighted load from busiest to
  2765. * this_rq, as part of a balancing operation within domain "sd".
  2766. * Returns 1 if successful and 0 otherwise.
  2767. *
  2768. * Called with both runqueues locked.
  2769. */
  2770. static int move_tasks(struct lb_env *env)
  2771. {
  2772. struct list_head *tasks = &env->src_rq->cfs_tasks;
  2773. struct task_struct *p;
  2774. unsigned long load;
  2775. int pulled = 0;
  2776. if (env->load_move <= 0)
  2777. return 0;
  2778. while (!list_empty(tasks)) {
  2779. p = list_first_entry(tasks, struct task_struct, se.group_node);
  2780. env->loop++;
  2781. /* We've more or less seen every task there is, call it quits */
  2782. if (env->loop > env->loop_max)
  2783. break;
  2784. /* take a breather every nr_migrate tasks */
  2785. if (env->loop > env->loop_break) {
  2786. env->loop_break += sched_nr_migrate_break;
  2787. env->flags |= LBF_NEED_BREAK;
  2788. break;
  2789. }
  2790. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  2791. goto next;
  2792. load = task_h_load(p);
  2793. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  2794. goto next;
  2795. if ((load / 2) > env->load_move)
  2796. goto next;
  2797. if (!can_migrate_task(p, env))
  2798. goto next;
  2799. move_task(p, env);
  2800. pulled++;
  2801. env->load_move -= load;
  2802. #ifdef CONFIG_PREEMPT
  2803. /*
  2804. * NEWIDLE balancing is a source of latency, so preemptible
  2805. * kernels will stop after the first task is pulled to minimize
  2806. * the critical section.
  2807. */
  2808. if (env->idle == CPU_NEWLY_IDLE)
  2809. break;
  2810. #endif
  2811. /*
  2812. * We only want to steal up to the prescribed amount of
  2813. * weighted load.
  2814. */
  2815. if (env->load_move <= 0)
  2816. break;
  2817. continue;
  2818. next:
  2819. list_move_tail(&p->se.group_node, tasks);
  2820. }
  2821. /*
  2822. * Right now, this is one of only two places move_task() is called,
  2823. * so we can safely collect move_task() stats here rather than
  2824. * inside move_task().
  2825. */
  2826. schedstat_add(env->sd, lb_gained[env->idle], pulled);
  2827. return pulled;
  2828. }
  2829. #ifdef CONFIG_FAIR_GROUP_SCHED
  2830. /*
  2831. * update tg->load_weight by folding this cpu's load_avg
  2832. */
  2833. static int update_shares_cpu(struct task_group *tg, int cpu)
  2834. {
  2835. struct cfs_rq *cfs_rq;
  2836. unsigned long flags;
  2837. struct rq *rq;
  2838. if (!tg->se[cpu])
  2839. return 0;
  2840. rq = cpu_rq(cpu);
  2841. cfs_rq = tg->cfs_rq[cpu];
  2842. raw_spin_lock_irqsave(&rq->lock, flags);
  2843. update_rq_clock(rq);
  2844. update_cfs_load(cfs_rq, 1);
  2845. /*
  2846. * We need to update shares after updating tg->load_weight in
  2847. * order to adjust the weight of groups with long running tasks.
  2848. */
  2849. update_cfs_shares(cfs_rq);
  2850. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2851. return 0;
  2852. }
  2853. static void update_shares(int cpu)
  2854. {
  2855. struct cfs_rq *cfs_rq;
  2856. struct rq *rq = cpu_rq(cpu);
  2857. rcu_read_lock();
  2858. /*
  2859. * Iterates the task_group tree in a bottom up fashion, see
  2860. * list_add_leaf_cfs_rq() for details.
  2861. */
  2862. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2863. /* throttled entities do not contribute to load */
  2864. if (throttled_hierarchy(cfs_rq))
  2865. continue;
  2866. update_shares_cpu(cfs_rq->tg, cpu);
  2867. }
  2868. rcu_read_unlock();
  2869. }
  2870. /*
  2871. * Compute the cpu's hierarchical load factor for each task group.
  2872. * This needs to be done in a top-down fashion because the load of a child
  2873. * group is a fraction of its parents load.
  2874. */
  2875. static int tg_load_down(struct task_group *tg, void *data)
  2876. {
  2877. unsigned long load;
  2878. long cpu = (long)data;
  2879. if (!tg->parent) {
  2880. load = cpu_rq(cpu)->load.weight;
  2881. } else {
  2882. load = tg->parent->cfs_rq[cpu]->h_load;
  2883. load *= tg->se[cpu]->load.weight;
  2884. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  2885. }
  2886. tg->cfs_rq[cpu]->h_load = load;
  2887. return 0;
  2888. }
  2889. static void update_h_load(long cpu)
  2890. {
  2891. rcu_read_lock();
  2892. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  2893. rcu_read_unlock();
  2894. }
  2895. static unsigned long task_h_load(struct task_struct *p)
  2896. {
  2897. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  2898. unsigned long load;
  2899. load = p->se.load.weight;
  2900. load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
  2901. return load;
  2902. }
  2903. #else
  2904. static inline void update_shares(int cpu)
  2905. {
  2906. }
  2907. static inline void update_h_load(long cpu)
  2908. {
  2909. }
  2910. static unsigned long task_h_load(struct task_struct *p)
  2911. {
  2912. return p->se.load.weight;
  2913. }
  2914. #endif
  2915. /********** Helpers for find_busiest_group ************************/
  2916. /*
  2917. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2918. * during load balancing.
  2919. */
  2920. struct sd_lb_stats {
  2921. struct sched_group *busiest; /* Busiest group in this sd */
  2922. struct sched_group *this; /* Local group in this sd */
  2923. unsigned long total_load; /* Total load of all groups in sd */
  2924. unsigned long total_pwr; /* Total power of all groups in sd */
  2925. unsigned long avg_load; /* Average load across all groups in sd */
  2926. /** Statistics of this group */
  2927. unsigned long this_load;
  2928. unsigned long this_load_per_task;
  2929. unsigned long this_nr_running;
  2930. unsigned long this_has_capacity;
  2931. unsigned int this_idle_cpus;
  2932. /* Statistics of the busiest group */
  2933. unsigned int busiest_idle_cpus;
  2934. unsigned long max_load;
  2935. unsigned long busiest_load_per_task;
  2936. unsigned long busiest_nr_running;
  2937. unsigned long busiest_group_capacity;
  2938. unsigned long busiest_has_capacity;
  2939. unsigned int busiest_group_weight;
  2940. int group_imb; /* Is there imbalance in this sd */
  2941. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2942. int power_savings_balance; /* Is powersave balance needed for this sd */
  2943. struct sched_group *group_min; /* Least loaded group in sd */
  2944. struct sched_group *group_leader; /* Group which relieves group_min */
  2945. unsigned long min_load_per_task; /* load_per_task in group_min */
  2946. unsigned long leader_nr_running; /* Nr running of group_leader */
  2947. unsigned long min_nr_running; /* Nr running of group_min */
  2948. #endif
  2949. };
  2950. /*
  2951. * sg_lb_stats - stats of a sched_group required for load_balancing
  2952. */
  2953. struct sg_lb_stats {
  2954. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2955. unsigned long group_load; /* Total load over the CPUs of the group */
  2956. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2957. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2958. unsigned long group_capacity;
  2959. unsigned long idle_cpus;
  2960. unsigned long group_weight;
  2961. int group_imb; /* Is there an imbalance in the group ? */
  2962. int group_has_capacity; /* Is there extra capacity in the group? */
  2963. };
  2964. /**
  2965. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2966. * @sd: The sched_domain whose load_idx is to be obtained.
  2967. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2968. */
  2969. static inline int get_sd_load_idx(struct sched_domain *sd,
  2970. enum cpu_idle_type idle)
  2971. {
  2972. int load_idx;
  2973. switch (idle) {
  2974. case CPU_NOT_IDLE:
  2975. load_idx = sd->busy_idx;
  2976. break;
  2977. case CPU_NEWLY_IDLE:
  2978. load_idx = sd->newidle_idx;
  2979. break;
  2980. default:
  2981. load_idx = sd->idle_idx;
  2982. break;
  2983. }
  2984. return load_idx;
  2985. }
  2986. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2987. /**
  2988. * init_sd_power_savings_stats - Initialize power savings statistics for
  2989. * the given sched_domain, during load balancing.
  2990. *
  2991. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2992. * @sds: Variable containing the statistics for sd.
  2993. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2994. */
  2995. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2996. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2997. {
  2998. /*
  2999. * Busy processors will not participate in power savings
  3000. * balance.
  3001. */
  3002. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  3003. sds->power_savings_balance = 0;
  3004. else {
  3005. sds->power_savings_balance = 1;
  3006. sds->min_nr_running = ULONG_MAX;
  3007. sds->leader_nr_running = 0;
  3008. }
  3009. }
  3010. /**
  3011. * update_sd_power_savings_stats - Update the power saving stats for a
  3012. * sched_domain while performing load balancing.
  3013. *
  3014. * @group: sched_group belonging to the sched_domain under consideration.
  3015. * @sds: Variable containing the statistics of the sched_domain
  3016. * @local_group: Does group contain the CPU for which we're performing
  3017. * load balancing ?
  3018. * @sgs: Variable containing the statistics of the group.
  3019. */
  3020. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3021. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3022. {
  3023. if (!sds->power_savings_balance)
  3024. return;
  3025. /*
  3026. * If the local group is idle or completely loaded
  3027. * no need to do power savings balance at this domain
  3028. */
  3029. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  3030. !sds->this_nr_running))
  3031. sds->power_savings_balance = 0;
  3032. /*
  3033. * If a group is already running at full capacity or idle,
  3034. * don't include that group in power savings calculations
  3035. */
  3036. if (!sds->power_savings_balance ||
  3037. sgs->sum_nr_running >= sgs->group_capacity ||
  3038. !sgs->sum_nr_running)
  3039. return;
  3040. /*
  3041. * Calculate the group which has the least non-idle load.
  3042. * This is the group from where we need to pick up the load
  3043. * for saving power
  3044. */
  3045. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3046. (sgs->sum_nr_running == sds->min_nr_running &&
  3047. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3048. sds->group_min = group;
  3049. sds->min_nr_running = sgs->sum_nr_running;
  3050. sds->min_load_per_task = sgs->sum_weighted_load /
  3051. sgs->sum_nr_running;
  3052. }
  3053. /*
  3054. * Calculate the group which is almost near its
  3055. * capacity but still has some space to pick up some load
  3056. * from other group and save more power
  3057. */
  3058. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3059. return;
  3060. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3061. (sgs->sum_nr_running == sds->leader_nr_running &&
  3062. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3063. sds->group_leader = group;
  3064. sds->leader_nr_running = sgs->sum_nr_running;
  3065. }
  3066. }
  3067. /**
  3068. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3069. * @sds: Variable containing the statistics of the sched_domain
  3070. * under consideration.
  3071. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3072. * @imbalance: Variable to store the imbalance.
  3073. *
  3074. * Description:
  3075. * Check if we have potential to perform some power-savings balance.
  3076. * If yes, set the busiest group to be the least loaded group in the
  3077. * sched_domain, so that it's CPUs can be put to idle.
  3078. *
  3079. * Returns 1 if there is potential to perform power-savings balance.
  3080. * Else returns 0.
  3081. */
  3082. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3083. int this_cpu, unsigned long *imbalance)
  3084. {
  3085. if (!sds->power_savings_balance)
  3086. return 0;
  3087. if (sds->this != sds->group_leader ||
  3088. sds->group_leader == sds->group_min)
  3089. return 0;
  3090. *imbalance = sds->min_load_per_task;
  3091. sds->busiest = sds->group_min;
  3092. return 1;
  3093. }
  3094. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3095. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3096. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3097. {
  3098. return;
  3099. }
  3100. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3101. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3102. {
  3103. return;
  3104. }
  3105. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3106. int this_cpu, unsigned long *imbalance)
  3107. {
  3108. return 0;
  3109. }
  3110. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3111. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3112. {
  3113. return SCHED_POWER_SCALE;
  3114. }
  3115. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3116. {
  3117. return default_scale_freq_power(sd, cpu);
  3118. }
  3119. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3120. {
  3121. unsigned long weight = sd->span_weight;
  3122. unsigned long smt_gain = sd->smt_gain;
  3123. smt_gain /= weight;
  3124. return smt_gain;
  3125. }
  3126. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3127. {
  3128. return default_scale_smt_power(sd, cpu);
  3129. }
  3130. unsigned long scale_rt_power(int cpu)
  3131. {
  3132. struct rq *rq = cpu_rq(cpu);
  3133. u64 total, available, age_stamp, avg;
  3134. /*
  3135. * Since we're reading these variables without serialization make sure
  3136. * we read them once before doing sanity checks on them.
  3137. */
  3138. age_stamp = ACCESS_ONCE(rq->age_stamp);
  3139. avg = ACCESS_ONCE(rq->rt_avg);
  3140. total = sched_avg_period() + (rq->clock - age_stamp);
  3141. if (unlikely(total < avg)) {
  3142. /* Ensures that power won't end up being negative */
  3143. available = 0;
  3144. } else {
  3145. available = total - avg;
  3146. }
  3147. if (unlikely((s64)total < SCHED_POWER_SCALE))
  3148. total = SCHED_POWER_SCALE;
  3149. total >>= SCHED_POWER_SHIFT;
  3150. return div_u64(available, total);
  3151. }
  3152. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3153. {
  3154. unsigned long weight = sd->span_weight;
  3155. unsigned long power = SCHED_POWER_SCALE;
  3156. struct sched_group *sdg = sd->groups;
  3157. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3158. if (sched_feat(ARCH_POWER))
  3159. power *= arch_scale_smt_power(sd, cpu);
  3160. else
  3161. power *= default_scale_smt_power(sd, cpu);
  3162. power >>= SCHED_POWER_SHIFT;
  3163. }
  3164. sdg->sgp->power_orig = power;
  3165. if (sched_feat(ARCH_POWER))
  3166. power *= arch_scale_freq_power(sd, cpu);
  3167. else
  3168. power *= default_scale_freq_power(sd, cpu);
  3169. power >>= SCHED_POWER_SHIFT;
  3170. power *= scale_rt_power(cpu);
  3171. power >>= SCHED_POWER_SHIFT;
  3172. if (!power)
  3173. power = 1;
  3174. cpu_rq(cpu)->cpu_power = power;
  3175. sdg->sgp->power = power;
  3176. }
  3177. void update_group_power(struct sched_domain *sd, int cpu)
  3178. {
  3179. struct sched_domain *child = sd->child;
  3180. struct sched_group *group, *sdg = sd->groups;
  3181. unsigned long power;
  3182. unsigned long interval;
  3183. interval = msecs_to_jiffies(sd->balance_interval);
  3184. interval = clamp(interval, 1UL, max_load_balance_interval);
  3185. sdg->sgp->next_update = jiffies + interval;
  3186. if (!child) {
  3187. update_cpu_power(sd, cpu);
  3188. return;
  3189. }
  3190. power = 0;
  3191. if (child->flags & SD_OVERLAP) {
  3192. /*
  3193. * SD_OVERLAP domains cannot assume that child groups
  3194. * span the current group.
  3195. */
  3196. for_each_cpu(cpu, sched_group_cpus(sdg))
  3197. power += power_of(cpu);
  3198. } else {
  3199. /*
  3200. * !SD_OVERLAP domains can assume that child groups
  3201. * span the current group.
  3202. */
  3203. group = child->groups;
  3204. do {
  3205. power += group->sgp->power;
  3206. group = group->next;
  3207. } while (group != child->groups);
  3208. }
  3209. sdg->sgp->power_orig = sdg->sgp->power = power;
  3210. }
  3211. /*
  3212. * Try and fix up capacity for tiny siblings, this is needed when
  3213. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  3214. * which on its own isn't powerful enough.
  3215. *
  3216. * See update_sd_pick_busiest() and check_asym_packing().
  3217. */
  3218. static inline int
  3219. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  3220. {
  3221. /*
  3222. * Only siblings can have significantly less than SCHED_POWER_SCALE
  3223. */
  3224. if (!(sd->flags & SD_SHARE_CPUPOWER))
  3225. return 0;
  3226. /*
  3227. * If ~90% of the cpu_power is still there, we're good.
  3228. */
  3229. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  3230. return 1;
  3231. return 0;
  3232. }
  3233. /**
  3234. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3235. * @env: The load balancing environment.
  3236. * @group: sched_group whose statistics are to be updated.
  3237. * @this_cpu: Cpu for which load balance is currently performed.
  3238. * @idle: Idle status of this_cpu
  3239. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3240. * @local_group: Does group contain this_cpu.
  3241. * @balance: Should we balance.
  3242. * @sgs: variable to hold the statistics for this group.
  3243. */
  3244. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3245. struct sched_group *group, int this_cpu,
  3246. enum cpu_idle_type idle, int load_idx,
  3247. int local_group, const struct cpumask *cpus,
  3248. int *balance, struct sg_lb_stats *sgs)
  3249. {
  3250. unsigned long nr_running, max_nr_running, min_nr_running;
  3251. unsigned long load, max_cpu_load, min_cpu_load;
  3252. int i;
  3253. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3254. unsigned long avg_load_per_task = 0;
  3255. if (local_group)
  3256. balance_cpu = group_balance_cpu(group);
  3257. /* Tally up the load of all CPUs in the group */
  3258. max_cpu_load = 0;
  3259. min_cpu_load = ~0UL;
  3260. max_nr_running = 0;
  3261. min_nr_running = ~0UL;
  3262. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3263. struct rq *rq = cpu_rq(i);
  3264. nr_running = rq->nr_running;
  3265. /* Bias balancing toward cpus of our domain */
  3266. if (local_group) {
  3267. if (idle_cpu(i) && !first_idle_cpu &&
  3268. cpumask_test_cpu(i, sched_group_mask(group))) {
  3269. first_idle_cpu = 1;
  3270. balance_cpu = i;
  3271. }
  3272. load = target_load(i, load_idx);
  3273. } else {
  3274. load = source_load(i, load_idx);
  3275. if (load > max_cpu_load)
  3276. max_cpu_load = load;
  3277. if (min_cpu_load > load)
  3278. min_cpu_load = load;
  3279. if (nr_running > max_nr_running)
  3280. max_nr_running = nr_running;
  3281. if (min_nr_running > nr_running)
  3282. min_nr_running = nr_running;
  3283. }
  3284. sgs->group_load += load;
  3285. sgs->sum_nr_running += nr_running;
  3286. sgs->sum_weighted_load += weighted_cpuload(i);
  3287. if (idle_cpu(i))
  3288. sgs->idle_cpus++;
  3289. }
  3290. /*
  3291. * First idle cpu or the first cpu(busiest) in this sched group
  3292. * is eligible for doing load balancing at this and above
  3293. * domains. In the newly idle case, we will allow all the cpu's
  3294. * to do the newly idle load balance.
  3295. */
  3296. if (local_group) {
  3297. if (idle != CPU_NEWLY_IDLE) {
  3298. if (balance_cpu != this_cpu) {
  3299. *balance = 0;
  3300. return;
  3301. }
  3302. update_group_power(sd, this_cpu);
  3303. } else if (time_after_eq(jiffies, group->sgp->next_update))
  3304. update_group_power(sd, this_cpu);
  3305. }
  3306. /* Adjust by relative CPU power of the group */
  3307. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  3308. /*
  3309. * Consider the group unbalanced when the imbalance is larger
  3310. * than the average weight of a task.
  3311. *
  3312. * APZ: with cgroup the avg task weight can vary wildly and
  3313. * might not be a suitable number - should we keep a
  3314. * normalized nr_running number somewhere that negates
  3315. * the hierarchy?
  3316. */
  3317. if (sgs->sum_nr_running)
  3318. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  3319. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
  3320. (max_nr_running - min_nr_running) > 1)
  3321. sgs->group_imb = 1;
  3322. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  3323. SCHED_POWER_SCALE);
  3324. if (!sgs->group_capacity)
  3325. sgs->group_capacity = fix_small_capacity(sd, group);
  3326. sgs->group_weight = group->group_weight;
  3327. if (sgs->group_capacity > sgs->sum_nr_running)
  3328. sgs->group_has_capacity = 1;
  3329. }
  3330. /**
  3331. * update_sd_pick_busiest - return 1 on busiest group
  3332. * @env: The load balancing environment.
  3333. * @sds: sched_domain statistics
  3334. * @sg: sched_group candidate to be checked for being the busiest
  3335. * @sgs: sched_group statistics
  3336. *
  3337. * Determine if @sg is a busier group than the previously selected
  3338. * busiest group.
  3339. */
  3340. static bool update_sd_pick_busiest(struct sched_domain *sd,
  3341. struct sd_lb_stats *sds,
  3342. struct sched_group *sg,
  3343. struct sg_lb_stats *sgs,
  3344. int this_cpu)
  3345. {
  3346. if (sgs->avg_load <= sds->max_load)
  3347. return false;
  3348. if (sgs->sum_nr_running > sgs->group_capacity)
  3349. return true;
  3350. if (sgs->group_imb)
  3351. return true;
  3352. /*
  3353. * ASYM_PACKING needs to move all the work to the lowest
  3354. * numbered CPUs in the group, therefore mark all groups
  3355. * higher than ourself as busy.
  3356. */
  3357. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3358. this_cpu < group_first_cpu(sg)) {
  3359. if (!sds->busiest)
  3360. return true;
  3361. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3362. return true;
  3363. }
  3364. return false;
  3365. }
  3366. /**
  3367. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3368. * @env: The load balancing environment.
  3369. * @balance: Should we balance.
  3370. * @sds: variable to hold the statistics for this sched_domain.
  3371. */
  3372. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3373. enum cpu_idle_type idle, const struct cpumask *cpus,
  3374. int *balance, struct sd_lb_stats *sds)
  3375. {
  3376. struct sched_domain *child = sd->child;
  3377. struct sched_group *sg = sd->groups;
  3378. struct sg_lb_stats sgs;
  3379. int load_idx, prefer_sibling = 0;
  3380. if (child && child->flags & SD_PREFER_SIBLING)
  3381. prefer_sibling = 1;
  3382. init_sd_power_savings_stats(sd, sds, idle);
  3383. load_idx = get_sd_load_idx(sd, idle);
  3384. do {
  3385. int local_group;
  3386. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  3387. memset(&sgs, 0, sizeof(sgs));
  3388. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  3389. local_group, cpus, balance, &sgs);
  3390. if (local_group && !(*balance))
  3391. return;
  3392. sds->total_load += sgs.group_load;
  3393. sds->total_pwr += sg->sgp->power;
  3394. /*
  3395. * In case the child domain prefers tasks go to siblings
  3396. * first, lower the sg capacity to one so that we'll try
  3397. * and move all the excess tasks away. We lower the capacity
  3398. * of a group only if the local group has the capacity to fit
  3399. * these excess tasks, i.e. nr_running < group_capacity. The
  3400. * extra check prevents the case where you always pull from the
  3401. * heaviest group when it is already under-utilized (possible
  3402. * with a large weight task outweighs the tasks on the system).
  3403. */
  3404. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3405. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3406. if (local_group) {
  3407. sds->this_load = sgs.avg_load;
  3408. sds->this = sg;
  3409. sds->this_nr_running = sgs.sum_nr_running;
  3410. sds->this_load_per_task = sgs.sum_weighted_load;
  3411. sds->this_has_capacity = sgs.group_has_capacity;
  3412. sds->this_idle_cpus = sgs.idle_cpus;
  3413. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  3414. sds->max_load = sgs.avg_load;
  3415. sds->busiest = sg;
  3416. sds->busiest_nr_running = sgs.sum_nr_running;
  3417. sds->busiest_idle_cpus = sgs.idle_cpus;
  3418. sds->busiest_group_capacity = sgs.group_capacity;
  3419. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3420. sds->busiest_has_capacity = sgs.group_has_capacity;
  3421. sds->busiest_group_weight = sgs.group_weight;
  3422. sds->group_imb = sgs.group_imb;
  3423. }
  3424. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  3425. sg = sg->next;
  3426. } while (sg != sd->groups);
  3427. }
  3428. /**
  3429. * check_asym_packing - Check to see if the group is packed into the
  3430. * sched doman.
  3431. *
  3432. * This is primarily intended to used at the sibling level. Some
  3433. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3434. * case of POWER7, it can move to lower SMT modes only when higher
  3435. * threads are idle. When in lower SMT modes, the threads will
  3436. * perform better since they share less core resources. Hence when we
  3437. * have idle threads, we want them to be the higher ones.
  3438. *
  3439. * This packing function is run on idle threads. It checks to see if
  3440. * the busiest CPU in this domain (core in the P7 case) has a higher
  3441. * CPU number than the packing function is being run on. Here we are
  3442. * assuming lower CPU number will be equivalent to lower a SMT thread
  3443. * number.
  3444. *
  3445. * Returns 1 when packing is required and a task should be moved to
  3446. * this CPU. The amount of the imbalance is returned in *imbalance.
  3447. *
  3448. * @env: The load balancing environment.
  3449. * @sds: Statistics of the sched_domain which is to be packed
  3450. */
  3451. static int check_asym_packing(struct sched_domain *sd,
  3452. struct sd_lb_stats *sds,
  3453. int this_cpu, unsigned long *imbalance)
  3454. {
  3455. int busiest_cpu;
  3456. if (!(sd->flags & SD_ASYM_PACKING))
  3457. return 0;
  3458. if (!sds->busiest)
  3459. return 0;
  3460. busiest_cpu = group_first_cpu(sds->busiest);
  3461. if (this_cpu > busiest_cpu)
  3462. return 0;
  3463. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
  3464. SCHED_POWER_SCALE);
  3465. return 1;
  3466. }
  3467. /**
  3468. * fix_small_imbalance - Calculate the minor imbalance that exists
  3469. * amongst the groups of a sched_domain, during
  3470. * load balancing.
  3471. * @env: The load balancing environment.
  3472. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3473. */
  3474. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3475. int this_cpu, unsigned long *imbalance)
  3476. {
  3477. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3478. unsigned int imbn = 2;
  3479. unsigned long scaled_busy_load_per_task;
  3480. if (sds->this_nr_running) {
  3481. sds->this_load_per_task /= sds->this_nr_running;
  3482. if (sds->busiest_load_per_task >
  3483. sds->this_load_per_task)
  3484. imbn = 1;
  3485. } else
  3486. sds->this_load_per_task =
  3487. cpu_avg_load_per_task(this_cpu);
  3488. scaled_busy_load_per_task = sds->busiest_load_per_task
  3489. * SCHED_POWER_SCALE;
  3490. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3491. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3492. (scaled_busy_load_per_task * imbn)) {
  3493. *imbalance = sds->busiest_load_per_task;
  3494. return;
  3495. }
  3496. /*
  3497. * OK, we don't have enough imbalance to justify moving tasks,
  3498. * however we may be able to increase total CPU power used by
  3499. * moving them.
  3500. */
  3501. pwr_now += sds->busiest->sgp->power *
  3502. min(sds->busiest_load_per_task, sds->max_load);
  3503. pwr_now += sds->this->sgp->power *
  3504. min(sds->this_load_per_task, sds->this_load);
  3505. pwr_now /= SCHED_POWER_SCALE;
  3506. /* Amount of load we'd subtract */
  3507. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3508. sds->busiest->sgp->power;
  3509. if (sds->max_load > tmp)
  3510. pwr_move += sds->busiest->sgp->power *
  3511. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3512. /* Amount of load we'd add */
  3513. if (sds->max_load * sds->busiest->sgp->power <
  3514. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3515. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3516. sds->this->sgp->power;
  3517. else
  3518. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3519. sds->this->sgp->power;
  3520. pwr_move += sds->this->sgp->power *
  3521. min(sds->this_load_per_task, sds->this_load + tmp);
  3522. pwr_move /= SCHED_POWER_SCALE;
  3523. /* Move if we gain throughput */
  3524. if (pwr_move > pwr_now)
  3525. *imbalance = sds->busiest_load_per_task;
  3526. }
  3527. /**
  3528. * calculate_imbalance - Calculate the amount of imbalance present within the
  3529. * groups of a given sched_domain during load balance.
  3530. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3531. * @this_cpu: Cpu for which currently load balance is being performed.
  3532. * @imbalance: The variable to store the imbalance.
  3533. */
  3534. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3535. unsigned long *imbalance)
  3536. {
  3537. unsigned long max_pull, load_above_capacity = ~0UL;
  3538. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3539. if (sds->group_imb) {
  3540. sds->busiest_load_per_task =
  3541. min(sds->busiest_load_per_task, sds->avg_load);
  3542. }
  3543. /*
  3544. * In the presence of smp nice balancing, certain scenarios can have
  3545. * max load less than avg load(as we skip the groups at or below
  3546. * its cpu_power, while calculating max_load..)
  3547. */
  3548. if (sds->max_load < sds->avg_load) {
  3549. *imbalance = 0;
  3550. return fix_small_imbalance(sds, this_cpu, imbalance);
  3551. }
  3552. if (!sds->group_imb) {
  3553. /*
  3554. * Don't want to pull so many tasks that a group would go idle.
  3555. */
  3556. load_above_capacity = (sds->busiest_nr_running -
  3557. sds->busiest_group_capacity);
  3558. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  3559. load_above_capacity /= sds->busiest->sgp->power;
  3560. }
  3561. /*
  3562. * We're trying to get all the cpus to the average_load, so we don't
  3563. * want to push ourselves above the average load, nor do we wish to
  3564. * reduce the max loaded cpu below the average load. At the same time,
  3565. * we also don't want to reduce the group load below the group capacity
  3566. * (so that we can implement power-savings policies etc). Thus we look
  3567. * for the minimum possible imbalance.
  3568. * Be careful of negative numbers as they'll appear as very large values
  3569. * with unsigned longs.
  3570. */
  3571. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  3572. /* How much load to actually move to equalise the imbalance */
  3573. *imbalance = min(max_pull * sds->busiest->sgp->power,
  3574. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  3575. / SCHED_POWER_SCALE;
  3576. /*
  3577. * if *imbalance is less than the average load per runnable task
  3578. * there is no guarantee that any tasks will be moved so we'll have
  3579. * a think about bumping its value to force at least one task to be
  3580. * moved
  3581. */
  3582. if (*imbalance < sds->busiest_load_per_task)
  3583. return fix_small_imbalance(sds, this_cpu, imbalance);
  3584. }
  3585. /******* find_busiest_group() helpers end here *********************/
  3586. /**
  3587. * find_busiest_group - Returns the busiest group within the sched_domain
  3588. * if there is an imbalance. If there isn't an imbalance, and
  3589. * the user has opted for power-savings, it returns a group whose
  3590. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3591. * such a group exists.
  3592. *
  3593. * Also calculates the amount of weighted load which should be moved
  3594. * to restore balance.
  3595. *
  3596. * @env: The load balancing environment.
  3597. * @cpus: The set of CPUs under consideration for load-balancing.
  3598. * @balance: Pointer to a variable indicating if this_cpu
  3599. * is the appropriate cpu to perform load balancing at this_level.
  3600. *
  3601. * Returns: - the busiest group if imbalance exists.
  3602. * - If no imbalance and user has opted for power-savings balance,
  3603. * return the least loaded group whose CPUs can be
  3604. * put to idle by rebalancing its tasks onto our group.
  3605. */
  3606. static struct sched_group *
  3607. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3608. unsigned long *imbalance, enum cpu_idle_type idle,
  3609. const struct cpumask *cpus, int *balance)
  3610. {
  3611. struct sd_lb_stats sds;
  3612. memset(&sds, 0, sizeof(sds));
  3613. /*
  3614. * Compute the various statistics relavent for load balancing at
  3615. * this level.
  3616. */
  3617. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  3618. /*
  3619. * this_cpu is not the appropriate cpu to perform load balancing at
  3620. * this level.
  3621. */
  3622. if (!(*balance))
  3623. goto ret;
  3624. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  3625. check_asym_packing(sd, &sds, this_cpu, imbalance))
  3626. return sds.busiest;
  3627. /* There is no busy sibling group to pull tasks from */
  3628. if (!sds.busiest || sds.busiest_nr_running == 0)
  3629. goto out_balanced;
  3630. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  3631. /*
  3632. * If the busiest group is imbalanced the below checks don't
  3633. * work because they assumes all things are equal, which typically
  3634. * isn't true due to cpus_allowed constraints and the like.
  3635. */
  3636. if (sds.group_imb)
  3637. goto force_balance;
  3638. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  3639. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  3640. !sds.busiest_has_capacity)
  3641. goto force_balance;
  3642. /*
  3643. * If the local group is more busy than the selected busiest group
  3644. * don't try and pull any tasks.
  3645. */
  3646. if (sds.this_load >= sds.max_load)
  3647. goto out_balanced;
  3648. /*
  3649. * Don't pull any tasks if this group is already above the domain
  3650. * average load.
  3651. */
  3652. if (sds.this_load >= sds.avg_load)
  3653. goto out_balanced;
  3654. if (idle == CPU_IDLE) {
  3655. /*
  3656. * This cpu is idle. If the busiest group load doesn't
  3657. * have more tasks than the number of available cpu's and
  3658. * there is no imbalance between this and busiest group
  3659. * wrt to idle cpu's, it is balanced.
  3660. */
  3661. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  3662. sds.busiest_nr_running <= sds.busiest_group_weight)
  3663. goto out_balanced;
  3664. } else {
  3665. /*
  3666. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  3667. * imbalance_pct to be conservative.
  3668. */
  3669. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3670. goto out_balanced;
  3671. }
  3672. force_balance:
  3673. /* Looks like there is an imbalance. Compute it */
  3674. calculate_imbalance(&sds, this_cpu, imbalance);
  3675. return sds.busiest;
  3676. out_balanced:
  3677. /*
  3678. * There is no obvious imbalance. But check if we can do some balancing
  3679. * to save power.
  3680. */
  3681. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3682. return sds.busiest;
  3683. ret:
  3684. *imbalance = 0;
  3685. return NULL;
  3686. }
  3687. /*
  3688. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3689. */
  3690. static struct rq *
  3691. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  3692. enum cpu_idle_type idle, unsigned long imbalance,
  3693. const struct cpumask *cpus)
  3694. {
  3695. struct rq *busiest = NULL, *rq;
  3696. unsigned long max_load = 0;
  3697. int i;
  3698. for_each_cpu(i, sched_group_cpus(group)) {
  3699. unsigned long power = power_of(i);
  3700. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  3701. SCHED_POWER_SCALE);
  3702. unsigned long wl;
  3703. if (!capacity)
  3704. capacity = fix_small_capacity(sd, group);
  3705. if (!cpumask_test_cpu(i, cpus))
  3706. continue;
  3707. rq = cpu_rq(i);
  3708. wl = weighted_cpuload(i);
  3709. /*
  3710. * When comparing with imbalance, use weighted_cpuload()
  3711. * which is not scaled with the cpu power.
  3712. */
  3713. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3714. continue;
  3715. /*
  3716. * For the load comparisons with the other cpu's, consider
  3717. * the weighted_cpuload() scaled with the cpu power, so that
  3718. * the load can be moved away from the cpu that is potentially
  3719. * running at a lower capacity.
  3720. */
  3721. wl = (wl * SCHED_POWER_SCALE) / power;
  3722. if (wl > max_load) {
  3723. max_load = wl;
  3724. busiest = rq;
  3725. }
  3726. }
  3727. return busiest;
  3728. }
  3729. /*
  3730. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3731. * so long as it is large enough.
  3732. */
  3733. #define MAX_PINNED_INTERVAL 512
  3734. /* Working cpumask for load_balance and load_balance_newidle. */
  3735. DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3736. static int need_active_balance(struct sched_domain *sd, int idle,
  3737. int busiest_cpu, int this_cpu)
  3738. {
  3739. if (idle == CPU_NEWLY_IDLE) {
  3740. /*
  3741. * ASYM_PACKING needs to force migrate tasks from busy but
  3742. * higher numbered CPUs in order to pack all tasks in the
  3743. * lowest numbered CPUs.
  3744. */
  3745. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  3746. return 1;
  3747. /*
  3748. * The only task running in a non-idle cpu can be moved to this
  3749. * cpu in an attempt to completely freeup the other CPU
  3750. * package.
  3751. *
  3752. * The package power saving logic comes from
  3753. * find_busiest_group(). If there are no imbalance, then
  3754. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3755. * f_b_g() will select a group from which a running task may be
  3756. * pulled to this cpu in order to make the other package idle.
  3757. * If there is no opportunity to make a package idle and if
  3758. * there are no imbalance, then f_b_g() will return NULL and no
  3759. * action will be taken in load_balance_newidle().
  3760. *
  3761. * Under normal task pull operation due to imbalance, there
  3762. * will be more than one task in the source run queue and
  3763. * move_tasks() will succeed. ld_moved will be true and this
  3764. * active balance code will not be triggered.
  3765. */
  3766. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3767. return 0;
  3768. }
  3769. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  3770. }
  3771. static int active_load_balance_cpu_stop(void *data);
  3772. /*
  3773. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3774. * tasks if there is an imbalance.
  3775. */
  3776. static int load_balance(int this_cpu, struct rq *this_rq,
  3777. struct sched_domain *sd, enum cpu_idle_type idle,
  3778. int *balance)
  3779. {
  3780. int ld_moved, active_balance = 0;
  3781. struct sched_group *group;
  3782. unsigned long imbalance;
  3783. struct rq *busiest = NULL;
  3784. unsigned long flags;
  3785. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3786. struct lb_env env = {
  3787. .sd = sd,
  3788. .dst_cpu = this_cpu,
  3789. .dst_rq = this_rq,
  3790. .idle = idle,
  3791. .loop_break = sched_nr_migrate_break,
  3792. };
  3793. cpumask_copy(cpus, cpu_active_mask);
  3794. schedstat_inc(sd, lb_count[idle]);
  3795. redo:
  3796. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  3797. cpus, balance);
  3798. if (*balance == 0)
  3799. goto out_balanced;
  3800. if (!group) {
  3801. schedstat_inc(sd, lb_nobusyg[idle]);
  3802. goto out_balanced;
  3803. }
  3804. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  3805. if (!busiest) {
  3806. schedstat_inc(sd, lb_nobusyq[idle]);
  3807. goto out_balanced;
  3808. }
  3809. BUG_ON(busiest == this_rq);
  3810. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3811. ld_moved = 0;
  3812. if (busiest->nr_running > 1) {
  3813. /*
  3814. * Attempt to move tasks. If find_busiest_group has found
  3815. * an imbalance but busiest->nr_running <= 1, the group is
  3816. * still unbalanced. ld_moved simply stays zero, so it is
  3817. * correctly treated as an imbalance.
  3818. */
  3819. env.flags |= LBF_ALL_PINNED;
  3820. env.load_move = imbalance;
  3821. env.src_cpu = busiest->cpu;
  3822. env.src_rq = busiest;
  3823. env.loop_max = min_t(unsigned long, sysctl_sched_nr_migrate, busiest->nr_running);
  3824. more_balance:
  3825. local_irq_save(flags);
  3826. double_rq_lock(this_rq, busiest);
  3827. if (!env.loop)
  3828. update_h_load(env.src_cpu);
  3829. ld_moved += move_tasks(&env);
  3830. double_rq_unlock(this_rq, busiest);
  3831. local_irq_restore(flags);
  3832. if (env.flags & LBF_NEED_BREAK) {
  3833. env.flags &= ~LBF_NEED_BREAK;
  3834. goto more_balance;
  3835. }
  3836. /*
  3837. * some other cpu did the load balance for us.
  3838. */
  3839. if (ld_moved && this_cpu != smp_processor_id())
  3840. resched_cpu(this_cpu);
  3841. /* All tasks on this runqueue were pinned by CPU affinity */
  3842. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  3843. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3844. if (!cpumask_empty(cpus))
  3845. goto redo;
  3846. goto out_balanced;
  3847. }
  3848. }
  3849. if (!ld_moved) {
  3850. schedstat_inc(sd, lb_failed[idle]);
  3851. /*
  3852. * Increment the failure counter only on periodic balance.
  3853. * We do not want newidle balance, which can be very
  3854. * frequent, pollute the failure counter causing
  3855. * excessive cache_hot migrations and active balances.
  3856. */
  3857. if (idle != CPU_NEWLY_IDLE)
  3858. sd->nr_balance_failed++;
  3859. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  3860. raw_spin_lock_irqsave(&busiest->lock, flags);
  3861. /* don't kick the active_load_balance_cpu_stop,
  3862. * if the curr task on busiest cpu can't be
  3863. * moved to this_cpu
  3864. */
  3865. if (!cpumask_test_cpu(this_cpu,
  3866. tsk_cpus_allowed(busiest->curr))) {
  3867. raw_spin_unlock_irqrestore(&busiest->lock,
  3868. flags);
  3869. env.flags |= LBF_ALL_PINNED;
  3870. goto out_one_pinned;
  3871. }
  3872. /*
  3873. * ->active_balance synchronizes accesses to
  3874. * ->active_balance_work. Once set, it's cleared
  3875. * only after active load balance is finished.
  3876. */
  3877. if (!busiest->active_balance) {
  3878. busiest->active_balance = 1;
  3879. busiest->push_cpu = this_cpu;
  3880. active_balance = 1;
  3881. }
  3882. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3883. if (active_balance)
  3884. stop_one_cpu_nowait(cpu_of(busiest),
  3885. active_load_balance_cpu_stop, busiest,
  3886. &busiest->active_balance_work);
  3887. /*
  3888. * We've kicked active balancing, reset the failure
  3889. * counter.
  3890. */
  3891. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3892. }
  3893. } else {
  3894. sd->nr_balance_failed = 0;
  3895. if (per_cpu(dbs_boost_needed, this_cpu)) {
  3896. per_cpu(dbs_boost_needed, this_cpu) = false;
  3897. atomic_notifier_call_chain(&migration_notifier_head,
  3898. this_cpu,
  3899. (void *)cpu_of(busiest));
  3900. }
  3901. }
  3902. if (likely(!active_balance)) {
  3903. /* We were unbalanced, so reset the balancing interval */
  3904. sd->balance_interval = sd->min_interval;
  3905. } else {
  3906. /*
  3907. * If we've begun active balancing, start to back off. This
  3908. * case may not be covered by the all_pinned logic if there
  3909. * is only 1 task on the busy runqueue (because we don't call
  3910. * move_tasks).
  3911. */
  3912. if (sd->balance_interval < sd->max_interval)
  3913. sd->balance_interval *= 2;
  3914. }
  3915. goto out;
  3916. out_balanced:
  3917. schedstat_inc(sd, lb_balanced[idle]);
  3918. sd->nr_balance_failed = 0;
  3919. out_one_pinned:
  3920. /* tune up the balancing interval */
  3921. if (((env.flags & LBF_ALL_PINNED) &&
  3922. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3923. (sd->balance_interval < sd->max_interval))
  3924. sd->balance_interval *= 2;
  3925. ld_moved = 0;
  3926. out:
  3927. trace_sched_load_balance(this_cpu, idle, *balance,
  3928. group ? group->cpumask[0] : 0,
  3929. busiest ? busiest->nr_running : 0, imbalance,
  3930. env.flags, ld_moved, sd->balance_interval);
  3931. return ld_moved;
  3932. }
  3933. /*
  3934. * idle_balance is called by schedule() if this_cpu is about to become
  3935. * idle. Attempts to pull tasks from other CPUs.
  3936. */
  3937. void idle_balance(int this_cpu, struct rq *this_rq)
  3938. {
  3939. struct sched_domain *sd;
  3940. int pulled_task = 0;
  3941. unsigned long next_balance = jiffies + HZ;
  3942. this_rq->idle_stamp = this_rq->clock;
  3943. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3944. return;
  3945. /*
  3946. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3947. */
  3948. raw_spin_unlock(&this_rq->lock);
  3949. update_shares(this_cpu);
  3950. rcu_read_lock();
  3951. for_each_domain(this_cpu, sd) {
  3952. unsigned long interval;
  3953. int balance = 1;
  3954. if (!(sd->flags & SD_LOAD_BALANCE))
  3955. continue;
  3956. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3957. /* If we've pulled tasks over stop searching: */
  3958. pulled_task = load_balance(this_cpu, this_rq,
  3959. sd, CPU_NEWLY_IDLE, &balance);
  3960. }
  3961. interval = msecs_to_jiffies(sd->balance_interval);
  3962. if (time_after(next_balance, sd->last_balance + interval))
  3963. next_balance = sd->last_balance + interval;
  3964. if (pulled_task) {
  3965. this_rq->idle_stamp = 0;
  3966. break;
  3967. }
  3968. }
  3969. rcu_read_unlock();
  3970. raw_spin_lock(&this_rq->lock);
  3971. if (!pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3972. /*
  3973. * We are going idle. next_balance may be set based on
  3974. * a busy processor. So reset next_balance.
  3975. */
  3976. this_rq->next_balance = next_balance;
  3977. }
  3978. }
  3979. /*
  3980. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3981. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3982. * least 1 task to be running on each physical CPU where possible, and
  3983. * avoids physical / logical imbalances.
  3984. */
  3985. static int active_load_balance_cpu_stop(void *data)
  3986. {
  3987. struct rq *busiest_rq = data;
  3988. int busiest_cpu = cpu_of(busiest_rq);
  3989. int target_cpu = busiest_rq->push_cpu;
  3990. struct rq *target_rq = cpu_rq(target_cpu);
  3991. struct sched_domain *sd;
  3992. raw_spin_lock_irq(&busiest_rq->lock);
  3993. /* make sure the requested cpu hasn't gone down in the meantime */
  3994. if (unlikely(busiest_cpu != smp_processor_id() ||
  3995. !busiest_rq->active_balance))
  3996. goto out_unlock;
  3997. /* Is there any task to move? */
  3998. if (busiest_rq->nr_running <= 1)
  3999. goto out_unlock;
  4000. /*
  4001. * This condition is "impossible", if it occurs
  4002. * we need to fix it. Originally reported by
  4003. * Bjorn Helgaas on a 128-cpu setup.
  4004. */
  4005. BUG_ON(busiest_rq == target_rq);
  4006. /* move a task from busiest_rq to target_rq */
  4007. double_lock_balance(busiest_rq, target_rq);
  4008. /* Search for an sd spanning us and the target CPU. */
  4009. rcu_read_lock();
  4010. for_each_domain(target_cpu, sd) {
  4011. if ((sd->flags & SD_LOAD_BALANCE) &&
  4012. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  4013. break;
  4014. }
  4015. if (likely(sd)) {
  4016. struct lb_env env = {
  4017. .sd = sd,
  4018. .dst_cpu = target_cpu,
  4019. .dst_rq = target_rq,
  4020. .src_cpu = busiest_rq->cpu,
  4021. .src_rq = busiest_rq,
  4022. .idle = CPU_IDLE,
  4023. };
  4024. schedstat_inc(sd, alb_count);
  4025. if (move_one_task(&env))
  4026. schedstat_inc(sd, alb_pushed);
  4027. else
  4028. schedstat_inc(sd, alb_failed);
  4029. }
  4030. rcu_read_unlock();
  4031. double_unlock_balance(busiest_rq, target_rq);
  4032. out_unlock:
  4033. busiest_rq->active_balance = 0;
  4034. raw_spin_unlock_irq(&busiest_rq->lock);
  4035. if (per_cpu(dbs_boost_needed, target_cpu)) {
  4036. per_cpu(dbs_boost_needed, target_cpu) = false;
  4037. atomic_notifier_call_chain(&migration_notifier_head,
  4038. target_cpu,
  4039. (void *)cpu_of(busiest_rq));
  4040. }
  4041. return 0;
  4042. }
  4043. #ifdef CONFIG_NO_HZ
  4044. /*
  4045. * idle load balancing details
  4046. * - When one of the busy CPUs notice that there may be an idle rebalancing
  4047. * needed, they will kick the idle load balancer, which then does idle
  4048. * load balancing for all the idle CPUs.
  4049. */
  4050. static struct {
  4051. cpumask_var_t idle_cpus_mask;
  4052. atomic_t nr_cpus;
  4053. unsigned long next_balance; /* in jiffy units */
  4054. } nohz ____cacheline_aligned;
  4055. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  4056. /**
  4057. * lowest_flag_domain - Return lowest sched_domain containing flag.
  4058. * @cpu: The cpu whose lowest level of sched domain is to
  4059. * be returned.
  4060. * @flag: The flag to check for the lowest sched_domain
  4061. * for the given cpu.
  4062. *
  4063. * Returns the lowest sched_domain of a cpu which contains the given flag.
  4064. */
  4065. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  4066. {
  4067. struct sched_domain *sd;
  4068. for_each_domain(cpu, sd)
  4069. if (sd->flags & flag)
  4070. break;
  4071. return sd;
  4072. }
  4073. /**
  4074. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  4075. * @cpu: The cpu whose domains we're iterating over.
  4076. * @sd: variable holding the value of the power_savings_sd
  4077. * for cpu.
  4078. * @flag: The flag to filter the sched_domains to be iterated.
  4079. *
  4080. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  4081. * set, starting from the lowest sched_domain to the highest.
  4082. */
  4083. #define for_each_flag_domain(cpu, sd, flag) \
  4084. for (sd = lowest_flag_domain(cpu, flag); \
  4085. (sd && (sd->flags & flag)); sd = sd->parent)
  4086. /**
  4087. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  4088. * @cpu: The cpu which is nominating a new idle_load_balancer.
  4089. *
  4090. * Returns: Returns the id of the idle load balancer if it exists,
  4091. * Else, returns >= nr_cpu_ids.
  4092. *
  4093. * This algorithm picks the idle load balancer such that it belongs to a
  4094. * semi-idle powersavings sched_domain. The idea is to try and avoid
  4095. * completely idle packages/cores just for the purpose of idle load balancing
  4096. * when there are other idle cpu's which are better suited for that job.
  4097. */
  4098. static int find_new_ilb(int cpu)
  4099. {
  4100. int ilb = cpumask_first(nohz.idle_cpus_mask);
  4101. struct sched_group *ilbg;
  4102. struct sched_domain *sd;
  4103. /*
  4104. * Have idle load balancer selection from semi-idle packages only
  4105. * when power-aware load balancing is enabled
  4106. */
  4107. if (!(sched_smt_power_savings || sched_mc_power_savings))
  4108. goto out_done;
  4109. /*
  4110. * Optimize for the case when we have no idle CPUs or only one
  4111. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  4112. */
  4113. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  4114. goto out_done;
  4115. rcu_read_lock();
  4116. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  4117. ilbg = sd->groups;
  4118. do {
  4119. if (ilbg->group_weight !=
  4120. atomic_read(&ilbg->sgp->nr_busy_cpus)) {
  4121. ilb = cpumask_first_and(nohz.idle_cpus_mask,
  4122. sched_group_cpus(ilbg));
  4123. goto unlock;
  4124. }
  4125. ilbg = ilbg->next;
  4126. } while (ilbg != sd->groups);
  4127. }
  4128. unlock:
  4129. rcu_read_unlock();
  4130. out_done:
  4131. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  4132. return ilb;
  4133. return nr_cpu_ids;
  4134. }
  4135. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  4136. static inline int find_new_ilb(int call_cpu)
  4137. {
  4138. return nr_cpu_ids;
  4139. }
  4140. #endif
  4141. /*
  4142. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  4143. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  4144. * CPU (if there is one).
  4145. */
  4146. static void nohz_balancer_kick(int cpu)
  4147. {
  4148. int ilb_cpu;
  4149. nohz.next_balance++;
  4150. ilb_cpu = find_new_ilb(cpu);
  4151. if (ilb_cpu >= nr_cpu_ids)
  4152. return;
  4153. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  4154. return;
  4155. /*
  4156. * Use smp_send_reschedule() instead of resched_cpu().
  4157. * This way we generate a sched IPI on the target cpu which
  4158. * is idle. And the softirq performing nohz idle load balance
  4159. * will be run before returning from the IPI.
  4160. */
  4161. smp_send_reschedule(ilb_cpu);
  4162. return;
  4163. }
  4164. static inline void nohz_balance_exit_idle(int cpu)
  4165. {
  4166. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  4167. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  4168. atomic_dec(&nohz.nr_cpus);
  4169. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4170. }
  4171. }
  4172. static inline void set_cpu_sd_state_busy(void)
  4173. {
  4174. struct sched_domain *sd;
  4175. int cpu = smp_processor_id();
  4176. rcu_read_lock();
  4177. sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
  4178. if (!sd || !sd->nohz_idle)
  4179. goto unlock;
  4180. sd->nohz_idle = 0;
  4181. for (; sd; sd = sd->parent)
  4182. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  4183. unlock:
  4184. rcu_read_unlock();
  4185. }
  4186. void set_cpu_sd_state_idle(void)
  4187. {
  4188. struct sched_domain *sd;
  4189. int cpu = smp_processor_id();
  4190. rcu_read_lock();
  4191. sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd);
  4192. if (!sd || sd->nohz_idle)
  4193. goto unlock;
  4194. sd->nohz_idle = 1;
  4195. for (; sd; sd = sd->parent)
  4196. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  4197. unlock:
  4198. rcu_read_unlock();
  4199. }
  4200. /*
  4201. * This routine will record that the cpu is going idle with tick stopped.
  4202. * This info will be used in performing idle load balancing in the future.
  4203. */
  4204. void nohz_balance_enter_idle(int cpu)
  4205. {
  4206. /*
  4207. * If this cpu is going down, then nothing needs to be done.
  4208. */
  4209. if (!cpu_active(cpu))
  4210. return;
  4211. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  4212. return;
  4213. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  4214. atomic_inc(&nohz.nr_cpus);
  4215. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4216. }
  4217. static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
  4218. unsigned long action, void *hcpu)
  4219. {
  4220. switch (action & ~CPU_TASKS_FROZEN) {
  4221. case CPU_DYING:
  4222. nohz_balance_exit_idle(smp_processor_id());
  4223. return NOTIFY_OK;
  4224. default:
  4225. return NOTIFY_DONE;
  4226. }
  4227. }
  4228. #endif
  4229. static DEFINE_SPINLOCK(balancing);
  4230. /*
  4231. * Scale the max load_balance interval with the number of CPUs in the system.
  4232. * This trades load-balance latency on larger machines for less cross talk.
  4233. */
  4234. void update_max_interval(void)
  4235. {
  4236. max_load_balance_interval = HZ*num_online_cpus()/10;
  4237. }
  4238. /*
  4239. * It checks each scheduling domain to see if it is due to be balanced,
  4240. * and initiates a balancing operation if so.
  4241. *
  4242. * Balancing parameters are set up in arch_init_sched_domains.
  4243. */
  4244. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4245. {
  4246. int balance = 1;
  4247. struct rq *rq = cpu_rq(cpu);
  4248. unsigned long interval;
  4249. struct sched_domain *sd;
  4250. /* Earliest time when we have to do rebalance again */
  4251. unsigned long next_balance = jiffies + 60*HZ;
  4252. int update_next_balance = 0;
  4253. int need_serialize;
  4254. update_shares(cpu);
  4255. rcu_read_lock();
  4256. for_each_domain(cpu, sd) {
  4257. if (!(sd->flags & SD_LOAD_BALANCE))
  4258. continue;
  4259. interval = sd->balance_interval;
  4260. if (idle != CPU_IDLE)
  4261. interval *= sd->busy_factor;
  4262. /* scale ms to jiffies */
  4263. interval = msecs_to_jiffies(interval);
  4264. interval = clamp(interval, 1UL, max_load_balance_interval);
  4265. need_serialize = sd->flags & SD_SERIALIZE;
  4266. if (need_serialize) {
  4267. if (!spin_trylock(&balancing))
  4268. goto out;
  4269. }
  4270. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4271. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4272. /*
  4273. * We've pulled tasks over so either we're no
  4274. * longer idle.
  4275. */
  4276. idle = CPU_NOT_IDLE;
  4277. }
  4278. sd->last_balance = jiffies;
  4279. }
  4280. if (need_serialize)
  4281. spin_unlock(&balancing);
  4282. out:
  4283. if (time_after(next_balance, sd->last_balance + interval)) {
  4284. next_balance = sd->last_balance + interval;
  4285. update_next_balance = 1;
  4286. }
  4287. /*
  4288. * Stop the load balance at this level. There is another
  4289. * CPU in our sched group which is doing load balancing more
  4290. * actively.
  4291. */
  4292. if (!balance)
  4293. break;
  4294. }
  4295. rcu_read_unlock();
  4296. /*
  4297. * next_balance will be updated only when there is a need.
  4298. * When the cpu is attached to null domain for ex, it will not be
  4299. * updated.
  4300. */
  4301. if (likely(update_next_balance))
  4302. rq->next_balance = next_balance;
  4303. }
  4304. #ifdef CONFIG_NO_HZ
  4305. /*
  4306. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  4307. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4308. */
  4309. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  4310. {
  4311. struct rq *this_rq = cpu_rq(this_cpu);
  4312. struct rq *rq;
  4313. int balance_cpu;
  4314. if (idle != CPU_IDLE ||
  4315. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  4316. goto end;
  4317. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  4318. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  4319. continue;
  4320. /*
  4321. * If this cpu gets work to do, stop the load balancing
  4322. * work being done for other cpus. Next load
  4323. * balancing owner will pick it up.
  4324. */
  4325. if (need_resched())
  4326. break;
  4327. rq = cpu_rq(balance_cpu);
  4328. raw_spin_lock_irq(&rq->lock);
  4329. update_rq_clock(rq);
  4330. update_idle_cpu_load(rq);
  4331. raw_spin_unlock_irq(&rq->lock);
  4332. rebalance_domains(balance_cpu, CPU_IDLE);
  4333. if (time_after(this_rq->next_balance, rq->next_balance))
  4334. this_rq->next_balance = rq->next_balance;
  4335. }
  4336. nohz.next_balance = this_rq->next_balance;
  4337. end:
  4338. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  4339. }
  4340. /*
  4341. * Current heuristic for kicking the idle load balancer in the presence
  4342. * of an idle cpu is the system.
  4343. * - This rq has more than one task.
  4344. * - At any scheduler domain level, this cpu's scheduler group has multiple
  4345. * busy cpu's exceeding the group's power.
  4346. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  4347. * domain span are idle.
  4348. */
  4349. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  4350. {
  4351. unsigned long now = jiffies;
  4352. struct sched_domain *sd;
  4353. if (unlikely(idle_cpu(cpu)))
  4354. return 0;
  4355. /*
  4356. * We may be recently in ticked or tickless idle mode. At the first
  4357. * busy tick after returning from idle, we will update the busy stats.
  4358. */
  4359. set_cpu_sd_state_busy();
  4360. nohz_balance_exit_idle(cpu);
  4361. /*
  4362. * None are in tickless mode and hence no need for NOHZ idle load
  4363. * balancing.
  4364. */
  4365. if (likely(!atomic_read(&nohz.nr_cpus)))
  4366. return 0;
  4367. if (time_before(now, nohz.next_balance))
  4368. return 0;
  4369. if (rq->nr_running >= 2)
  4370. goto need_kick;
  4371. rcu_read_lock();
  4372. for_each_domain(cpu, sd) {
  4373. struct sched_group *sg = sd->groups;
  4374. struct sched_group_power *sgp = sg->sgp;
  4375. int nr_busy = atomic_read(&sgp->nr_busy_cpus);
  4376. if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
  4377. goto need_kick_unlock;
  4378. if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
  4379. && (cpumask_first_and(nohz.idle_cpus_mask,
  4380. sched_domain_span(sd)) < cpu))
  4381. goto need_kick_unlock;
  4382. if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
  4383. break;
  4384. }
  4385. rcu_read_unlock();
  4386. return 0;
  4387. need_kick_unlock:
  4388. rcu_read_unlock();
  4389. need_kick:
  4390. return 1;
  4391. }
  4392. #else
  4393. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4394. #endif
  4395. /*
  4396. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4397. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4398. */
  4399. static void run_rebalance_domains(struct softirq_action *h)
  4400. {
  4401. int this_cpu = smp_processor_id();
  4402. struct rq *this_rq = cpu_rq(this_cpu);
  4403. enum cpu_idle_type idle = this_rq->idle_balance ?
  4404. CPU_IDLE : CPU_NOT_IDLE;
  4405. rebalance_domains(this_cpu, idle);
  4406. /*
  4407. * If this cpu has a pending nohz_balance_kick, then do the
  4408. * balancing on behalf of the other idle cpus whose ticks are
  4409. * stopped.
  4410. */
  4411. nohz_idle_balance(this_cpu, idle);
  4412. }
  4413. static inline int on_null_domain(int cpu)
  4414. {
  4415. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4416. }
  4417. /*
  4418. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4419. */
  4420. void trigger_load_balance(struct rq *rq, int cpu)
  4421. {
  4422. /* Don't need to rebalance while attached to NULL domain */
  4423. if (time_after_eq(jiffies, rq->next_balance) &&
  4424. likely(!on_null_domain(cpu)))
  4425. raise_softirq(SCHED_SOFTIRQ);
  4426. #ifdef CONFIG_NO_HZ
  4427. if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4428. nohz_balancer_kick(cpu);
  4429. #endif
  4430. }
  4431. static void rq_online_fair(struct rq *rq)
  4432. {
  4433. update_sysctl();
  4434. }
  4435. static void rq_offline_fair(struct rq *rq)
  4436. {
  4437. update_sysctl();
  4438. /* Ensure any throttled groups are reachable by pick_next_task */
  4439. unthrottle_offline_cfs_rqs(rq);
  4440. }
  4441. #endif /* CONFIG_SMP */
  4442. /*
  4443. * scheduler tick hitting a task of our scheduling class:
  4444. */
  4445. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4446. {
  4447. struct cfs_rq *cfs_rq;
  4448. struct sched_entity *se = &curr->se;
  4449. for_each_sched_entity(se) {
  4450. cfs_rq = cfs_rq_of(se);
  4451. entity_tick(cfs_rq, se, queued);
  4452. }
  4453. }
  4454. /*
  4455. * called on fork with the child task as argument from the parent's context
  4456. * - child not yet on the tasklist
  4457. * - preemption disabled
  4458. */
  4459. static void task_fork_fair(struct task_struct *p)
  4460. {
  4461. struct cfs_rq *cfs_rq;
  4462. struct sched_entity *se = &p->se, *curr;
  4463. int this_cpu = smp_processor_id();
  4464. struct rq *rq = this_rq();
  4465. unsigned long flags;
  4466. raw_spin_lock_irqsave(&rq->lock, flags);
  4467. update_rq_clock(rq);
  4468. cfs_rq = task_cfs_rq(current);
  4469. curr = cfs_rq->curr;
  4470. /*
  4471. * Not only the cpu but also the task_group of the parent might have
  4472. * been changed after parent->se.parent,cfs_rq were copied to
  4473. * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
  4474. * of child point to valid ones.
  4475. */
  4476. rcu_read_lock();
  4477. __set_task_cpu(p, this_cpu);
  4478. rcu_read_unlock();
  4479. update_curr(cfs_rq);
  4480. if (curr)
  4481. se->vruntime = curr->vruntime;
  4482. place_entity(cfs_rq, se, 1);
  4483. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4484. /*
  4485. * Upon rescheduling, sched_class::put_prev_task() will place
  4486. * 'current' within the tree based on its new key value.
  4487. */
  4488. swap(curr->vruntime, se->vruntime);
  4489. resched_task(rq->curr);
  4490. }
  4491. se->vruntime -= cfs_rq->min_vruntime;
  4492. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4493. }
  4494. /*
  4495. * Priority of the task has changed. Check to see if we preempt
  4496. * the current task.
  4497. */
  4498. static void
  4499. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4500. {
  4501. if (!p->se.on_rq)
  4502. return;
  4503. /*
  4504. * Reschedule if we are currently running on this runqueue and
  4505. * our priority decreased, or if we are not currently running on
  4506. * this runqueue and our priority is higher than the current's
  4507. */
  4508. if (rq->curr == p) {
  4509. if (p->prio > oldprio)
  4510. resched_task(rq->curr);
  4511. } else
  4512. check_preempt_curr(rq, p, 0);
  4513. }
  4514. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4515. {
  4516. struct sched_entity *se = &p->se;
  4517. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4518. /*
  4519. * Ensure the task's vruntime is normalized, so that when it's
  4520. * switched back to the fair class the enqueue_entity(.flags=0) will
  4521. * do the right thing.
  4522. *
  4523. * If it's on_rq, then the dequeue_entity(.flags=0) will already
  4524. * have normalized the vruntime, if it's !on_rq, then only when
  4525. * the task is sleeping will it still have non-normalized vruntime.
  4526. */
  4527. if (!p->on_rq && p->state != TASK_RUNNING) {
  4528. /*
  4529. * Fix up our vruntime so that the current sleep doesn't
  4530. * cause 'unlimited' sleep bonus.
  4531. */
  4532. place_entity(cfs_rq, se, 0);
  4533. se->vruntime -= cfs_rq->min_vruntime;
  4534. }
  4535. }
  4536. /*
  4537. * We switched to the sched_fair class.
  4538. */
  4539. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4540. {
  4541. if (!p->se.on_rq)
  4542. return;
  4543. /*
  4544. * We were most likely switched from sched_rt, so
  4545. * kick off the schedule if running, otherwise just see
  4546. * if we can still preempt the current task.
  4547. */
  4548. if (rq->curr == p)
  4549. resched_task(rq->curr);
  4550. else
  4551. check_preempt_curr(rq, p, 0);
  4552. }
  4553. /* Account for a task changing its policy or group.
  4554. *
  4555. * This routine is mostly called to set cfs_rq->curr field when a task
  4556. * migrates between groups/classes.
  4557. */
  4558. static void set_curr_task_fair(struct rq *rq)
  4559. {
  4560. struct sched_entity *se = &rq->curr->se;
  4561. for_each_sched_entity(se) {
  4562. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4563. set_next_entity(cfs_rq, se);
  4564. /* ensure bandwidth has been allocated on our new cfs_rq */
  4565. account_cfs_rq_runtime(cfs_rq, 0);
  4566. }
  4567. }
  4568. void init_cfs_rq(struct cfs_rq *cfs_rq)
  4569. {
  4570. cfs_rq->tasks_timeline = RB_ROOT;
  4571. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  4572. #ifndef CONFIG_64BIT
  4573. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  4574. #endif
  4575. }
  4576. #ifdef CONFIG_FAIR_GROUP_SCHED
  4577. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4578. {
  4579. /*
  4580. * If the task was not on the rq at the time of this cgroup movement
  4581. * it must have been asleep, sleeping tasks keep their ->vruntime
  4582. * absolute on their old rq until wakeup (needed for the fair sleeper
  4583. * bonus in place_entity()).
  4584. *
  4585. * If it was on the rq, we've just 'preempted' it, which does convert
  4586. * ->vruntime to a relative base.
  4587. *
  4588. * Make sure both cases convert their relative position when migrating
  4589. * to another cgroup's rq. This does somewhat interfere with the
  4590. * fair sleeper stuff for the first placement, but who cares.
  4591. */
  4592. /*
  4593. * When !on_rq, vruntime of the task has usually NOT been normalized.
  4594. * But there are some cases where it has already been normalized:
  4595. *
  4596. * - Moving a forked child which is waiting for being woken up by
  4597. * wake_up_new_task().
  4598. * - Moving a task which has been woken up by try_to_wake_up() and
  4599. * waiting for actually being woken up by sched_ttwu_pending().
  4600. *
  4601. * To prevent boost or penalty in the new cfs_rq caused by delta
  4602. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  4603. */
  4604. if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
  4605. on_rq = 1;
  4606. if (!on_rq)
  4607. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4608. set_task_rq(p, task_cpu(p));
  4609. if (!on_rq)
  4610. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  4611. }
  4612. void free_fair_sched_group(struct task_group *tg)
  4613. {
  4614. int i;
  4615. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4616. for_each_possible_cpu(i) {
  4617. if (tg->cfs_rq)
  4618. kfree(tg->cfs_rq[i]);
  4619. if (tg->se)
  4620. kfree(tg->se[i]);
  4621. }
  4622. kfree(tg->cfs_rq);
  4623. kfree(tg->se);
  4624. }
  4625. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4626. {
  4627. struct cfs_rq *cfs_rq;
  4628. struct sched_entity *se;
  4629. int i;
  4630. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  4631. if (!tg->cfs_rq)
  4632. goto err;
  4633. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  4634. if (!tg->se)
  4635. goto err;
  4636. tg->shares = NICE_0_LOAD;
  4637. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4638. for_each_possible_cpu(i) {
  4639. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  4640. GFP_KERNEL, cpu_to_node(i));
  4641. if (!cfs_rq)
  4642. goto err;
  4643. se = kzalloc_node(sizeof(struct sched_entity),
  4644. GFP_KERNEL, cpu_to_node(i));
  4645. if (!se)
  4646. goto err_free_rq;
  4647. init_cfs_rq(cfs_rq);
  4648. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  4649. }
  4650. return 1;
  4651. err_free_rq:
  4652. kfree(cfs_rq);
  4653. err:
  4654. return 0;
  4655. }
  4656. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  4657. {
  4658. struct rq *rq = cpu_rq(cpu);
  4659. unsigned long flags;
  4660. /*
  4661. * Only empty task groups can be destroyed; so we can speculatively
  4662. * check on_list without danger of it being re-added.
  4663. */
  4664. if (!tg->cfs_rq[cpu]->on_list)
  4665. return;
  4666. raw_spin_lock_irqsave(&rq->lock, flags);
  4667. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  4668. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4669. }
  4670. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  4671. struct sched_entity *se, int cpu,
  4672. struct sched_entity *parent)
  4673. {
  4674. struct rq *rq = cpu_rq(cpu);
  4675. cfs_rq->tg = tg;
  4676. cfs_rq->rq = rq;
  4677. #ifdef CONFIG_SMP
  4678. /* allow initial update_cfs_load() to truncate */
  4679. cfs_rq->load_stamp = 1;
  4680. #endif
  4681. init_cfs_rq_runtime(cfs_rq);
  4682. tg->cfs_rq[cpu] = cfs_rq;
  4683. tg->se[cpu] = se;
  4684. /* se could be NULL for root_task_group */
  4685. if (!se)
  4686. return;
  4687. if (!parent)
  4688. se->cfs_rq = &rq->cfs;
  4689. else
  4690. se->cfs_rq = parent->my_q;
  4691. se->my_q = cfs_rq;
  4692. /* guarantee group entities always have weight */
  4693. update_load_set(&se->load, NICE_0_LOAD);
  4694. se->parent = parent;
  4695. }
  4696. static DEFINE_MUTEX(shares_mutex);
  4697. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  4698. {
  4699. int i;
  4700. unsigned long flags;
  4701. /*
  4702. * We can't change the weight of the root cgroup.
  4703. */
  4704. if (!tg->se[0])
  4705. return -EINVAL;
  4706. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  4707. mutex_lock(&shares_mutex);
  4708. if (tg->shares == shares)
  4709. goto done;
  4710. tg->shares = shares;
  4711. for_each_possible_cpu(i) {
  4712. struct rq *rq = cpu_rq(i);
  4713. struct sched_entity *se;
  4714. se = tg->se[i];
  4715. /* Propagate contribution to hierarchy */
  4716. raw_spin_lock_irqsave(&rq->lock, flags);
  4717. for_each_sched_entity(se)
  4718. update_cfs_shares(group_cfs_rq(se));
  4719. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4720. }
  4721. done:
  4722. mutex_unlock(&shares_mutex);
  4723. return 0;
  4724. }
  4725. #else /* CONFIG_FAIR_GROUP_SCHED */
  4726. void free_fair_sched_group(struct task_group *tg) { }
  4727. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4728. {
  4729. return 1;
  4730. }
  4731. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  4732. #endif /* CONFIG_FAIR_GROUP_SCHED */
  4733. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  4734. {
  4735. struct sched_entity *se = &task->se;
  4736. unsigned int rr_interval = 0;
  4737. /*
  4738. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  4739. * idle runqueue:
  4740. */
  4741. if (rq->cfs.load.weight)
  4742. rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
  4743. return rr_interval;
  4744. }
  4745. /*
  4746. * All the scheduling class methods:
  4747. */
  4748. const struct sched_class fair_sched_class = {
  4749. .next = &idle_sched_class,
  4750. .enqueue_task = enqueue_task_fair,
  4751. .dequeue_task = dequeue_task_fair,
  4752. .yield_task = yield_task_fair,
  4753. .yield_to_task = yield_to_task_fair,
  4754. .check_preempt_curr = check_preempt_wakeup,
  4755. .pick_next_task = pick_next_task_fair,
  4756. .put_prev_task = put_prev_task_fair,
  4757. #ifdef CONFIG_SMP
  4758. .select_task_rq = select_task_rq_fair,
  4759. .rq_online = rq_online_fair,
  4760. .rq_offline = rq_offline_fair,
  4761. .task_waking = task_waking_fair,
  4762. #endif
  4763. .set_curr_task = set_curr_task_fair,
  4764. .task_tick = task_tick_fair,
  4765. .task_fork = task_fork_fair,
  4766. .prio_changed = prio_changed_fair,
  4767. .switched_from = switched_from_fair,
  4768. .switched_to = switched_to_fair,
  4769. .get_rr_interval = get_rr_interval_fair,
  4770. #ifdef CONFIG_FAIR_GROUP_SCHED
  4771. .task_move_group = task_move_group_fair,
  4772. #endif
  4773. };
  4774. #ifdef CONFIG_SCHED_DEBUG
  4775. void print_cfs_stats(struct seq_file *m, int cpu)
  4776. {
  4777. struct cfs_rq *cfs_rq;
  4778. rcu_read_lock();
  4779. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  4780. print_cfs_rq(m, cpu, cfs_rq);
  4781. rcu_read_unlock();
  4782. }
  4783. #endif
  4784. __init void init_sched_fair_class(void)
  4785. {
  4786. #ifdef CONFIG_SMP
  4787. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  4788. #ifdef CONFIG_NO_HZ
  4789. nohz.next_balance = jiffies;
  4790. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  4791. cpu_notifier(sched_ilb_notifier, 0);
  4792. #endif
  4793. #endif /* SMP */
  4794. }