core.c 212 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <linux/init_task.h>
  74. #include <linux/binfmts.h>
  75. #include <linux/poll.h>
  76. #include <linux/nospec.h>
  77. #include <linux/compiler.h>
  78. #include <asm/switch_to.h>
  79. #include <asm/tlb.h>
  80. #include <asm/irq_regs.h>
  81. #include <asm/mutex.h>
  82. #ifdef CONFIG_PARAVIRT
  83. #include <asm/paravirt.h>
  84. #endif
  85. #include <mach/sec_debug.h>
  86. #include "sched.h"
  87. #include "../workqueue_sched.h"
  88. #define CREATE_TRACE_POINTS
  89. #include <trace/events/sched.h>
  90. static atomic_t __su_instances;
  91. int su_instances(void)
  92. {
  93. return atomic_read(&__su_instances);
  94. }
  95. bool su_running(void)
  96. {
  97. return su_instances() > 0;
  98. }
  99. bool su_visible(void)
  100. {
  101. uid_t uid = current_uid();
  102. if (su_running())
  103. return true;
  104. if (uid == 0 || uid == 1000)
  105. return true;
  106. return false;
  107. }
  108. void su_exec(void)
  109. {
  110. atomic_inc(&__su_instances);
  111. }
  112. void su_exit(void)
  113. {
  114. atomic_dec(&__su_instances);
  115. }
  116. ATOMIC_NOTIFIER_HEAD(migration_notifier_head);
  117. #ifdef CONFIG_ANDROID_BG_SCAN_MEM
  118. RAW_NOTIFIER_HEAD(bgtsk_migration_notifier_head);
  119. #endif
  120. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  121. {
  122. unsigned long delta;
  123. ktime_t soft, hard, now;
  124. for (;;) {
  125. if (hrtimer_active(period_timer))
  126. break;
  127. now = hrtimer_cb_get_time(period_timer);
  128. hrtimer_forward(period_timer, now, period);
  129. soft = hrtimer_get_softexpires(period_timer);
  130. hard = hrtimer_get_expires(period_timer);
  131. delta = ktime_to_ns(ktime_sub(hard, soft));
  132. __hrtimer_start_range_ns(period_timer, soft, delta,
  133. HRTIMER_MODE_ABS_PINNED, 0);
  134. }
  135. }
  136. DEFINE_MUTEX(sched_domains_mutex);
  137. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  138. static void update_rq_clock_task(struct rq *rq, s64 delta);
  139. void update_rq_clock(struct rq *rq)
  140. {
  141. s64 delta;
  142. if (rq->skip_clock_update > 0)
  143. return;
  144. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  145. rq->clock += delta;
  146. update_rq_clock_task(rq, delta);
  147. }
  148. /*
  149. * Debugging: various feature bits
  150. */
  151. #define SCHED_FEAT(name, enabled) \
  152. (1UL << __SCHED_FEAT_##name) * enabled |
  153. const_debug unsigned int sysctl_sched_features =
  154. #include "features.h"
  155. 0;
  156. #undef SCHED_FEAT
  157. #ifdef CONFIG_SCHED_DEBUG
  158. #define SCHED_FEAT(name, enabled) \
  159. #name ,
  160. static const char * const sched_feat_names[] = {
  161. #include "features.h"
  162. };
  163. #undef SCHED_FEAT
  164. static int sched_feat_show(struct seq_file *m, void *v)
  165. {
  166. int i;
  167. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  168. if (!(sysctl_sched_features & (1UL << i)))
  169. seq_puts(m, "NO_");
  170. seq_printf(m, "%s ", sched_feat_names[i]);
  171. }
  172. seq_puts(m, "\n");
  173. return 0;
  174. }
  175. #ifdef HAVE_JUMP_LABEL
  176. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  177. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  178. #define SCHED_FEAT(name, enabled) \
  179. jump_label_key__##enabled ,
  180. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  181. #include "features.h"
  182. };
  183. #undef SCHED_FEAT
  184. static void sched_feat_disable(int i)
  185. {
  186. if (static_key_enabled(&sched_feat_keys[i]))
  187. static_key_slow_dec(&sched_feat_keys[i]);
  188. }
  189. static void sched_feat_enable(int i)
  190. {
  191. if (!static_key_enabled(&sched_feat_keys[i]))
  192. static_key_slow_inc(&sched_feat_keys[i]);
  193. }
  194. #else
  195. static void sched_feat_disable(int i) { };
  196. static void sched_feat_enable(int i) { };
  197. #endif /* HAVE_JUMP_LABEL */
  198. static ssize_t
  199. sched_feat_write(struct file *filp, const char __user *ubuf,
  200. size_t cnt, loff_t *ppos)
  201. {
  202. char buf[64];
  203. char *cmp;
  204. int neg = 0;
  205. int i;
  206. if (cnt > 63)
  207. cnt = 63;
  208. if (copy_from_user(&buf, ubuf, cnt))
  209. return -EFAULT;
  210. buf[cnt] = 0;
  211. cmp = strstrip(buf);
  212. if (strncmp(cmp, "NO_", 3) == 0) {
  213. neg = 1;
  214. cmp += 3;
  215. }
  216. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  217. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  218. if (neg) {
  219. sysctl_sched_features &= ~(1UL << i);
  220. sched_feat_disable(i);
  221. } else {
  222. sysctl_sched_features |= (1UL << i);
  223. sched_feat_enable(i);
  224. }
  225. break;
  226. }
  227. }
  228. if (i == __SCHED_FEAT_NR)
  229. return -EINVAL;
  230. *ppos += cnt;
  231. return cnt;
  232. }
  233. static int sched_feat_open(struct inode *inode, struct file *filp)
  234. {
  235. return single_open(filp, sched_feat_show, NULL);
  236. }
  237. static const struct file_operations sched_feat_fops = {
  238. .open = sched_feat_open,
  239. .write = sched_feat_write,
  240. .read = seq_read,
  241. .llseek = seq_lseek,
  242. .release = single_release,
  243. };
  244. static __init int sched_init_debug(void)
  245. {
  246. debugfs_create_file("sched_features", 0644, NULL, NULL,
  247. &sched_feat_fops);
  248. return 0;
  249. }
  250. late_initcall(sched_init_debug);
  251. #endif /* CONFIG_SCHED_DEBUG */
  252. /*
  253. * Number of tasks to iterate in a single balance run.
  254. * Limited because this is done with IRQs disabled.
  255. */
  256. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  257. /*
  258. * period over which we average the RT time consumption, measured
  259. * in ms.
  260. *
  261. * default: 1s
  262. */
  263. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  264. /*
  265. * period over which we measure -rt task cpu usage in us.
  266. * default: 1s
  267. */
  268. unsigned int sysctl_sched_rt_period = 1000000;
  269. __read_mostly int scheduler_running;
  270. /*
  271. * part of the period that we allow rt tasks to run in us.
  272. * default: 0.95s
  273. */
  274. int sysctl_sched_rt_runtime = 950000;
  275. /*
  276. * __task_rq_lock - lock the rq @p resides on.
  277. */
  278. static inline struct rq *__task_rq_lock(struct task_struct *p)
  279. __acquires(rq->lock)
  280. {
  281. struct rq *rq;
  282. lockdep_assert_held(&p->pi_lock);
  283. for (;;) {
  284. rq = task_rq(p);
  285. raw_spin_lock(&rq->lock);
  286. if (likely(rq == task_rq(p)))
  287. return rq;
  288. raw_spin_unlock(&rq->lock);
  289. }
  290. }
  291. /*
  292. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  293. */
  294. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  295. __acquires(p->pi_lock)
  296. __acquires(rq->lock)
  297. {
  298. struct rq *rq;
  299. for (;;) {
  300. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  301. rq = task_rq(p);
  302. raw_spin_lock(&rq->lock);
  303. if (likely(rq == task_rq(p)))
  304. return rq;
  305. raw_spin_unlock(&rq->lock);
  306. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  307. }
  308. }
  309. static void __task_rq_unlock(struct rq *rq)
  310. __releases(rq->lock)
  311. {
  312. raw_spin_unlock(&rq->lock);
  313. }
  314. static inline void
  315. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  316. __releases(rq->lock)
  317. __releases(p->pi_lock)
  318. {
  319. raw_spin_unlock(&rq->lock);
  320. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  321. }
  322. /*
  323. * this_rq_lock - lock this runqueue and disable interrupts.
  324. */
  325. static struct rq *this_rq_lock(void)
  326. __acquires(rq->lock)
  327. {
  328. struct rq *rq;
  329. local_irq_disable();
  330. rq = this_rq();
  331. raw_spin_lock(&rq->lock);
  332. return rq;
  333. }
  334. #ifdef CONFIG_SCHED_HRTICK
  335. /*
  336. * Use HR-timers to deliver accurate preemption points.
  337. *
  338. * Its all a bit involved since we cannot program an hrt while holding the
  339. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  340. * reschedule event.
  341. *
  342. * When we get rescheduled we reprogram the hrtick_timer outside of the
  343. * rq->lock.
  344. */
  345. static void hrtick_clear(struct rq *rq)
  346. {
  347. if (hrtimer_active(&rq->hrtick_timer))
  348. hrtimer_cancel(&rq->hrtick_timer);
  349. }
  350. /*
  351. * High-resolution timer tick.
  352. * Runs from hardirq context with interrupts disabled.
  353. */
  354. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  355. {
  356. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  357. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  358. raw_spin_lock(&rq->lock);
  359. update_rq_clock(rq);
  360. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  361. raw_spin_unlock(&rq->lock);
  362. return HRTIMER_NORESTART;
  363. }
  364. #ifdef CONFIG_SMP
  365. /*
  366. * called from hardirq (IPI) context
  367. */
  368. static void __hrtick_start(void *arg)
  369. {
  370. struct rq *rq = arg;
  371. struct hrtimer *timer = &rq->hrtick_timer;
  372. ktime_t soft, hard;
  373. unsigned long delta;
  374. soft = hrtimer_get_softexpires(timer);
  375. hard = hrtimer_get_expires(timer);
  376. delta = ktime_to_ns(ktime_sub(hard, soft));
  377. raw_spin_lock(&rq->lock);
  378. __hrtimer_start_range_ns(timer, soft, delta, HRTIMER_MODE_ABS, 0);
  379. rq->hrtick_csd_pending = 0;
  380. raw_spin_unlock(&rq->lock);
  381. }
  382. /*
  383. * Called to set the hrtick timer state.
  384. *
  385. * called with rq->lock held and irqs disabled
  386. */
  387. void hrtick_start(struct rq *rq, u64 delay)
  388. {
  389. struct hrtimer *timer = &rq->hrtick_timer;
  390. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  391. hrtimer_set_expires(timer, time);
  392. if (rq == this_rq()) {
  393. __hrtimer_start_range_ns(timer, ns_to_ktime(delay), 0,
  394. HRTIMER_MODE_REL_PINNED, 0);
  395. } else if (!rq->hrtick_csd_pending) {
  396. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  397. rq->hrtick_csd_pending = 1;
  398. }
  399. }
  400. static int
  401. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  402. {
  403. int cpu = (int)(long)hcpu;
  404. switch (action) {
  405. case CPU_UP_CANCELED:
  406. case CPU_UP_CANCELED_FROZEN:
  407. case CPU_DOWN_PREPARE:
  408. case CPU_DOWN_PREPARE_FROZEN:
  409. case CPU_DEAD:
  410. case CPU_DEAD_FROZEN:
  411. hrtick_clear(cpu_rq(cpu));
  412. return NOTIFY_OK;
  413. }
  414. return NOTIFY_DONE;
  415. }
  416. static __init void init_hrtick(void)
  417. {
  418. hotcpu_notifier(hotplug_hrtick, 0);
  419. }
  420. #else
  421. /*
  422. * Called to set the hrtick timer state.
  423. *
  424. * called with rq->lock held and irqs disabled
  425. */
  426. void hrtick_start(struct rq *rq, u64 delay)
  427. {
  428. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  429. HRTIMER_MODE_REL_PINNED, 0);
  430. }
  431. static inline void init_hrtick(void)
  432. {
  433. }
  434. #endif /* CONFIG_SMP */
  435. static void init_rq_hrtick(struct rq *rq)
  436. {
  437. #ifdef CONFIG_SMP
  438. rq->hrtick_csd_pending = 0;
  439. rq->hrtick_csd.flags = 0;
  440. rq->hrtick_csd.func = __hrtick_start;
  441. rq->hrtick_csd.info = rq;
  442. #endif
  443. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  444. rq->hrtick_timer.function = hrtick;
  445. }
  446. #else /* CONFIG_SCHED_HRTICK */
  447. static inline void hrtick_clear(struct rq *rq)
  448. {
  449. }
  450. static inline void init_rq_hrtick(struct rq *rq)
  451. {
  452. }
  453. static inline void init_hrtick(void)
  454. {
  455. }
  456. #endif /* CONFIG_SCHED_HRTICK */
  457. /*
  458. * resched_task - mark a task 'to be rescheduled now'.
  459. *
  460. * On UP this means the setting of the need_resched flag, on SMP it
  461. * might also involve a cross-CPU call to trigger the scheduler on
  462. * the target CPU.
  463. */
  464. #ifdef CONFIG_SMP
  465. #ifndef tsk_is_polling
  466. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  467. #endif
  468. void resched_task(struct task_struct *p)
  469. {
  470. int cpu;
  471. assert_raw_spin_locked(&task_rq(p)->lock);
  472. if (test_tsk_need_resched(p))
  473. return;
  474. set_tsk_need_resched(p);
  475. cpu = task_cpu(p);
  476. if (cpu == smp_processor_id())
  477. return;
  478. /* NEED_RESCHED must be visible before we test polling */
  479. smp_mb();
  480. if (!tsk_is_polling(p))
  481. smp_send_reschedule(cpu);
  482. }
  483. void resched_cpu(int cpu)
  484. {
  485. struct rq *rq = cpu_rq(cpu);
  486. unsigned long flags;
  487. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  488. return;
  489. resched_task(cpu_curr(cpu));
  490. raw_spin_unlock_irqrestore(&rq->lock, flags);
  491. }
  492. #ifdef CONFIG_NO_HZ
  493. /*
  494. * In the semi idle case, use the nearest busy cpu for migrating timers
  495. * from an idle cpu. This is good for power-savings.
  496. *
  497. * We don't do similar optimization for completely idle system, as
  498. * selecting an idle cpu will add more delays to the timers than intended
  499. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  500. */
  501. int get_nohz_timer_target(void)
  502. {
  503. int cpu = smp_processor_id();
  504. int i;
  505. struct sched_domain *sd;
  506. rcu_read_lock();
  507. for_each_domain(cpu, sd) {
  508. for_each_cpu(i, sched_domain_span(sd)) {
  509. if (!idle_cpu(i)) {
  510. cpu = i;
  511. goto unlock;
  512. }
  513. }
  514. }
  515. unlock:
  516. rcu_read_unlock();
  517. return cpu;
  518. }
  519. /*
  520. * When add_timer_on() enqueues a timer into the timer wheel of an
  521. * idle CPU then this timer might expire before the next timer event
  522. * which is scheduled to wake up that CPU. In case of a completely
  523. * idle system the next event might even be infinite time into the
  524. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  525. * leaves the inner idle loop so the newly added timer is taken into
  526. * account when the CPU goes back to idle and evaluates the timer
  527. * wheel for the next timer event.
  528. */
  529. void wake_up_idle_cpu(int cpu)
  530. {
  531. struct rq *rq = cpu_rq(cpu);
  532. if (cpu == smp_processor_id())
  533. return;
  534. /*
  535. * This is safe, as this function is called with the timer
  536. * wheel base lock of (cpu) held. When the CPU is on the way
  537. * to idle and has not yet set rq->curr to idle then it will
  538. * be serialized on the timer wheel base lock and take the new
  539. * timer into account automatically.
  540. */
  541. if (rq->curr != rq->idle)
  542. return;
  543. /*
  544. * We can set TIF_RESCHED on the idle task of the other CPU
  545. * lockless. The worst case is that the other CPU runs the
  546. * idle task through an additional NOOP schedule()
  547. */
  548. set_tsk_need_resched(rq->idle);
  549. /* NEED_RESCHED must be visible before we test polling */
  550. smp_mb();
  551. if (!tsk_is_polling(rq->idle))
  552. smp_send_reschedule(cpu);
  553. }
  554. static inline bool got_nohz_idle_kick(void)
  555. {
  556. int cpu = smp_processor_id();
  557. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  558. return false;
  559. if (idle_cpu(cpu) && !need_resched())
  560. return true;
  561. /*
  562. * We can't run Idle Load Balance on this CPU for this time so we
  563. * cancel it and clear NOHZ_BALANCE_KICK
  564. */
  565. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  566. return false;
  567. }
  568. #else /* CONFIG_NO_HZ */
  569. static inline bool got_nohz_idle_kick(void)
  570. {
  571. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  572. return false;
  573. if (idle_cpu(cpu) && !need_resched())
  574. return true;
  575. /*
  576. * We can't run Idle Load Balance on this CPU for this time so we
  577. * cancel it and clear NOHZ_BALANCE_KICK
  578. */
  579. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  580. return false;
  581. }
  582. #endif /* CONFIG_NO_HZ */
  583. void sched_avg_update(struct rq *rq)
  584. {
  585. s64 period = sched_avg_period();
  586. while ((s64)(rq->clock - rq->age_stamp) > period) {
  587. /*
  588. * Inline assembly required to prevent the compiler
  589. * optimising this loop into a divmod call.
  590. * See __iter_div_u64_rem() for another example of this.
  591. */
  592. asm("" : "+rm" (rq->age_stamp));
  593. rq->age_stamp += period;
  594. rq->rt_avg /= 2;
  595. }
  596. }
  597. #else /* !CONFIG_SMP */
  598. void resched_task(struct task_struct *p)
  599. {
  600. assert_raw_spin_locked(&task_rq(p)->lock);
  601. set_tsk_need_resched(p);
  602. }
  603. #endif /* CONFIG_SMP */
  604. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  605. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  606. /*
  607. * Iterate task_group tree rooted at *from, calling @down when first entering a
  608. * node and @up when leaving it for the final time.
  609. *
  610. * Caller must hold rcu_lock or sufficient equivalent.
  611. */
  612. int walk_tg_tree_from(struct task_group *from,
  613. tg_visitor down, tg_visitor up, void *data)
  614. {
  615. struct task_group *parent, *child;
  616. int ret;
  617. parent = from;
  618. down:
  619. ret = (*down)(parent, data);
  620. if (ret)
  621. goto out;
  622. list_for_each_entry_rcu(child, &parent->children, siblings) {
  623. parent = child;
  624. goto down;
  625. up:
  626. continue;
  627. }
  628. ret = (*up)(parent, data);
  629. if (ret || parent == from)
  630. goto out;
  631. child = parent;
  632. parent = parent->parent;
  633. if (parent)
  634. goto up;
  635. out:
  636. return ret;
  637. }
  638. int tg_nop(struct task_group *tg, void *data)
  639. {
  640. return 0;
  641. }
  642. #endif
  643. static void set_load_weight(struct task_struct *p)
  644. {
  645. int prio = p->static_prio - MAX_RT_PRIO;
  646. struct load_weight *load = &p->se.load;
  647. /*
  648. * SCHED_IDLE tasks get minimal weight:
  649. */
  650. if (p->policy == SCHED_IDLE) {
  651. load->weight = scale_load(WEIGHT_IDLEPRIO);
  652. load->inv_weight = WMULT_IDLEPRIO;
  653. return;
  654. }
  655. prio = array_index_nospec(prio, 40);
  656. load->weight = scale_load(prio_to_weight[prio]);
  657. load->inv_weight = prio_to_wmult[prio];
  658. }
  659. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  660. {
  661. update_rq_clock(rq);
  662. sched_info_queued(p);
  663. p->sched_class->enqueue_task(rq, p, flags);
  664. trace_sched_enq_deq_task(p, 1);
  665. }
  666. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  667. {
  668. update_rq_clock(rq);
  669. sched_info_dequeued(p);
  670. p->sched_class->dequeue_task(rq, p, flags);
  671. trace_sched_enq_deq_task(p, 0);
  672. }
  673. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  674. {
  675. if (task_contributes_to_load(p))
  676. rq->nr_uninterruptible--;
  677. enqueue_task(rq, p, flags);
  678. }
  679. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  680. {
  681. if (task_contributes_to_load(p))
  682. rq->nr_uninterruptible++;
  683. dequeue_task(rq, p, flags);
  684. }
  685. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  686. /*
  687. * There are no locks covering percpu hardirq/softirq time.
  688. * They are only modified in account_system_vtime, on corresponding CPU
  689. * with interrupts disabled. So, writes are safe.
  690. * They are read and saved off onto struct rq in update_rq_clock().
  691. * This may result in other CPU reading this CPU's irq time and can
  692. * race with irq/account_system_vtime on this CPU. We would either get old
  693. * or new value with a side effect of accounting a slice of irq time to wrong
  694. * task when irq is in progress while we read rq->clock. That is a worthy
  695. * compromise in place of having locks on each irq in account_system_time.
  696. */
  697. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  698. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  699. static DEFINE_PER_CPU(u64, irq_start_time);
  700. static int sched_clock_irqtime;
  701. void enable_sched_clock_irqtime(void)
  702. {
  703. sched_clock_irqtime = 1;
  704. }
  705. void disable_sched_clock_irqtime(void)
  706. {
  707. sched_clock_irqtime = 0;
  708. }
  709. #ifndef CONFIG_64BIT
  710. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  711. static inline void irq_time_write_begin(void)
  712. {
  713. __this_cpu_inc(irq_time_seq.sequence);
  714. smp_wmb();
  715. }
  716. static inline void irq_time_write_end(void)
  717. {
  718. smp_wmb();
  719. __this_cpu_inc(irq_time_seq.sequence);
  720. }
  721. static inline u64 irq_time_read(int cpu)
  722. {
  723. u64 irq_time;
  724. unsigned seq;
  725. do {
  726. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  727. irq_time = per_cpu(cpu_softirq_time, cpu) +
  728. per_cpu(cpu_hardirq_time, cpu);
  729. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  730. return irq_time;
  731. }
  732. #else /* CONFIG_64BIT */
  733. static inline void irq_time_write_begin(void)
  734. {
  735. }
  736. static inline void irq_time_write_end(void)
  737. {
  738. }
  739. static inline u64 irq_time_read(int cpu)
  740. {
  741. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  742. }
  743. #endif /* CONFIG_64BIT */
  744. /*
  745. * Called before incrementing preempt_count on {soft,}irq_enter
  746. * and before decrementing preempt_count on {soft,}irq_exit.
  747. */
  748. void account_system_vtime(struct task_struct *curr)
  749. {
  750. unsigned long flags;
  751. s64 delta;
  752. int cpu;
  753. if (!sched_clock_irqtime)
  754. return;
  755. local_irq_save(flags);
  756. cpu = smp_processor_id();
  757. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  758. __this_cpu_add(irq_start_time, delta);
  759. irq_time_write_begin();
  760. /*
  761. * We do not account for softirq time from ksoftirqd here.
  762. * We want to continue accounting softirq time to ksoftirqd thread
  763. * in that case, so as not to confuse scheduler with a special task
  764. * that do not consume any time, but still wants to run.
  765. */
  766. if (hardirq_count())
  767. __this_cpu_add(cpu_hardirq_time, delta);
  768. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  769. __this_cpu_add(cpu_softirq_time, delta);
  770. irq_time_write_end();
  771. local_irq_restore(flags);
  772. }
  773. EXPORT_SYMBOL_GPL(account_system_vtime);
  774. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  775. #ifdef CONFIG_PARAVIRT
  776. static inline u64 steal_ticks(u64 steal)
  777. {
  778. if (unlikely(steal > NSEC_PER_SEC))
  779. return div_u64(steal, TICK_NSEC);
  780. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  781. }
  782. #endif
  783. static void update_rq_clock_task(struct rq *rq, s64 delta)
  784. {
  785. /*
  786. * In theory, the compile should just see 0 here, and optimize out the call
  787. * to sched_rt_avg_update. But I don't trust it...
  788. */
  789. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  790. s64 steal = 0, irq_delta = 0;
  791. #endif
  792. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  793. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  794. /*
  795. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  796. * this case when a previous update_rq_clock() happened inside a
  797. * {soft,}irq region.
  798. *
  799. * When this happens, we stop ->clock_task and only update the
  800. * prev_irq_time stamp to account for the part that fit, so that a next
  801. * update will consume the rest. This ensures ->clock_task is
  802. * monotonic.
  803. *
  804. * It does however cause some slight miss-attribution of {soft,}irq
  805. * time, a more accurate solution would be to update the irq_time using
  806. * the current rq->clock timestamp, except that would require using
  807. * atomic ops.
  808. */
  809. if (irq_delta > delta)
  810. irq_delta = delta;
  811. rq->prev_irq_time += irq_delta;
  812. delta -= irq_delta;
  813. #endif
  814. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  815. if (static_key_false((&paravirt_steal_rq_enabled))) {
  816. u64 st;
  817. steal = paravirt_steal_clock(cpu_of(rq));
  818. steal -= rq->prev_steal_time_rq;
  819. if (unlikely(steal > delta))
  820. steal = delta;
  821. st = steal_ticks(steal);
  822. steal = st * TICK_NSEC;
  823. rq->prev_steal_time_rq += steal;
  824. delta -= steal;
  825. }
  826. #endif
  827. rq->clock_task += delta;
  828. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  829. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  830. sched_rt_avg_update(rq, irq_delta + steal);
  831. #endif
  832. }
  833. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  834. static int irqtime_account_hi_update(void)
  835. {
  836. u64 *cpustat = kcpustat_this_cpu->cpustat;
  837. unsigned long flags;
  838. u64 latest_ns;
  839. int ret = 0;
  840. local_irq_save(flags);
  841. latest_ns = this_cpu_read(cpu_hardirq_time);
  842. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  843. ret = 1;
  844. local_irq_restore(flags);
  845. return ret;
  846. }
  847. static int irqtime_account_si_update(void)
  848. {
  849. u64 *cpustat = kcpustat_this_cpu->cpustat;
  850. unsigned long flags;
  851. u64 latest_ns;
  852. int ret = 0;
  853. local_irq_save(flags);
  854. latest_ns = this_cpu_read(cpu_softirq_time);
  855. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
  856. ret = 1;
  857. local_irq_restore(flags);
  858. return ret;
  859. }
  860. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  861. #define sched_clock_irqtime (0)
  862. #endif
  863. void sched_set_stop_task(int cpu, struct task_struct *stop)
  864. {
  865. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  866. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  867. if (stop) {
  868. /*
  869. * Make it appear like a SCHED_FIFO task, its something
  870. * userspace knows about and won't get confused about.
  871. *
  872. * Also, it will make PI more or less work without too
  873. * much confusion -- but then, stop work should not
  874. * rely on PI working anyway.
  875. */
  876. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  877. stop->sched_class = &stop_sched_class;
  878. }
  879. cpu_rq(cpu)->stop = stop;
  880. if (old_stop) {
  881. /*
  882. * Reset it back to a normal scheduling class so that
  883. * it can die in pieces.
  884. */
  885. old_stop->sched_class = &rt_sched_class;
  886. }
  887. }
  888. /*
  889. * __normal_prio - return the priority that is based on the static prio
  890. */
  891. static inline int __normal_prio(struct task_struct *p)
  892. {
  893. return p->static_prio;
  894. }
  895. /*
  896. * Calculate the expected normal priority: i.e. priority
  897. * without taking RT-inheritance into account. Might be
  898. * boosted by interactivity modifiers. Changes upon fork,
  899. * setprio syscalls, and whenever the interactivity
  900. * estimator recalculates.
  901. */
  902. static inline int normal_prio(struct task_struct *p)
  903. {
  904. int prio;
  905. if (task_has_rt_policy(p))
  906. prio = MAX_RT_PRIO-1 - p->rt_priority;
  907. else
  908. prio = __normal_prio(p);
  909. return prio;
  910. }
  911. /*
  912. * Calculate the current priority, i.e. the priority
  913. * taken into account by the scheduler. This value might
  914. * be boosted by RT tasks, or might be boosted by
  915. * interactivity modifiers. Will be RT if the task got
  916. * RT-boosted. If not then it returns p->normal_prio.
  917. */
  918. static int effective_prio(struct task_struct *p)
  919. {
  920. p->normal_prio = normal_prio(p);
  921. /*
  922. * If we are RT tasks or we were boosted to RT priority,
  923. * keep the priority unchanged. Otherwise, update priority
  924. * to the normal priority:
  925. */
  926. if (!rt_prio(p->prio))
  927. return p->normal_prio;
  928. return p->prio;
  929. }
  930. /**
  931. * task_curr - is this task currently executing on a CPU?
  932. * @p: the task in question.
  933. */
  934. inline int task_curr(const struct task_struct *p)
  935. {
  936. return cpu_curr(task_cpu(p)) == p;
  937. }
  938. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  939. const struct sched_class *prev_class,
  940. int oldprio)
  941. {
  942. if (prev_class != p->sched_class) {
  943. if (prev_class->switched_from)
  944. prev_class->switched_from(rq, p);
  945. p->sched_class->switched_to(rq, p);
  946. } else if (oldprio != p->prio)
  947. p->sched_class->prio_changed(rq, p, oldprio);
  948. }
  949. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  950. {
  951. const struct sched_class *class;
  952. if (p->sched_class == rq->curr->sched_class) {
  953. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  954. } else {
  955. for_each_class(class) {
  956. if (class == rq->curr->sched_class)
  957. break;
  958. if (class == p->sched_class) {
  959. resched_task(rq->curr);
  960. break;
  961. }
  962. }
  963. }
  964. /*
  965. * A queue event has occurred, and we're going to schedule. In
  966. * this case, we can save a useless back to back clock update.
  967. */
  968. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  969. rq->skip_clock_update = 1;
  970. }
  971. #ifdef CONFIG_SMP
  972. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  973. {
  974. #ifdef CONFIG_SCHED_DEBUG
  975. /*
  976. * We should never call set_task_cpu() on a blocked task,
  977. * ttwu() will sort out the placement.
  978. */
  979. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  980. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  981. #ifdef CONFIG_LOCKDEP
  982. /*
  983. * The caller should hold either p->pi_lock or rq->lock, when changing
  984. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  985. *
  986. * sched_move_task() holds both and thus holding either pins the cgroup,
  987. * see task_group().
  988. *
  989. * Furthermore, all task_rq users should acquire both locks, see
  990. * task_rq_lock().
  991. */
  992. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  993. lockdep_is_held(&task_rq(p)->lock)));
  994. #endif
  995. #endif
  996. trace_sched_migrate_task(p, new_cpu);
  997. if (task_cpu(p) != new_cpu) {
  998. p->se.nr_migrations++;
  999. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  1000. }
  1001. __set_task_cpu(p, new_cpu);
  1002. }
  1003. struct migration_arg {
  1004. struct task_struct *task;
  1005. int dest_cpu;
  1006. };
  1007. static int migration_cpu_stop(void *data);
  1008. /*
  1009. * wait_task_inactive - wait for a thread to unschedule.
  1010. *
  1011. * If @match_state is nonzero, it's the @p->state value just checked and
  1012. * not expected to change. If it changes, i.e. @p might have woken up,
  1013. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1014. * we return a positive number (its total switch count). If a second call
  1015. * a short while later returns the same number, the caller can be sure that
  1016. * @p has remained unscheduled the whole time.
  1017. *
  1018. * The caller must ensure that the task *will* unschedule sometime soon,
  1019. * else this function might spin for a *long* time. This function can't
  1020. * be called with interrupts off, or it may introduce deadlock with
  1021. * smp_call_function() if an IPI is sent by the same process we are
  1022. * waiting to become inactive.
  1023. */
  1024. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1025. {
  1026. unsigned long flags;
  1027. int running, on_rq;
  1028. unsigned long ncsw;
  1029. struct rq *rq;
  1030. for (;;) {
  1031. /*
  1032. * We do the initial early heuristics without holding
  1033. * any task-queue locks at all. We'll only try to get
  1034. * the runqueue lock when things look like they will
  1035. * work out!
  1036. */
  1037. rq = task_rq(p);
  1038. /*
  1039. * If the task is actively running on another CPU
  1040. * still, just relax and busy-wait without holding
  1041. * any locks.
  1042. *
  1043. * NOTE! Since we don't hold any locks, it's not
  1044. * even sure that "rq" stays as the right runqueue!
  1045. * But we don't care, since "task_running()" will
  1046. * return false if the runqueue has changed and p
  1047. * is actually now running somewhere else!
  1048. */
  1049. while (task_running(rq, p)) {
  1050. if (match_state && unlikely(p->state != match_state))
  1051. return 0;
  1052. cpu_relax();
  1053. }
  1054. /*
  1055. * Ok, time to look more closely! We need the rq
  1056. * lock now, to be *sure*. If we're wrong, we'll
  1057. * just go back and repeat.
  1058. */
  1059. rq = task_rq_lock(p, &flags);
  1060. trace_sched_wait_task(p);
  1061. running = task_running(rq, p);
  1062. on_rq = p->on_rq;
  1063. ncsw = 0;
  1064. if (!match_state || p->state == match_state)
  1065. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1066. task_rq_unlock(rq, p, &flags);
  1067. /*
  1068. * If it changed from the expected state, bail out now.
  1069. */
  1070. if (unlikely(!ncsw))
  1071. break;
  1072. /*
  1073. * Was it really running after all now that we
  1074. * checked with the proper locks actually held?
  1075. *
  1076. * Oops. Go back and try again..
  1077. */
  1078. if (unlikely(running)) {
  1079. cpu_relax();
  1080. continue;
  1081. }
  1082. /*
  1083. * It's not enough that it's not actively running,
  1084. * it must be off the runqueue _entirely_, and not
  1085. * preempted!
  1086. *
  1087. * So if it was still runnable (but just not actively
  1088. * running right now), it's preempted, and we should
  1089. * yield - it could be a while.
  1090. */
  1091. if (unlikely(on_rq)) {
  1092. ktime_t to = ktime_set(0, NSEC_PER_MSEC);
  1093. set_current_state(TASK_UNINTERRUPTIBLE);
  1094. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1095. continue;
  1096. }
  1097. /*
  1098. * Ahh, all good. It wasn't running, and it wasn't
  1099. * runnable, which means that it will never become
  1100. * running in the future either. We're all done!
  1101. */
  1102. break;
  1103. }
  1104. return ncsw;
  1105. }
  1106. /***
  1107. * kick_process - kick a running thread to enter/exit the kernel
  1108. * @p: the to-be-kicked thread
  1109. *
  1110. * Cause a process which is running on another CPU to enter
  1111. * kernel-mode, without any delay. (to get signals handled.)
  1112. *
  1113. * NOTE: this function doesn't have to take the runqueue lock,
  1114. * because all it wants to ensure is that the remote task enters
  1115. * the kernel. If the IPI races and the task has been migrated
  1116. * to another CPU then no harm is done and the purpose has been
  1117. * achieved as well.
  1118. */
  1119. void kick_process(struct task_struct *p)
  1120. {
  1121. int cpu;
  1122. preempt_disable();
  1123. cpu = task_cpu(p);
  1124. if ((cpu != smp_processor_id()) && task_curr(p))
  1125. smp_send_reschedule(cpu);
  1126. preempt_enable();
  1127. }
  1128. EXPORT_SYMBOL_GPL(kick_process);
  1129. #endif /* CONFIG_SMP */
  1130. #ifdef CONFIG_SMP
  1131. /*
  1132. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1133. */
  1134. static int select_fallback_rq(int cpu, struct task_struct *p)
  1135. {
  1136. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1137. enum { cpuset, possible, fail } state = cpuset;
  1138. int dest_cpu;
  1139. /* Look for allowed, online CPU in same node. */
  1140. for_each_cpu(dest_cpu, nodemask) {
  1141. if (!cpu_online(dest_cpu))
  1142. continue;
  1143. if (!cpu_active(dest_cpu))
  1144. continue;
  1145. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1146. return dest_cpu;
  1147. }
  1148. for (;;) {
  1149. /* Any allowed, online CPU? */
  1150. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1151. if (!cpu_online(dest_cpu))
  1152. continue;
  1153. if (!cpu_active(dest_cpu))
  1154. continue;
  1155. goto out;
  1156. }
  1157. switch (state) {
  1158. case cpuset:
  1159. /* No more Mr. Nice Guy. */
  1160. cpuset_cpus_allowed_fallback(p);
  1161. state = possible;
  1162. break;
  1163. case possible:
  1164. do_set_cpus_allowed(p, cpu_possible_mask);
  1165. state = fail;
  1166. break;
  1167. case fail:
  1168. BUG();
  1169. break;
  1170. }
  1171. }
  1172. out:
  1173. if (state != cpuset) {
  1174. /*
  1175. * Don't tell them about moving exiting tasks or
  1176. * kernel threads (both mm NULL), since they never
  1177. * leave kernel.
  1178. */
  1179. if (p->mm && printk_ratelimit()) {
  1180. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1181. task_pid_nr(p), p->comm, cpu);
  1182. }
  1183. }
  1184. return dest_cpu;
  1185. }
  1186. /*
  1187. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1188. */
  1189. static inline
  1190. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1191. {
  1192. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1193. /*
  1194. * In order not to call set_task_cpu() on a blocking task we need
  1195. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1196. * cpu.
  1197. *
  1198. * Since this is common to all placement strategies, this lives here.
  1199. *
  1200. * [ this allows ->select_task() to simply return task_cpu(p) and
  1201. * not worry about this generic constraint ]
  1202. */
  1203. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1204. !cpu_online(cpu)))
  1205. cpu = select_fallback_rq(task_cpu(p), p);
  1206. return cpu;
  1207. }
  1208. static void update_avg(u64 *avg, u64 sample)
  1209. {
  1210. s64 diff = sample - *avg;
  1211. *avg += diff >> 3;
  1212. }
  1213. #endif
  1214. static void
  1215. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1216. {
  1217. #ifdef CONFIG_SCHEDSTATS
  1218. struct rq *rq = this_rq();
  1219. #ifdef CONFIG_SMP
  1220. int this_cpu = smp_processor_id();
  1221. if (cpu == this_cpu) {
  1222. schedstat_inc(rq, ttwu_local);
  1223. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1224. } else {
  1225. struct sched_domain *sd;
  1226. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1227. rcu_read_lock();
  1228. for_each_domain(this_cpu, sd) {
  1229. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1230. schedstat_inc(sd, ttwu_wake_remote);
  1231. break;
  1232. }
  1233. }
  1234. rcu_read_unlock();
  1235. }
  1236. if (wake_flags & WF_MIGRATED)
  1237. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1238. #endif /* CONFIG_SMP */
  1239. schedstat_inc(rq, ttwu_count);
  1240. schedstat_inc(p, se.statistics.nr_wakeups);
  1241. if (wake_flags & WF_SYNC)
  1242. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1243. #endif /* CONFIG_SCHEDSTATS */
  1244. }
  1245. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1246. {
  1247. activate_task(rq, p, en_flags);
  1248. p->on_rq = 1;
  1249. /* if a worker is waking up, notify workqueue */
  1250. if (p->flags & PF_WQ_WORKER)
  1251. wq_worker_waking_up(p, cpu_of(rq));
  1252. }
  1253. /*
  1254. * Mark the task runnable and perform wakeup-preemption.
  1255. */
  1256. static void
  1257. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1258. {
  1259. trace_sched_wakeup(p, true);
  1260. check_preempt_curr(rq, p, wake_flags);
  1261. p->state = TASK_RUNNING;
  1262. #ifdef CONFIG_SMP
  1263. if (p->sched_class->task_woken)
  1264. p->sched_class->task_woken(rq, p);
  1265. if (rq->idle_stamp) {
  1266. u64 delta = rq->clock - rq->idle_stamp;
  1267. u64 max = 2*sysctl_sched_migration_cost;
  1268. if (delta > max)
  1269. rq->avg_idle = max;
  1270. else
  1271. update_avg(&rq->avg_idle, delta);
  1272. rq->idle_stamp = 0;
  1273. }
  1274. #endif
  1275. }
  1276. static void
  1277. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1278. {
  1279. #ifdef CONFIG_SMP
  1280. if (p->sched_contributes_to_load)
  1281. rq->nr_uninterruptible--;
  1282. #endif
  1283. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1284. ttwu_do_wakeup(rq, p, wake_flags);
  1285. }
  1286. /*
  1287. * Called in case the task @p isn't fully descheduled from its runqueue,
  1288. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1289. * since all we need to do is flip p->state to TASK_RUNNING, since
  1290. * the task is still ->on_rq.
  1291. */
  1292. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1293. {
  1294. struct rq *rq;
  1295. int ret = 0;
  1296. rq = __task_rq_lock(p);
  1297. if (p->on_rq) {
  1298. ttwu_do_wakeup(rq, p, wake_flags);
  1299. ret = 1;
  1300. }
  1301. __task_rq_unlock(rq);
  1302. return ret;
  1303. }
  1304. #ifdef CONFIG_SMP
  1305. static void sched_ttwu_pending(void)
  1306. {
  1307. struct rq *rq = this_rq();
  1308. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1309. struct task_struct *p;
  1310. raw_spin_lock(&rq->lock);
  1311. while (llist) {
  1312. p = llist_entry(llist, struct task_struct, wake_entry);
  1313. llist = llist_next(llist);
  1314. ttwu_do_activate(rq, p, 0);
  1315. }
  1316. raw_spin_unlock(&rq->lock);
  1317. }
  1318. void scheduler_ipi(void)
  1319. {
  1320. if (llist_empty(&this_rq()->wake_list)
  1321. && !got_nohz_idle_kick())
  1322. return;
  1323. /*
  1324. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1325. * traditionally all their work was done from the interrupt return
  1326. * path. Now that we actually do some work, we need to make sure
  1327. * we do call them.
  1328. *
  1329. * Some archs already do call them, luckily irq_enter/exit nest
  1330. * properly.
  1331. *
  1332. * Arguably we should visit all archs and update all handlers,
  1333. * however a fair share of IPIs are still resched only so this would
  1334. * somewhat pessimize the simple resched case.
  1335. */
  1336. irq_enter();
  1337. sched_ttwu_pending();
  1338. /*
  1339. * Check if someone kicked us for doing the nohz idle load balance.
  1340. */
  1341. if (unlikely(got_nohz_idle_kick())) {
  1342. this_rq()->idle_balance = 1;
  1343. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1344. }
  1345. irq_exit();
  1346. }
  1347. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1348. {
  1349. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1350. smp_send_reschedule(cpu);
  1351. }
  1352. bool cpus_share_cache(int this_cpu, int that_cpu)
  1353. {
  1354. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1355. }
  1356. #endif /* CONFIG_SMP */
  1357. static void ttwu_queue(struct task_struct *p, int cpu)
  1358. {
  1359. struct rq *rq = cpu_rq(cpu);
  1360. #if defined(CONFIG_SMP)
  1361. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1362. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1363. ttwu_queue_remote(p, cpu);
  1364. return;
  1365. }
  1366. #endif
  1367. raw_spin_lock(&rq->lock);
  1368. ttwu_do_activate(rq, p, 0);
  1369. raw_spin_unlock(&rq->lock);
  1370. }
  1371. /**
  1372. * try_to_wake_up - wake up a thread
  1373. * @p: the thread to be awakened
  1374. * @state: the mask of task states that can be woken
  1375. * @wake_flags: wake modifier flags (WF_*)
  1376. *
  1377. * Put it on the run-queue if it's not already there. The "current"
  1378. * thread is always on the run-queue (except when the actual
  1379. * re-schedule is in progress), and as such you're allowed to do
  1380. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1381. * runnable without the overhead of this.
  1382. *
  1383. * Returns %true if @p was woken up, %false if it was already running
  1384. * or @state didn't match @p's state.
  1385. */
  1386. static int
  1387. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1388. {
  1389. unsigned long flags;
  1390. int cpu, src_cpu, success = 0;
  1391. int notify = 0;
  1392. smp_wmb();
  1393. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1394. src_cpu = cpu = task_cpu(p);
  1395. if (!(p->state & state))
  1396. goto out;
  1397. success = 1; /* we're going to change ->state */
  1398. if (p->on_rq && ttwu_remote(p, wake_flags))
  1399. goto stat;
  1400. #ifdef CONFIG_SMP
  1401. /*
  1402. * If the owning (remote) cpu is still in the middle of schedule() with
  1403. * this task as prev, wait until its done referencing the task.
  1404. */
  1405. while (p->on_cpu)
  1406. cpu_relax();
  1407. /*
  1408. * Pairs with the smp_wmb() in finish_lock_switch().
  1409. */
  1410. smp_rmb();
  1411. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1412. p->state = TASK_WAKING;
  1413. if (p->sched_class->task_waking)
  1414. p->sched_class->task_waking(p);
  1415. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1416. /* Refresh src_cpu as it could have changed since we last read it */
  1417. src_cpu = task_cpu(p);
  1418. if (src_cpu != cpu) {
  1419. wake_flags |= WF_MIGRATED;
  1420. set_task_cpu(p, cpu);
  1421. }
  1422. #endif /* CONFIG_SMP */
  1423. ttwu_queue(p, cpu);
  1424. stat:
  1425. ttwu_stat(p, cpu, wake_flags);
  1426. if (src_cpu != cpu && task_notify_on_migrate(p))
  1427. notify = 1;
  1428. out:
  1429. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1430. if (notify)
  1431. atomic_notifier_call_chain(&migration_notifier_head,
  1432. cpu, (void *)src_cpu);
  1433. return success;
  1434. }
  1435. /**
  1436. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1437. * @p: the thread to be awakened
  1438. *
  1439. * Put @p on the run-queue if it's not already there. The caller must
  1440. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1441. * the current task.
  1442. */
  1443. static void try_to_wake_up_local(struct task_struct *p)
  1444. {
  1445. struct rq *rq = task_rq(p);
  1446. if (WARN_ON_ONCE(rq != this_rq()) ||
  1447. WARN_ON_ONCE(p == current))
  1448. return;
  1449. lockdep_assert_held(&rq->lock);
  1450. if (!raw_spin_trylock(&p->pi_lock)) {
  1451. raw_spin_unlock(&rq->lock);
  1452. raw_spin_lock(&p->pi_lock);
  1453. raw_spin_lock(&rq->lock);
  1454. }
  1455. if (!(p->state & TASK_NORMAL))
  1456. goto out;
  1457. if (!p->on_rq)
  1458. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1459. ttwu_do_wakeup(rq, p, 0);
  1460. ttwu_stat(p, smp_processor_id(), 0);
  1461. out:
  1462. raw_spin_unlock(&p->pi_lock);
  1463. }
  1464. /**
  1465. * wake_up_process - Wake up a specific process
  1466. * @p: The process to be woken up.
  1467. *
  1468. * Attempt to wake up the nominated process and move it to the set of runnable
  1469. * processes. Returns 1 if the process was woken up, 0 if it was already
  1470. * running.
  1471. *
  1472. * It may be assumed that this function implies a write memory barrier before
  1473. * changing the task state if and only if any tasks are woken up.
  1474. */
  1475. int wake_up_process(struct task_struct *p)
  1476. {
  1477. WARN_ON(task_is_stopped_or_traced(p));
  1478. return try_to_wake_up(p, TASK_NORMAL, 0);
  1479. }
  1480. EXPORT_SYMBOL(wake_up_process);
  1481. int wake_up_state(struct task_struct *p, unsigned int state)
  1482. {
  1483. return try_to_wake_up(p, state, 0);
  1484. }
  1485. /*
  1486. * Perform scheduler related setup for a newly forked process p.
  1487. * p is forked by current.
  1488. *
  1489. * __sched_fork() is basic setup used by init_idle() too:
  1490. */
  1491. static void __sched_fork(struct task_struct *p)
  1492. {
  1493. p->on_rq = 0;
  1494. p->se.on_rq = 0;
  1495. p->se.exec_start = 0;
  1496. p->se.sum_exec_runtime = 0;
  1497. p->se.prev_sum_exec_runtime = 0;
  1498. p->se.nr_migrations = 0;
  1499. p->se.vruntime = 0;
  1500. INIT_LIST_HEAD(&p->se.group_node);
  1501. #ifdef CONFIG_SCHEDSTATS
  1502. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1503. #endif
  1504. INIT_LIST_HEAD(&p->rt.run_list);
  1505. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1506. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1507. #endif
  1508. }
  1509. /*
  1510. * fork()/clone()-time setup:
  1511. */
  1512. void sched_fork(struct task_struct *p)
  1513. {
  1514. unsigned long flags;
  1515. int cpu = get_cpu();
  1516. __sched_fork(p);
  1517. /*
  1518. * We mark the process as running here. This guarantees that
  1519. * nobody will actually run it, and a signal or other external
  1520. * event cannot wake it up and insert it on the runqueue either.
  1521. */
  1522. p->state = TASK_RUNNING;
  1523. /*
  1524. * Make sure we do not leak PI boosting priority to the child.
  1525. */
  1526. p->prio = current->normal_prio;
  1527. /*
  1528. * Revert to default priority/policy on fork if requested.
  1529. */
  1530. if (unlikely(p->sched_reset_on_fork)) {
  1531. if (task_has_rt_policy(p)) {
  1532. p->policy = SCHED_NORMAL;
  1533. p->static_prio = NICE_TO_PRIO(0);
  1534. p->rt_priority = 0;
  1535. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1536. p->static_prio = NICE_TO_PRIO(0);
  1537. p->prio = p->normal_prio = __normal_prio(p);
  1538. set_load_weight(p);
  1539. /*
  1540. * We don't need the reset flag anymore after the fork. It has
  1541. * fulfilled its duty:
  1542. */
  1543. p->sched_reset_on_fork = 0;
  1544. }
  1545. if (!rt_prio(p->prio))
  1546. p->sched_class = &fair_sched_class;
  1547. if (p->sched_class->task_fork)
  1548. p->sched_class->task_fork(p);
  1549. /*
  1550. * The child is not yet in the pid-hash so no cgroup attach races,
  1551. * and the cgroup is pinned to this child due to cgroup_fork()
  1552. * is ran before sched_fork().
  1553. *
  1554. * Silence PROVE_RCU.
  1555. */
  1556. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1557. set_task_cpu(p, cpu);
  1558. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1559. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1560. if (likely(sched_info_on()))
  1561. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1562. #endif
  1563. #if defined(CONFIG_SMP)
  1564. p->on_cpu = 0;
  1565. #endif
  1566. #ifdef CONFIG_PREEMPT_COUNT
  1567. /* Want to start with kernel preemption disabled. */
  1568. task_thread_info(p)->preempt_count = 1;
  1569. #endif
  1570. #ifdef CONFIG_SMP
  1571. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1572. #endif
  1573. put_cpu();
  1574. }
  1575. /*
  1576. * wake_up_new_task - wake up a newly created task for the first time.
  1577. *
  1578. * This function will do some initial scheduler statistics housekeeping
  1579. * that must be done for every newly created context, then puts the task
  1580. * on the runqueue and wakes it.
  1581. */
  1582. void wake_up_new_task(struct task_struct *p)
  1583. {
  1584. unsigned long flags;
  1585. struct rq *rq;
  1586. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1587. #ifdef CONFIG_SMP
  1588. /*
  1589. * Fork balancing, do it here and not earlier because:
  1590. * - cpus_allowed can change in the fork path
  1591. * - any previously selected cpu might disappear through hotplug
  1592. */
  1593. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1594. #endif
  1595. rq = __task_rq_lock(p);
  1596. activate_task(rq, p, 0);
  1597. p->on_rq = 1;
  1598. trace_sched_wakeup_new(p, true);
  1599. check_preempt_curr(rq, p, WF_FORK);
  1600. #ifdef CONFIG_SMP
  1601. if (p->sched_class->task_woken)
  1602. p->sched_class->task_woken(rq, p);
  1603. #endif
  1604. task_rq_unlock(rq, p, &flags);
  1605. }
  1606. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1607. /**
  1608. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1609. * @notifier: notifier struct to register
  1610. */
  1611. void preempt_notifier_register(struct preempt_notifier *notifier)
  1612. {
  1613. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1614. }
  1615. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1616. /**
  1617. * preempt_notifier_unregister - no longer interested in preemption notifications
  1618. * @notifier: notifier struct to unregister
  1619. *
  1620. * This is safe to call from within a preemption notifier.
  1621. */
  1622. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1623. {
  1624. hlist_del(&notifier->link);
  1625. }
  1626. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1627. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1628. {
  1629. struct preempt_notifier *notifier;
  1630. struct hlist_node *node;
  1631. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1632. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1633. }
  1634. static void
  1635. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1636. struct task_struct *next)
  1637. {
  1638. struct preempt_notifier *notifier;
  1639. struct hlist_node *node;
  1640. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1641. notifier->ops->sched_out(notifier, next);
  1642. }
  1643. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1644. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1645. {
  1646. }
  1647. static void
  1648. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1649. struct task_struct *next)
  1650. {
  1651. }
  1652. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1653. /**
  1654. * prepare_task_switch - prepare to switch tasks
  1655. * @rq: the runqueue preparing to switch
  1656. * @prev: the current task that is being switched out
  1657. * @next: the task we are going to switch to.
  1658. *
  1659. * This is called with the rq lock held and interrupts off. It must
  1660. * be paired with a subsequent finish_task_switch after the context
  1661. * switch.
  1662. *
  1663. * prepare_task_switch sets up locking and calls architecture specific
  1664. * hooks.
  1665. */
  1666. static inline void
  1667. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1668. struct task_struct *next)
  1669. {
  1670. trace_sched_switch(prev, next);
  1671. sched_info_switch(prev, next);
  1672. perf_event_task_sched_out(prev, next);
  1673. fire_sched_out_preempt_notifiers(prev, next);
  1674. prepare_lock_switch(rq, next);
  1675. prepare_arch_switch(next);
  1676. }
  1677. /**
  1678. * finish_task_switch - clean up after a task-switch
  1679. * @rq: runqueue associated with task-switch
  1680. * @prev: the thread we just switched away from.
  1681. *
  1682. * finish_task_switch must be called after the context switch, paired
  1683. * with a prepare_task_switch call before the context switch.
  1684. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1685. * and do any other architecture-specific cleanup actions.
  1686. *
  1687. * Note that we may have delayed dropping an mm in context_switch(). If
  1688. * so, we finish that here outside of the runqueue lock. (Doing it
  1689. * with the lock held can cause deadlocks; see schedule() for
  1690. * details.)
  1691. */
  1692. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1693. __releases(rq->lock)
  1694. {
  1695. struct mm_struct *mm = rq->prev_mm;
  1696. long prev_state;
  1697. rq->prev_mm = NULL;
  1698. /*
  1699. * A task struct has one reference for the use as "current".
  1700. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1701. * schedule one last time. The schedule call will never return, and
  1702. * the scheduled task must drop that reference.
  1703. *
  1704. * We must observe prev->state before clearing prev->on_cpu (in
  1705. * finish_lock_switch), otherwise a concurrent wakeup can get prev
  1706. * running on another CPU and we could rave with its RUNNING -> DEAD
  1707. * transition, resulting in a double drop.
  1708. */
  1709. prev_state = prev->state;
  1710. finish_arch_switch(prev);
  1711. perf_event_task_sched_in(prev, current);
  1712. finish_lock_switch(rq, prev);
  1713. finish_arch_post_lock_switch();
  1714. fire_sched_in_preempt_notifiers(current);
  1715. if (mm)
  1716. mmdrop(mm);
  1717. if (unlikely(prev_state == TASK_DEAD)) {
  1718. /*
  1719. * Remove function-return probe instances associated with this
  1720. * task and put them back on the free list.
  1721. */
  1722. kprobe_flush_task(prev);
  1723. put_task_struct(prev);
  1724. }
  1725. }
  1726. #ifdef CONFIG_SMP
  1727. /* assumes rq->lock is held */
  1728. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1729. {
  1730. if (prev->sched_class->pre_schedule)
  1731. prev->sched_class->pre_schedule(rq, prev);
  1732. }
  1733. /* rq->lock is NOT held, but preemption is disabled */
  1734. static inline void post_schedule(struct rq *rq)
  1735. {
  1736. if (rq->post_schedule) {
  1737. unsigned long flags;
  1738. raw_spin_lock_irqsave(&rq->lock, flags);
  1739. if (rq->curr->sched_class->post_schedule)
  1740. rq->curr->sched_class->post_schedule(rq);
  1741. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1742. rq->post_schedule = 0;
  1743. }
  1744. }
  1745. #else
  1746. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1747. {
  1748. }
  1749. static inline void post_schedule(struct rq *rq)
  1750. {
  1751. }
  1752. #endif
  1753. /**
  1754. * schedule_tail - first thing a freshly forked thread must call.
  1755. * @prev: the thread we just switched away from.
  1756. */
  1757. asmlinkage void schedule_tail(struct task_struct *prev)
  1758. __releases(rq->lock)
  1759. {
  1760. struct rq *rq = this_rq();
  1761. finish_task_switch(rq, prev);
  1762. /*
  1763. * FIXME: do we need to worry about rq being invalidated by the
  1764. * task_switch?
  1765. */
  1766. post_schedule(rq);
  1767. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1768. /* In this case, finish_task_switch does not reenable preemption */
  1769. preempt_enable();
  1770. #endif
  1771. if (current->set_child_tid)
  1772. put_user(task_pid_vnr(current), current->set_child_tid);
  1773. }
  1774. /*
  1775. * context_switch - switch to the new MM and the new
  1776. * thread's register state.
  1777. */
  1778. static inline void
  1779. context_switch(struct rq *rq, struct task_struct *prev,
  1780. struct task_struct *next)
  1781. {
  1782. struct mm_struct *mm, *oldmm;
  1783. prepare_task_switch(rq, prev, next);
  1784. mm = next->mm;
  1785. oldmm = prev->active_mm;
  1786. /*
  1787. * For paravirt, this is coupled with an exit in switch_to to
  1788. * combine the page table reload and the switch backend into
  1789. * one hypercall.
  1790. */
  1791. arch_start_context_switch(prev);
  1792. if (!mm) {
  1793. next->active_mm = oldmm;
  1794. atomic_inc(&oldmm->mm_count);
  1795. enter_lazy_tlb(oldmm, next);
  1796. } else
  1797. switch_mm(oldmm, mm, next);
  1798. if (!prev->mm) {
  1799. prev->active_mm = NULL;
  1800. rq->prev_mm = oldmm;
  1801. }
  1802. /*
  1803. * Since the runqueue lock will be released by the next
  1804. * task (which is an invalid locking op but in the case
  1805. * of the scheduler it's an obvious special-case), so we
  1806. * do an early lockdep release here:
  1807. */
  1808. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1809. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1810. #endif
  1811. /* Here we just switch the register state and the stack. */
  1812. switch_to(prev, next, prev);
  1813. barrier();
  1814. /*
  1815. * this_rq must be evaluated again because prev may have moved
  1816. * CPUs since it called schedule(), thus the 'rq' on its stack
  1817. * frame will be invalid.
  1818. */
  1819. finish_task_switch(this_rq(), prev);
  1820. }
  1821. /*
  1822. * nr_running and nr_context_switches:
  1823. *
  1824. * externally visible scheduler statistics: current number of runnable
  1825. * threads, total number of context switches performed since bootup.
  1826. */
  1827. unsigned long nr_running(void)
  1828. {
  1829. unsigned long i, sum = 0;
  1830. for_each_online_cpu(i)
  1831. sum += cpu_rq(i)->nr_running;
  1832. return sum;
  1833. }
  1834. unsigned long long nr_context_switches(void)
  1835. {
  1836. int i;
  1837. unsigned long long sum = 0;
  1838. for_each_possible_cpu(i)
  1839. sum += cpu_rq(i)->nr_switches;
  1840. return sum;
  1841. }
  1842. unsigned long nr_iowait(void)
  1843. {
  1844. unsigned long i, sum = 0;
  1845. for_each_possible_cpu(i)
  1846. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1847. return sum;
  1848. }
  1849. unsigned long nr_iowait_cpu(int cpu)
  1850. {
  1851. struct rq *this = cpu_rq(cpu);
  1852. return atomic_read(&this->nr_iowait);
  1853. }
  1854. unsigned long this_cpu_load(void)
  1855. {
  1856. struct rq *this = this_rq();
  1857. return this->cpu_load[0];
  1858. }
  1859. #ifdef CONFIG_RUNTIME_COMPCACHE
  1860. unsigned long this_cpu_loadx(int i)
  1861. {
  1862. struct rq *this = this_rq();
  1863. return this->cpu_load[i];
  1864. }
  1865. #endif /* CONFIG_RUNTIME_COMPCACHE */
  1866. /*
  1867. * Global load-average calculations
  1868. *
  1869. * We take a distributed and async approach to calculating the global load-avg
  1870. * in order to minimize overhead.
  1871. *
  1872. * The global load average is an exponentially decaying average of nr_running +
  1873. * nr_uninterruptible.
  1874. *
  1875. * Once every LOAD_FREQ:
  1876. *
  1877. * nr_active = 0;
  1878. * for_each_possible_cpu(cpu)
  1879. * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
  1880. *
  1881. * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
  1882. *
  1883. * Due to a number of reasons the above turns in the mess below:
  1884. *
  1885. * - for_each_possible_cpu() is prohibitively expensive on machines with
  1886. * serious number of cpus, therefore we need to take a distributed approach
  1887. * to calculating nr_active.
  1888. *
  1889. * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
  1890. * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
  1891. *
  1892. * So assuming nr_active := 0 when we start out -- true per definition, we
  1893. * can simply take per-cpu deltas and fold those into a global accumulate
  1894. * to obtain the same result. See calc_load_fold_active().
  1895. *
  1896. * Furthermore, in order to avoid synchronizing all per-cpu delta folding
  1897. * across the machine, we assume 10 ticks is sufficient time for every
  1898. * cpu to have completed this task.
  1899. *
  1900. * This places an upper-bound on the IRQ-off latency of the machine. Then
  1901. * again, being late doesn't loose the delta, just wrecks the sample.
  1902. *
  1903. * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
  1904. * this would add another cross-cpu cacheline miss and atomic operation
  1905. * to the wakeup path. Instead we increment on whatever cpu the task ran
  1906. * when it went into uninterruptible state and decrement on whatever cpu
  1907. * did the wakeup. This means that only the sum of nr_uninterruptible over
  1908. * all cpus yields the correct result.
  1909. *
  1910. * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
  1911. */
  1912. /* Variables and functions for calc_load */
  1913. static atomic_long_t calc_load_tasks;
  1914. static unsigned long calc_load_update;
  1915. unsigned long avenrun[3];
  1916. EXPORT_SYMBOL(avenrun); /* should be removed */
  1917. /**
  1918. * get_avenrun - get the load average array
  1919. * @loads: pointer to dest load array
  1920. * @offset: offset to add
  1921. * @shift: shift count to shift the result left
  1922. *
  1923. * These values are estimates at best, so no need for locking.
  1924. */
  1925. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  1926. {
  1927. loads[0] = (avenrun[0] + offset) << shift;
  1928. loads[1] = (avenrun[1] + offset) << shift;
  1929. loads[2] = (avenrun[2] + offset) << shift;
  1930. }
  1931. static long calc_load_fold_active(struct rq *this_rq)
  1932. {
  1933. long nr_active, delta = 0;
  1934. nr_active = this_rq->nr_running;
  1935. nr_active += (long) this_rq->nr_uninterruptible;
  1936. if (nr_active != this_rq->calc_load_active) {
  1937. delta = nr_active - this_rq->calc_load_active;
  1938. this_rq->calc_load_active = nr_active;
  1939. }
  1940. return delta;
  1941. }
  1942. /*
  1943. * a1 = a0 * e + a * (1 - e)
  1944. */
  1945. static unsigned long
  1946. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1947. {
  1948. load *= exp;
  1949. load += active * (FIXED_1 - exp);
  1950. load += 1UL << (FSHIFT - 1);
  1951. return load >> FSHIFT;
  1952. }
  1953. #ifdef CONFIG_NO_HZ
  1954. /*
  1955. * Handle NO_HZ for the global load-average.
  1956. *
  1957. * Since the above described distributed algorithm to compute the global
  1958. * load-average relies on per-cpu sampling from the tick, it is affected by
  1959. * NO_HZ.
  1960. *
  1961. * The basic idea is to fold the nr_active delta into a global idle-delta upon
  1962. * entering NO_HZ state such that we can include this as an 'extra' cpu delta
  1963. * when we read the global state.
  1964. *
  1965. * Obviously reality has to ruin such a delightfully simple scheme:
  1966. *
  1967. * - When we go NO_HZ idle during the window, we can negate our sample
  1968. * contribution, causing under-accounting.
  1969. *
  1970. * We avoid this by keeping two idle-delta counters and flipping them
  1971. * when the window starts, thus separating old and new NO_HZ load.
  1972. *
  1973. * The only trick is the slight shift in index flip for read vs write.
  1974. *
  1975. * 0s 5s 10s 15s
  1976. * +10 +10 +10 +10
  1977. * |-|-----------|-|-----------|-|-----------|-|
  1978. * r:0 0 1 1 0 0 1 1 0
  1979. * w:0 1 1 0 0 1 1 0 0
  1980. *
  1981. * This ensures we'll fold the old idle contribution in this window while
  1982. * accumlating the new one.
  1983. *
  1984. * - When we wake up from NO_HZ idle during the window, we push up our
  1985. * contribution, since we effectively move our sample point to a known
  1986. * busy state.
  1987. *
  1988. * This is solved by pushing the window forward, and thus skipping the
  1989. * sample, for this cpu (effectively using the idle-delta for this cpu which
  1990. * was in effect at the time the window opened). This also solves the issue
  1991. * of having to deal with a cpu having been in NOHZ idle for multiple
  1992. * LOAD_FREQ intervals.
  1993. *
  1994. * When making the ILB scale, we should try to pull this in as well.
  1995. */
  1996. static atomic_long_t calc_load_idle[2];
  1997. static int calc_load_idx;
  1998. static inline int calc_load_write_idx(void)
  1999. {
  2000. int idx = calc_load_idx;
  2001. /*
  2002. * See calc_global_nohz(), if we observe the new index, we also
  2003. * need to observe the new update time.
  2004. */
  2005. smp_rmb();
  2006. /*
  2007. * If the folding window started, make sure we start writing in the
  2008. * next idle-delta.
  2009. */
  2010. if (!time_before(jiffies, calc_load_update))
  2011. idx++;
  2012. return idx & 1;
  2013. }
  2014. static inline int calc_load_read_idx(void)
  2015. {
  2016. return calc_load_idx & 1;
  2017. }
  2018. void calc_load_enter_idle(void)
  2019. {
  2020. struct rq *this_rq = this_rq();
  2021. long delta;
  2022. /*
  2023. * We're going into NOHZ mode, if there's any pending delta, fold it
  2024. * into the pending idle delta.
  2025. */
  2026. delta = calc_load_fold_active(this_rq);
  2027. if (delta) {
  2028. int idx = calc_load_write_idx();
  2029. atomic_long_add(delta, &calc_load_idle[idx]);
  2030. }
  2031. }
  2032. void calc_load_exit_idle(void)
  2033. {
  2034. struct rq *this_rq = this_rq();
  2035. /*
  2036. * If we're still before the sample window, we're done.
  2037. */
  2038. if (time_before(jiffies, this_rq->calc_load_update))
  2039. return;
  2040. /*
  2041. * We woke inside or after the sample window, this means we're already
  2042. * accounted through the nohz accounting, so skip the entire deal and
  2043. * sync up for the next window.
  2044. */
  2045. this_rq->calc_load_update = calc_load_update;
  2046. if (time_before(jiffies, this_rq->calc_load_update + 10))
  2047. this_rq->calc_load_update += LOAD_FREQ;
  2048. }
  2049. static long calc_load_fold_idle(void)
  2050. {
  2051. int idx = calc_load_read_idx();
  2052. long delta = 0;
  2053. if (atomic_long_read(&calc_load_idle[idx]))
  2054. delta = atomic_long_xchg(&calc_load_idle[idx], 0);
  2055. return delta;
  2056. }
  2057. /**
  2058. * fixed_power_int - compute: x^n, in O(log n) time
  2059. *
  2060. * @x: base of the power
  2061. * @frac_bits: fractional bits of @x
  2062. * @n: power to raise @x to.
  2063. *
  2064. * By exploiting the relation between the definition of the natural power
  2065. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2066. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2067. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2068. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2069. * of course trivially computable in O(log_2 n), the length of our binary
  2070. * vector.
  2071. */
  2072. static unsigned long
  2073. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2074. {
  2075. unsigned long result = 1UL << frac_bits;
  2076. if (n) for (;;) {
  2077. if (n & 1) {
  2078. result *= x;
  2079. result += 1UL << (frac_bits - 1);
  2080. result >>= frac_bits;
  2081. }
  2082. n >>= 1;
  2083. if (!n)
  2084. break;
  2085. x *= x;
  2086. x += 1UL << (frac_bits - 1);
  2087. x >>= frac_bits;
  2088. }
  2089. return result;
  2090. }
  2091. /*
  2092. * a1 = a0 * e + a * (1 - e)
  2093. *
  2094. * a2 = a1 * e + a * (1 - e)
  2095. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2096. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2097. *
  2098. * a3 = a2 * e + a * (1 - e)
  2099. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2100. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2101. *
  2102. * ...
  2103. *
  2104. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2105. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2106. * = a0 * e^n + a * (1 - e^n)
  2107. *
  2108. * [1] application of the geometric series:
  2109. *
  2110. * n 1 - x^(n+1)
  2111. * S_n := \Sum x^i = -------------
  2112. * i=0 1 - x
  2113. */
  2114. static unsigned long
  2115. calc_load_n(unsigned long load, unsigned long exp,
  2116. unsigned long active, unsigned int n)
  2117. {
  2118. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2119. }
  2120. /*
  2121. * NO_HZ can leave us missing all per-cpu ticks calling
  2122. * calc_load_account_active(), but since an idle CPU folds its delta into
  2123. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2124. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2125. *
  2126. * Once we've updated the global active value, we need to apply the exponential
  2127. * weights adjusted to the number of cycles missed.
  2128. */
  2129. static void calc_global_nohz(void)
  2130. {
  2131. long delta, active, n;
  2132. if (!time_before(jiffies, calc_load_update + 10)) {
  2133. /*
  2134. * Catch-up, fold however many we are behind still
  2135. */
  2136. delta = jiffies - calc_load_update - 10;
  2137. n = 1 + (delta / LOAD_FREQ);
  2138. active = atomic_long_read(&calc_load_tasks);
  2139. active = active > 0 ? active * FIXED_1 : 0;
  2140. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2141. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2142. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2143. calc_load_update += n * LOAD_FREQ;
  2144. }
  2145. /*
  2146. * Flip the idle index...
  2147. *
  2148. * Make sure we first write the new time then flip the index, so that
  2149. * calc_load_write_idx() will see the new time when it reads the new
  2150. * index, this avoids a double flip messing things up.
  2151. */
  2152. smp_wmb();
  2153. calc_load_idx++;
  2154. }
  2155. #else /* !CONFIG_NO_HZ */
  2156. static inline long calc_load_fold_idle(void) { return 0; }
  2157. static inline void calc_global_nohz(void) { }
  2158. #endif /* CONFIG_NO_HZ */
  2159. /*
  2160. * calc_load - update the avenrun load estimates 10 ticks after the
  2161. * CPUs have updated calc_load_tasks.
  2162. */
  2163. void calc_global_load(unsigned long ticks)
  2164. {
  2165. long active, delta;
  2166. if (time_before(jiffies, calc_load_update + 10))
  2167. return;
  2168. /*
  2169. * Fold the 'old' idle-delta to include all NO_HZ cpus.
  2170. */
  2171. delta = calc_load_fold_idle();
  2172. if (delta)
  2173. atomic_long_add(delta, &calc_load_tasks);
  2174. active = atomic_long_read(&calc_load_tasks);
  2175. active = active > 0 ? active * FIXED_1 : 0;
  2176. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2177. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2178. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2179. calc_load_update += LOAD_FREQ;
  2180. /*
  2181. * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
  2182. */
  2183. calc_global_nohz();
  2184. }
  2185. /*
  2186. * Called from update_cpu_load() to periodically update this CPU's
  2187. * active count.
  2188. */
  2189. static void calc_load_account_active(struct rq *this_rq)
  2190. {
  2191. long delta;
  2192. if (time_before(jiffies, this_rq->calc_load_update))
  2193. return;
  2194. delta = calc_load_fold_active(this_rq);
  2195. if (delta)
  2196. atomic_long_add(delta, &calc_load_tasks);
  2197. this_rq->calc_load_update += LOAD_FREQ;
  2198. }
  2199. /*
  2200. * End of global load-average stuff
  2201. */
  2202. /*
  2203. * The exact cpuload at various idx values, calculated at every tick would be
  2204. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2205. *
  2206. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2207. * on nth tick when cpu may be busy, then we have:
  2208. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2209. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2210. *
  2211. * decay_load_missed() below does efficient calculation of
  2212. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2213. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2214. *
  2215. * The calculation is approximated on a 128 point scale.
  2216. * degrade_zero_ticks is the number of ticks after which load at any
  2217. * particular idx is approximated to be zero.
  2218. * degrade_factor is a precomputed table, a row for each load idx.
  2219. * Each column corresponds to degradation factor for a power of two ticks,
  2220. * based on 128 point scale.
  2221. * Example:
  2222. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2223. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2224. *
  2225. * With this power of 2 load factors, we can degrade the load n times
  2226. * by looking at 1 bits in n and doing as many mult/shift instead of
  2227. * n mult/shifts needed by the exact degradation.
  2228. */
  2229. #define DEGRADE_SHIFT 7
  2230. static const unsigned char
  2231. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2232. static const unsigned char
  2233. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2234. {0, 0, 0, 0, 0, 0, 0, 0},
  2235. {64, 32, 8, 0, 0, 0, 0, 0},
  2236. {96, 72, 40, 12, 1, 0, 0},
  2237. {112, 98, 75, 43, 15, 1, 0},
  2238. {120, 112, 98, 76, 45, 16, 2} };
  2239. /*
  2240. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2241. * would be when CPU is idle and so we just decay the old load without
  2242. * adding any new load.
  2243. */
  2244. static unsigned long
  2245. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2246. {
  2247. int j = 0;
  2248. if (!missed_updates)
  2249. return load;
  2250. if (missed_updates >= degrade_zero_ticks[idx])
  2251. return 0;
  2252. if (idx == 1)
  2253. return load >> missed_updates;
  2254. while (missed_updates) {
  2255. if (missed_updates % 2)
  2256. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2257. missed_updates >>= 1;
  2258. j++;
  2259. }
  2260. return load;
  2261. }
  2262. /*
  2263. * Update rq->cpu_load[] statistics. This function is usually called every
  2264. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2265. * every tick. We fix it up based on jiffies.
  2266. */
  2267. static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
  2268. unsigned long pending_updates)
  2269. {
  2270. int i, scale;
  2271. this_rq->nr_load_updates++;
  2272. /* Update our load: */
  2273. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2274. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2275. unsigned long old_load, new_load;
  2276. /* scale is effectively 1 << i now, and >> i divides by scale */
  2277. old_load = this_rq->cpu_load[i];
  2278. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2279. new_load = this_load;
  2280. /*
  2281. * Round up the averaging division if load is increasing. This
  2282. * prevents us from getting stuck on 9 if the load is 10, for
  2283. * example.
  2284. */
  2285. if (new_load > old_load)
  2286. new_load += scale - 1;
  2287. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2288. }
  2289. sched_avg_update(this_rq);
  2290. }
  2291. #ifdef CONFIG_NO_HZ
  2292. /*
  2293. * There is no sane way to deal with nohz on smp when using jiffies because the
  2294. * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
  2295. * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
  2296. *
  2297. * Therefore we cannot use the delta approach from the regular tick since that
  2298. * would seriously skew the load calculation. However we'll make do for those
  2299. * updates happening while idle (nohz_idle_balance) or coming out of idle
  2300. * (tick_nohz_idle_exit).
  2301. *
  2302. * This means we might still be one tick off for nohz periods.
  2303. */
  2304. /*
  2305. * Called from nohz_idle_balance() to update the load ratings before doing the
  2306. * idle balance.
  2307. */
  2308. void update_idle_cpu_load(struct rq *this_rq)
  2309. {
  2310. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2311. unsigned long load = this_rq->load.weight;
  2312. unsigned long pending_updates;
  2313. /*
  2314. * bail if there's load or we're actually up-to-date.
  2315. */
  2316. if (load || curr_jiffies == this_rq->last_load_update_tick)
  2317. return;
  2318. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2319. this_rq->last_load_update_tick = curr_jiffies;
  2320. __update_cpu_load(this_rq, load, pending_updates);
  2321. }
  2322. /*
  2323. * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
  2324. */
  2325. void update_cpu_load_nohz(void)
  2326. {
  2327. struct rq *this_rq = this_rq();
  2328. unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
  2329. unsigned long pending_updates;
  2330. if (curr_jiffies == this_rq->last_load_update_tick)
  2331. return;
  2332. raw_spin_lock(&this_rq->lock);
  2333. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2334. if (pending_updates) {
  2335. this_rq->last_load_update_tick = curr_jiffies;
  2336. /*
  2337. * We were idle, this means load 0, the current load might be
  2338. * !0 due to remote wakeups and the sort.
  2339. */
  2340. __update_cpu_load(this_rq, 0, pending_updates);
  2341. }
  2342. raw_spin_unlock(&this_rq->lock);
  2343. }
  2344. #endif /* CONFIG_NO_HZ */
  2345. /*
  2346. * Called from scheduler_tick()
  2347. */
  2348. static void update_cpu_load_active(struct rq *this_rq)
  2349. {
  2350. /*
  2351. * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
  2352. */
  2353. this_rq->last_load_update_tick = jiffies;
  2354. __update_cpu_load(this_rq, this_rq->load.weight, 1);
  2355. calc_load_account_active(this_rq);
  2356. }
  2357. #ifdef CONFIG_SMP
  2358. /*
  2359. * sched_exec - execve() is a valuable balancing opportunity, because at
  2360. * this point the task has the smallest effective memory and cache footprint.
  2361. */
  2362. void sched_exec(void)
  2363. {
  2364. struct task_struct *p = current;
  2365. unsigned long flags;
  2366. int dest_cpu;
  2367. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2368. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2369. if (dest_cpu == smp_processor_id())
  2370. goto unlock;
  2371. if (likely(cpu_active(dest_cpu))) {
  2372. struct migration_arg arg = { p, dest_cpu };
  2373. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2374. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2375. return;
  2376. }
  2377. unlock:
  2378. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2379. }
  2380. #endif
  2381. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2382. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2383. EXPORT_PER_CPU_SYMBOL(kstat);
  2384. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2385. /*
  2386. * Return any ns on the sched_clock that have not yet been accounted in
  2387. * @p in case that task is currently running.
  2388. *
  2389. * Called with task_rq_lock() held on @rq.
  2390. */
  2391. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2392. {
  2393. u64 ns = 0;
  2394. if (task_current(rq, p)) {
  2395. update_rq_clock(rq);
  2396. ns = rq->clock_task - p->se.exec_start;
  2397. if ((s64)ns < 0)
  2398. ns = 0;
  2399. }
  2400. return ns;
  2401. }
  2402. unsigned long long task_delta_exec(struct task_struct *p)
  2403. {
  2404. unsigned long flags;
  2405. struct rq *rq;
  2406. u64 ns = 0;
  2407. rq = task_rq_lock(p, &flags);
  2408. ns = do_task_delta_exec(p, rq);
  2409. task_rq_unlock(rq, p, &flags);
  2410. return ns;
  2411. }
  2412. /*
  2413. * Return accounted runtime for the task.
  2414. * In case the task is currently running, return the runtime plus current's
  2415. * pending runtime that have not been accounted yet.
  2416. */
  2417. unsigned long long task_sched_runtime(struct task_struct *p)
  2418. {
  2419. unsigned long flags;
  2420. struct rq *rq;
  2421. u64 ns = 0;
  2422. rq = task_rq_lock(p, &flags);
  2423. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2424. task_rq_unlock(rq, p, &flags);
  2425. return ns;
  2426. }
  2427. #ifdef CONFIG_CGROUP_CPUACCT
  2428. struct cgroup_subsys cpuacct_subsys;
  2429. struct cpuacct root_cpuacct;
  2430. #endif
  2431. static inline void task_group_account_field(struct task_struct *p, int index,
  2432. u64 tmp)
  2433. {
  2434. #ifdef CONFIG_CGROUP_CPUACCT
  2435. struct kernel_cpustat *kcpustat;
  2436. struct cpuacct *ca;
  2437. #endif
  2438. /*
  2439. * Since all updates are sure to touch the root cgroup, we
  2440. * get ourselves ahead and touch it first. If the root cgroup
  2441. * is the only cgroup, then nothing else should be necessary.
  2442. *
  2443. */
  2444. __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
  2445. #ifdef CONFIG_CGROUP_CPUACCT
  2446. if (unlikely(!cpuacct_subsys.active))
  2447. return;
  2448. rcu_read_lock();
  2449. ca = task_ca(p);
  2450. while (ca && (ca != &root_cpuacct)) {
  2451. kcpustat = this_cpu_ptr(ca->cpustat);
  2452. kcpustat->cpustat[index] += tmp;
  2453. ca = parent_ca(ca);
  2454. }
  2455. rcu_read_unlock();
  2456. #endif
  2457. }
  2458. /*
  2459. * Account user cpu time to a process.
  2460. * @p: the process that the cpu time gets accounted to
  2461. * @cputime: the cpu time spent in user space since the last update
  2462. * @cputime_scaled: cputime scaled by cpu frequency
  2463. */
  2464. void account_user_time(struct task_struct *p, cputime_t cputime,
  2465. cputime_t cputime_scaled)
  2466. {
  2467. int index;
  2468. /* Add user time to process. */
  2469. p->utime += cputime;
  2470. p->utimescaled += cputime_scaled;
  2471. account_group_user_time(p, cputime);
  2472. index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
  2473. /* Add user time to cpustat. */
  2474. task_group_account_field(p, index, (__force u64) cputime);
  2475. /* Account for user time used */
  2476. acct_update_integrals(p);
  2477. /* Account power usage for user time */
  2478. acct_update_power(p, cputime);
  2479. }
  2480. /*
  2481. * Account guest cpu time to a process.
  2482. * @p: the process that the cpu time gets accounted to
  2483. * @cputime: the cpu time spent in virtual machine since the last update
  2484. * @cputime_scaled: cputime scaled by cpu frequency
  2485. */
  2486. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2487. cputime_t cputime_scaled)
  2488. {
  2489. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2490. /* Add guest time to process. */
  2491. p->utime += cputime;
  2492. p->utimescaled += cputime_scaled;
  2493. account_group_user_time(p, cputime);
  2494. p->gtime += cputime;
  2495. /* Add guest time to cpustat. */
  2496. if (TASK_NICE(p) > 0) {
  2497. cpustat[CPUTIME_NICE] += (__force u64) cputime;
  2498. cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
  2499. } else {
  2500. cpustat[CPUTIME_USER] += (__force u64) cputime;
  2501. cpustat[CPUTIME_GUEST] += (__force u64) cputime;
  2502. }
  2503. }
  2504. /*
  2505. * Account system cpu time to a process and desired cpustat field
  2506. * @p: the process that the cpu time gets accounted to
  2507. * @cputime: the cpu time spent in kernel space since the last update
  2508. * @cputime_scaled: cputime scaled by cpu frequency
  2509. * @target_cputime64: pointer to cpustat field that has to be updated
  2510. */
  2511. static inline
  2512. void __account_system_time(struct task_struct *p, cputime_t cputime,
  2513. cputime_t cputime_scaled, int index)
  2514. {
  2515. /* Add system time to process. */
  2516. p->stime += cputime;
  2517. p->stimescaled += cputime_scaled;
  2518. account_group_system_time(p, cputime);
  2519. /* Add system time to cpustat. */
  2520. task_group_account_field(p, index, (__force u64) cputime);
  2521. /* Account for system time used */
  2522. acct_update_integrals(p);
  2523. /* Account power usage for system time */
  2524. acct_update_power(p, cputime);
  2525. }
  2526. /*
  2527. * Account system cpu time to a process.
  2528. * @p: the process that the cpu time gets accounted to
  2529. * @hardirq_offset: the offset to subtract from hardirq_count()
  2530. * @cputime: the cpu time spent in kernel space since the last update
  2531. * @cputime_scaled: cputime scaled by cpu frequency
  2532. */
  2533. void account_system_time(struct task_struct *p, int hardirq_offset,
  2534. cputime_t cputime, cputime_t cputime_scaled)
  2535. {
  2536. int index;
  2537. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2538. account_guest_time(p, cputime, cputime_scaled);
  2539. return;
  2540. }
  2541. if (hardirq_count() - hardirq_offset)
  2542. index = CPUTIME_IRQ;
  2543. else if (in_serving_softirq())
  2544. index = CPUTIME_SOFTIRQ;
  2545. else
  2546. index = CPUTIME_SYSTEM;
  2547. __account_system_time(p, cputime, cputime_scaled, index);
  2548. }
  2549. /*
  2550. * Account for involuntary wait time.
  2551. * @cputime: the cpu time spent in involuntary wait
  2552. */
  2553. void account_steal_time(cputime_t cputime)
  2554. {
  2555. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2556. cpustat[CPUTIME_STEAL] += (__force u64) cputime;
  2557. }
  2558. /*
  2559. * Account for idle time.
  2560. * @cputime: the cpu time spent in idle wait
  2561. */
  2562. void account_idle_time(cputime_t cputime)
  2563. {
  2564. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2565. struct rq *rq = this_rq();
  2566. if (atomic_read(&rq->nr_iowait) > 0)
  2567. cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
  2568. else
  2569. cpustat[CPUTIME_IDLE] += (__force u64) cputime;
  2570. }
  2571. static __always_inline bool steal_account_process_tick(void)
  2572. {
  2573. #ifdef CONFIG_PARAVIRT
  2574. if (static_key_false(&paravirt_steal_enabled)) {
  2575. u64 steal, st = 0;
  2576. steal = paravirt_steal_clock(smp_processor_id());
  2577. steal -= this_rq()->prev_steal_time;
  2578. st = steal_ticks(steal);
  2579. this_rq()->prev_steal_time += st * TICK_NSEC;
  2580. account_steal_time(st);
  2581. return st;
  2582. }
  2583. #endif
  2584. return false;
  2585. }
  2586. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2587. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  2588. /*
  2589. * Account a tick to a process and cpustat
  2590. * @p: the process that the cpu time gets accounted to
  2591. * @user_tick: is the tick from userspace
  2592. * @rq: the pointer to rq
  2593. *
  2594. * Tick demultiplexing follows the order
  2595. * - pending hardirq update
  2596. * - pending softirq update
  2597. * - user_time
  2598. * - idle_time
  2599. * - system time
  2600. * - check for guest_time
  2601. * - else account as system_time
  2602. *
  2603. * Check for hardirq is done both for system and user time as there is
  2604. * no timer going off while we are on hardirq and hence we may never get an
  2605. * opportunity to update it solely in system time.
  2606. * p->stime and friends are only updated on system time and not on irq
  2607. * softirq as those do not count in task exec_runtime any more.
  2608. */
  2609. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2610. struct rq *rq)
  2611. {
  2612. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2613. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2614. if (steal_account_process_tick())
  2615. return;
  2616. if (irqtime_account_hi_update()) {
  2617. cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
  2618. } else if (irqtime_account_si_update()) {
  2619. cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
  2620. } else if (this_cpu_ksoftirqd() == p) {
  2621. /*
  2622. * ksoftirqd time do not get accounted in cpu_softirq_time.
  2623. * So, we have to handle it separately here.
  2624. * Also, p->stime needs to be updated for ksoftirqd.
  2625. */
  2626. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2627. CPUTIME_SOFTIRQ);
  2628. } else if (user_tick) {
  2629. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2630. } else if (p == rq->idle) {
  2631. account_idle_time(cputime_one_jiffy);
  2632. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  2633. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2634. } else {
  2635. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2636. CPUTIME_SYSTEM);
  2637. }
  2638. }
  2639. static void irqtime_account_idle_ticks(int ticks)
  2640. {
  2641. int i;
  2642. struct rq *rq = this_rq();
  2643. for (i = 0; i < ticks; i++)
  2644. irqtime_account_process_tick(current, 0, rq);
  2645. }
  2646. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  2647. static void irqtime_account_idle_ticks(int ticks) {}
  2648. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2649. struct rq *rq) {}
  2650. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  2651. /*
  2652. * Account a single tick of cpu time.
  2653. * @p: the process that the cpu time gets accounted to
  2654. * @user_tick: indicates if the tick is a user or a system tick
  2655. */
  2656. void account_process_tick(struct task_struct *p, int user_tick)
  2657. {
  2658. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2659. struct rq *rq = this_rq();
  2660. if (sched_clock_irqtime) {
  2661. irqtime_account_process_tick(p, user_tick, rq);
  2662. return;
  2663. }
  2664. if (steal_account_process_tick())
  2665. return;
  2666. if (user_tick)
  2667. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2668. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2669. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2670. one_jiffy_scaled);
  2671. else
  2672. account_idle_time(cputime_one_jiffy);
  2673. }
  2674. /*
  2675. * Account multiple ticks of steal time.
  2676. * @p: the process from which the cpu time has been stolen
  2677. * @ticks: number of stolen ticks
  2678. */
  2679. void account_steal_ticks(unsigned long ticks)
  2680. {
  2681. account_steal_time(jiffies_to_cputime(ticks));
  2682. }
  2683. /*
  2684. * Account multiple ticks of idle time.
  2685. * @ticks: number of stolen ticks
  2686. */
  2687. void account_idle_ticks(unsigned long ticks)
  2688. {
  2689. if (sched_clock_irqtime) {
  2690. irqtime_account_idle_ticks(ticks);
  2691. return;
  2692. }
  2693. account_idle_time(jiffies_to_cputime(ticks));
  2694. }
  2695. #endif
  2696. /*
  2697. * Use precise platform statistics if available:
  2698. */
  2699. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2700. void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2701. {
  2702. *ut = p->utime;
  2703. *st = p->stime;
  2704. }
  2705. void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2706. {
  2707. struct task_cputime cputime;
  2708. thread_group_cputime(p, &cputime);
  2709. *ut = cputime.utime;
  2710. *st = cputime.stime;
  2711. }
  2712. #else
  2713. #ifndef nsecs_to_cputime
  2714. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2715. #endif
  2716. static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
  2717. {
  2718. u64 temp = (__force u64) rtime;
  2719. temp *= (__force u64) utime;
  2720. if (sizeof(cputime_t) == 4)
  2721. temp = div_u64(temp, (__force u32) total);
  2722. else
  2723. temp = div64_u64(temp, (__force u64) total);
  2724. return (__force cputime_t) temp;
  2725. }
  2726. void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2727. {
  2728. cputime_t rtime, utime = p->utime, total = utime + p->stime;
  2729. /*
  2730. * Use CFS's precise accounting:
  2731. */
  2732. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2733. if (total)
  2734. utime = scale_utime(utime, rtime, total);
  2735. else
  2736. utime = rtime;
  2737. /*
  2738. * Compare with previous values, to keep monotonicity:
  2739. */
  2740. p->prev_utime = max(p->prev_utime, utime);
  2741. p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
  2742. *ut = p->prev_utime;
  2743. *st = p->prev_stime;
  2744. }
  2745. /*
  2746. * Must be called with siglock held.
  2747. */
  2748. void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2749. {
  2750. struct signal_struct *sig = p->signal;
  2751. struct task_cputime cputime;
  2752. cputime_t rtime, utime, total;
  2753. thread_group_cputime(p, &cputime);
  2754. total = cputime.utime + cputime.stime;
  2755. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2756. if (total)
  2757. utime = scale_utime(cputime.utime, rtime, total);
  2758. else
  2759. utime = rtime;
  2760. sig->prev_utime = max(sig->prev_utime, utime);
  2761. sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
  2762. *ut = sig->prev_utime;
  2763. *st = sig->prev_stime;
  2764. }
  2765. #endif
  2766. /*
  2767. * This function gets called by the timer code, with HZ frequency.
  2768. * We call it with interrupts disabled.
  2769. */
  2770. void scheduler_tick(void)
  2771. {
  2772. int cpu = smp_processor_id();
  2773. struct rq *rq = cpu_rq(cpu);
  2774. struct task_struct *curr = rq->curr;
  2775. sched_clock_tick();
  2776. raw_spin_lock(&rq->lock);
  2777. update_rq_clock(rq);
  2778. update_cpu_load_active(rq);
  2779. curr->sched_class->task_tick(rq, curr, 0);
  2780. raw_spin_unlock(&rq->lock);
  2781. perf_event_task_tick();
  2782. #ifdef CONFIG_SMP
  2783. rq->idle_balance = idle_cpu(cpu);
  2784. trigger_load_balance(rq, cpu);
  2785. #endif
  2786. }
  2787. notrace unsigned long get_parent_ip(unsigned long addr)
  2788. {
  2789. if (in_lock_functions(addr)) {
  2790. addr = CALLER_ADDR2;
  2791. if (in_lock_functions(addr))
  2792. addr = CALLER_ADDR3;
  2793. }
  2794. return addr;
  2795. }
  2796. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2797. defined(CONFIG_PREEMPT_TRACER))
  2798. void __kprobes add_preempt_count(int val)
  2799. {
  2800. #ifdef CONFIG_DEBUG_PREEMPT
  2801. /*
  2802. * Underflow?
  2803. */
  2804. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2805. return;
  2806. #endif
  2807. preempt_count() += val;
  2808. #ifdef CONFIG_DEBUG_PREEMPT
  2809. /*
  2810. * Spinlock count overflowing soon?
  2811. */
  2812. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2813. PREEMPT_MASK - 10);
  2814. #endif
  2815. if (preempt_count() == val)
  2816. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2817. }
  2818. EXPORT_SYMBOL(add_preempt_count);
  2819. void __kprobes sub_preempt_count(int val)
  2820. {
  2821. #ifdef CONFIG_DEBUG_PREEMPT
  2822. /*
  2823. * Underflow?
  2824. */
  2825. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2826. return;
  2827. /*
  2828. * Is the spinlock portion underflowing?
  2829. */
  2830. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2831. !(preempt_count() & PREEMPT_MASK)))
  2832. return;
  2833. #endif
  2834. if (preempt_count() == val)
  2835. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2836. preempt_count() -= val;
  2837. }
  2838. EXPORT_SYMBOL(sub_preempt_count);
  2839. #endif
  2840. /*
  2841. * Print scheduling while atomic bug:
  2842. */
  2843. static noinline void __schedule_bug(struct task_struct *prev)
  2844. {
  2845. if (oops_in_progress)
  2846. return;
  2847. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2848. prev->comm, prev->pid, preempt_count());
  2849. debug_show_held_locks(prev);
  2850. print_modules();
  2851. if (irqs_disabled())
  2852. print_irqtrace_events(prev);
  2853. dump_stack();
  2854. }
  2855. /*
  2856. * Various schedule()-time debugging checks and statistics:
  2857. */
  2858. static inline void schedule_debug(struct task_struct *prev)
  2859. {
  2860. /*
  2861. * Test if we are atomic. Since do_exit() needs to call into
  2862. * schedule() atomically, we ignore that path for now.
  2863. * Otherwise, whine if we are scheduling when we should not be.
  2864. */
  2865. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2866. __schedule_bug(prev);
  2867. rcu_sleep_check();
  2868. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2869. schedstat_inc(this_rq(), sched_count);
  2870. }
  2871. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2872. {
  2873. if (prev->on_rq || rq->skip_clock_update < 0)
  2874. update_rq_clock(rq);
  2875. prev->sched_class->put_prev_task(rq, prev);
  2876. }
  2877. /*
  2878. * Pick up the highest-prio task:
  2879. */
  2880. static inline struct task_struct *
  2881. pick_next_task(struct rq *rq)
  2882. {
  2883. const struct sched_class *class;
  2884. struct task_struct *p;
  2885. /*
  2886. * Optimization: we know that if all tasks are in
  2887. * the fair class we can call that function directly:
  2888. */
  2889. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2890. p = fair_sched_class.pick_next_task(rq);
  2891. if (likely(p))
  2892. return p;
  2893. }
  2894. for_each_class(class) {
  2895. p = class->pick_next_task(rq);
  2896. if (p)
  2897. return p;
  2898. }
  2899. BUG(); /* the idle class will always have a runnable task */
  2900. }
  2901. /*
  2902. * __schedule() is the main scheduler function.
  2903. */
  2904. static void __sched __schedule(void)
  2905. {
  2906. struct task_struct *prev, *next;
  2907. unsigned long *switch_count;
  2908. struct rq *rq;
  2909. int cpu;
  2910. need_resched:
  2911. preempt_disable();
  2912. cpu = smp_processor_id();
  2913. rq = cpu_rq(cpu);
  2914. rcu_note_context_switch(cpu);
  2915. prev = rq->curr;
  2916. schedule_debug(prev);
  2917. if (sched_feat(HRTICK))
  2918. hrtick_clear(rq);
  2919. raw_spin_lock_irq(&rq->lock);
  2920. switch_count = &prev->nivcsw;
  2921. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2922. if (unlikely(signal_pending_state(prev->state, prev))) {
  2923. prev->state = TASK_RUNNING;
  2924. } else {
  2925. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2926. prev->on_rq = 0;
  2927. /*
  2928. * If a worker went to sleep, notify and ask workqueue
  2929. * whether it wants to wake up a task to maintain
  2930. * concurrency.
  2931. */
  2932. if (prev->flags & PF_WQ_WORKER) {
  2933. struct task_struct *to_wakeup;
  2934. to_wakeup = wq_worker_sleeping(prev, cpu);
  2935. if (to_wakeup)
  2936. try_to_wake_up_local(to_wakeup);
  2937. }
  2938. }
  2939. switch_count = &prev->nvcsw;
  2940. }
  2941. pre_schedule(rq, prev);
  2942. if (unlikely(!rq->nr_running))
  2943. idle_balance(cpu, rq);
  2944. put_prev_task(rq, prev);
  2945. next = pick_next_task(rq);
  2946. clear_tsk_need_resched(prev);
  2947. rq->skip_clock_update = 0;
  2948. if (likely(prev != next)) {
  2949. rq->nr_switches++;
  2950. rq->curr = next;
  2951. ++*switch_count;
  2952. context_switch(rq, prev, next); /* unlocks the rq */
  2953. /*
  2954. * The context switch have flipped the stack from under us
  2955. * and restored the local variables which were saved when
  2956. * this task called schedule() in the past. prev == current
  2957. * is still correct, but it can be moved to another cpu/rq.
  2958. */
  2959. cpu = smp_processor_id();
  2960. rq = cpu_rq(cpu);
  2961. #ifdef CONFIG_SEC_DEBUG
  2962. sec_debug_task_sched_log(cpu, rq->curr);
  2963. #endif
  2964. } else
  2965. raw_spin_unlock_irq(&rq->lock);
  2966. post_schedule(rq);
  2967. sched_preempt_enable_no_resched();
  2968. if (need_resched())
  2969. goto need_resched;
  2970. }
  2971. static inline void sched_submit_work(struct task_struct *tsk)
  2972. {
  2973. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2974. return;
  2975. /*
  2976. * If we are going to sleep and we have plugged IO queued,
  2977. * make sure to submit it to avoid deadlocks.
  2978. */
  2979. if (blk_needs_flush_plug(tsk))
  2980. blk_schedule_flush_plug(tsk);
  2981. }
  2982. asmlinkage void __sched schedule(void)
  2983. {
  2984. struct task_struct *tsk = current;
  2985. sched_submit_work(tsk);
  2986. __schedule();
  2987. }
  2988. EXPORT_SYMBOL(schedule);
  2989. /**
  2990. * schedule_preempt_disabled - called with preemption disabled
  2991. *
  2992. * Returns with preemption disabled. Note: preempt_count must be 1
  2993. */
  2994. void __sched schedule_preempt_disabled(void)
  2995. {
  2996. sched_preempt_enable_no_resched();
  2997. schedule();
  2998. preempt_disable();
  2999. }
  3000. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3001. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3002. {
  3003. if (lock->owner != owner)
  3004. return false;
  3005. /*
  3006. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3007. * lock->owner still matches owner, if that fails, owner might
  3008. * point to free()d memory, if it still matches, the rcu_read_lock()
  3009. * ensures the memory stays valid.
  3010. */
  3011. barrier();
  3012. return owner->on_cpu;
  3013. }
  3014. /*
  3015. * Look out! "owner" is an entirely speculative pointer
  3016. * access and not reliable.
  3017. */
  3018. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3019. {
  3020. if (!sched_feat(OWNER_SPIN))
  3021. return 0;
  3022. rcu_read_lock();
  3023. while (owner_running(lock, owner)) {
  3024. if (need_resched())
  3025. break;
  3026. arch_mutex_cpu_relax();
  3027. }
  3028. rcu_read_unlock();
  3029. /*
  3030. * We break out the loop above on need_resched() and when the
  3031. * owner changed, which is a sign for heavy contention. Return
  3032. * success only when lock->owner is NULL.
  3033. */
  3034. return lock->owner == NULL;
  3035. }
  3036. #endif
  3037. #ifdef CONFIG_PREEMPT
  3038. /*
  3039. * this is the entry point to schedule() from in-kernel preemption
  3040. * off of preempt_enable. Kernel preemptions off return from interrupt
  3041. * occur there and call schedule directly.
  3042. */
  3043. asmlinkage void __sched notrace preempt_schedule(void)
  3044. {
  3045. struct thread_info *ti = current_thread_info();
  3046. /*
  3047. * If there is a non-zero preempt_count or interrupts are disabled,
  3048. * we do not want to preempt the current task. Just return..
  3049. */
  3050. if (likely(ti->preempt_count || irqs_disabled()))
  3051. return;
  3052. do {
  3053. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3054. __schedule();
  3055. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3056. /*
  3057. * Check again in case we missed a preemption opportunity
  3058. * between schedule and now.
  3059. */
  3060. barrier();
  3061. } while (need_resched());
  3062. }
  3063. EXPORT_SYMBOL(preempt_schedule);
  3064. /*
  3065. * this is the entry point to schedule() from kernel preemption
  3066. * off of irq context.
  3067. * Note, that this is called and return with irqs disabled. This will
  3068. * protect us against recursive calling from irq.
  3069. */
  3070. asmlinkage void __sched preempt_schedule_irq(void)
  3071. {
  3072. struct thread_info *ti = current_thread_info();
  3073. /* Catch callers which need to be fixed */
  3074. BUG_ON(ti->preempt_count || !irqs_disabled());
  3075. do {
  3076. add_preempt_count(PREEMPT_ACTIVE);
  3077. local_irq_enable();
  3078. __schedule();
  3079. local_irq_disable();
  3080. sub_preempt_count(PREEMPT_ACTIVE);
  3081. /*
  3082. * Check again in case we missed a preemption opportunity
  3083. * between schedule and now.
  3084. */
  3085. barrier();
  3086. } while (need_resched());
  3087. }
  3088. #endif /* CONFIG_PREEMPT */
  3089. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3090. void *key)
  3091. {
  3092. return try_to_wake_up(curr->private, mode, wake_flags);
  3093. }
  3094. EXPORT_SYMBOL(default_wake_function);
  3095. /*
  3096. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3097. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3098. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3099. *
  3100. * There are circumstances in which we can try to wake a task which has already
  3101. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3102. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3103. */
  3104. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3105. int nr_exclusive, int wake_flags, void *key)
  3106. {
  3107. wait_queue_t *curr, *next;
  3108. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3109. unsigned flags = curr->flags;
  3110. if (curr->func(curr, mode, wake_flags, key) &&
  3111. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3112. break;
  3113. }
  3114. }
  3115. /**
  3116. * __wake_up - wake up threads blocked on a waitqueue.
  3117. * @q: the waitqueue
  3118. * @mode: which threads
  3119. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3120. * @key: is directly passed to the wakeup function
  3121. *
  3122. * It may be assumed that this function implies a write memory barrier before
  3123. * changing the task state if and only if any tasks are woken up.
  3124. */
  3125. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3126. int nr_exclusive, void *key)
  3127. {
  3128. unsigned long flags;
  3129. spin_lock_irqsave(&q->lock, flags);
  3130. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3131. spin_unlock_irqrestore(&q->lock, flags);
  3132. }
  3133. EXPORT_SYMBOL(__wake_up);
  3134. /*
  3135. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3136. */
  3137. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  3138. {
  3139. __wake_up_common(q, mode, nr, 0, NULL);
  3140. }
  3141. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3142. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3143. {
  3144. __wake_up_common(q, mode, 1, 0, key);
  3145. }
  3146. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3147. /**
  3148. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3149. * @q: the waitqueue
  3150. * @mode: which threads
  3151. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3152. * @key: opaque value to be passed to wakeup targets
  3153. *
  3154. * The sync wakeup differs that the waker knows that it will schedule
  3155. * away soon, so while the target thread will be woken up, it will not
  3156. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3157. * with each other. This can prevent needless bouncing between CPUs.
  3158. *
  3159. * On UP it can prevent extra preemption.
  3160. *
  3161. * It may be assumed that this function implies a write memory barrier before
  3162. * changing the task state if and only if any tasks are woken up.
  3163. */
  3164. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3165. int nr_exclusive, void *key)
  3166. {
  3167. unsigned long flags;
  3168. int wake_flags = WF_SYNC;
  3169. if (unlikely(!q))
  3170. return;
  3171. if (unlikely(!nr_exclusive))
  3172. wake_flags = 0;
  3173. spin_lock_irqsave(&q->lock, flags);
  3174. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3175. spin_unlock_irqrestore(&q->lock, flags);
  3176. }
  3177. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3178. /*
  3179. * __wake_up_sync - see __wake_up_sync_key()
  3180. */
  3181. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3182. {
  3183. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3184. }
  3185. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3186. void __wake_up_pollfree(wait_queue_head_t *wq_head)
  3187. {
  3188. __wake_up(wq_head, TASK_NORMAL, 0, (void *) (POLLHUP | POLLFREE));
  3189. /* POLLFREE must have cleared the queue. */
  3190. WARN_ON_ONCE(waitqueue_active(wq_head));
  3191. }
  3192. /**
  3193. * complete: - signals a single thread waiting on this completion
  3194. * @x: holds the state of this particular completion
  3195. *
  3196. * This will wake up a single thread waiting on this completion. Threads will be
  3197. * awakened in the same order in which they were queued.
  3198. *
  3199. * See also complete_all(), wait_for_completion() and related routines.
  3200. *
  3201. * It may be assumed that this function implies a write memory barrier before
  3202. * changing the task state if and only if any tasks are woken up.
  3203. */
  3204. void complete(struct completion *x)
  3205. {
  3206. unsigned long flags;
  3207. spin_lock_irqsave(&x->wait.lock, flags);
  3208. x->done++;
  3209. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3210. spin_unlock_irqrestore(&x->wait.lock, flags);
  3211. }
  3212. EXPORT_SYMBOL(complete);
  3213. /**
  3214. * complete_all: - signals all threads waiting on this completion
  3215. * @x: holds the state of this particular completion
  3216. *
  3217. * This will wake up all threads waiting on this particular completion event.
  3218. *
  3219. * It may be assumed that this function implies a write memory barrier before
  3220. * changing the task state if and only if any tasks are woken up.
  3221. */
  3222. void complete_all(struct completion *x)
  3223. {
  3224. unsigned long flags;
  3225. spin_lock_irqsave(&x->wait.lock, flags);
  3226. x->done += UINT_MAX/2;
  3227. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3228. spin_unlock_irqrestore(&x->wait.lock, flags);
  3229. }
  3230. EXPORT_SYMBOL(complete_all);
  3231. static inline long __sched
  3232. do_wait_for_common(struct completion *x, long timeout, int state, int iowait)
  3233. {
  3234. if (!x->done) {
  3235. DECLARE_WAITQUEUE(wait, current);
  3236. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3237. do {
  3238. if (signal_pending_state(state, current)) {
  3239. timeout = -ERESTARTSYS;
  3240. break;
  3241. }
  3242. __set_current_state(state);
  3243. spin_unlock_irq(&x->wait.lock);
  3244. if (iowait)
  3245. timeout = io_schedule_timeout(timeout);
  3246. else
  3247. timeout = schedule_timeout(timeout);
  3248. spin_lock_irq(&x->wait.lock);
  3249. } while (!x->done && timeout);
  3250. __remove_wait_queue(&x->wait, &wait);
  3251. if (!x->done)
  3252. return timeout;
  3253. }
  3254. x->done--;
  3255. return timeout ?: 1;
  3256. }
  3257. static long __sched
  3258. wait_for_common(struct completion *x, long timeout, int state, int iowait)
  3259. {
  3260. might_sleep();
  3261. spin_lock_irq(&x->wait.lock);
  3262. timeout = do_wait_for_common(x, timeout, state, iowait);
  3263. spin_unlock_irq(&x->wait.lock);
  3264. return timeout;
  3265. }
  3266. /**
  3267. * wait_for_completion: - waits for completion of a task
  3268. * @x: holds the state of this particular completion
  3269. *
  3270. * This waits to be signaled for completion of a specific task. It is NOT
  3271. * interruptible and there is no timeout.
  3272. *
  3273. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3274. * and interrupt capability. Also see complete().
  3275. */
  3276. void __sched wait_for_completion(struct completion *x)
  3277. {
  3278. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE, 0);
  3279. }
  3280. EXPORT_SYMBOL(wait_for_completion);
  3281. /**
  3282. * wait_for_completion_io: - waits for completion of a task
  3283. * @x: holds the state of this particular completion
  3284. *
  3285. * This waits for completion of a specific task to be signaled. Treats any
  3286. * sleeping as waiting for IO for the purposes of process accounting.
  3287. */
  3288. void __sched wait_for_completion_io(struct completion *x)
  3289. {
  3290. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE, 1);
  3291. }
  3292. EXPORT_SYMBOL(wait_for_completion_io);
  3293. /**
  3294. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3295. * @x: holds the state of this particular completion
  3296. * @timeout: timeout value in jiffies
  3297. *
  3298. * This waits for either a completion of a specific task to be signaled or for a
  3299. * specified timeout to expire. The timeout is in jiffies. It is not
  3300. * interruptible.
  3301. *
  3302. * The return value is 0 if timed out, and positive (at least 1, or number of
  3303. * jiffies left till timeout) if completed.
  3304. */
  3305. unsigned long __sched
  3306. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3307. {
  3308. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE, 0);
  3309. }
  3310. EXPORT_SYMBOL(wait_for_completion_timeout);
  3311. /**
  3312. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3313. * @x: holds the state of this particular completion
  3314. *
  3315. * This waits for completion of a specific task to be signaled. It is
  3316. * interruptible.
  3317. *
  3318. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3319. */
  3320. int __sched wait_for_completion_interruptible(struct completion *x)
  3321. {
  3322. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT,
  3323. TASK_INTERRUPTIBLE, 0);
  3324. if (t == -ERESTARTSYS)
  3325. return t;
  3326. return 0;
  3327. }
  3328. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3329. /**
  3330. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3331. * @x: holds the state of this particular completion
  3332. * @timeout: timeout value in jiffies
  3333. *
  3334. * This waits for either a completion of a specific task to be signaled or for a
  3335. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3336. *
  3337. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3338. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3339. */
  3340. long __sched
  3341. wait_for_completion_interruptible_timeout(struct completion *x,
  3342. unsigned long timeout)
  3343. {
  3344. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE, 0);
  3345. }
  3346. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3347. /**
  3348. * wait_for_completion_killable: - waits for completion of a task (killable)
  3349. * @x: holds the state of this particular completion
  3350. *
  3351. * This waits to be signaled for completion of a specific task. It can be
  3352. * interrupted by a kill signal.
  3353. *
  3354. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3355. */
  3356. int __sched wait_for_completion_killable(struct completion *x)
  3357. {
  3358. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE, 0);
  3359. if (t == -ERESTARTSYS)
  3360. return t;
  3361. return 0;
  3362. }
  3363. EXPORT_SYMBOL(wait_for_completion_killable);
  3364. /**
  3365. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3366. * @x: holds the state of this particular completion
  3367. * @timeout: timeout value in jiffies
  3368. *
  3369. * This waits for either a completion of a specific task to be
  3370. * signaled or for a specified timeout to expire. It can be
  3371. * interrupted by a kill signal. The timeout is in jiffies.
  3372. *
  3373. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3374. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3375. */
  3376. long __sched
  3377. wait_for_completion_killable_timeout(struct completion *x,
  3378. unsigned long timeout)
  3379. {
  3380. return wait_for_common(x, timeout, TASK_KILLABLE, 0);
  3381. }
  3382. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3383. /**
  3384. * try_wait_for_completion - try to decrement a completion without blocking
  3385. * @x: completion structure
  3386. *
  3387. * Returns: 0 if a decrement cannot be done without blocking
  3388. * 1 if a decrement succeeded.
  3389. *
  3390. * If a completion is being used as a counting completion,
  3391. * attempt to decrement the counter without blocking. This
  3392. * enables us to avoid waiting if the resource the completion
  3393. * is protecting is not available.
  3394. */
  3395. bool try_wait_for_completion(struct completion *x)
  3396. {
  3397. unsigned long flags;
  3398. int ret = 1;
  3399. spin_lock_irqsave(&x->wait.lock, flags);
  3400. if (!x->done)
  3401. ret = 0;
  3402. else
  3403. x->done--;
  3404. spin_unlock_irqrestore(&x->wait.lock, flags);
  3405. return ret;
  3406. }
  3407. EXPORT_SYMBOL(try_wait_for_completion);
  3408. /**
  3409. * completion_done - Test to see if a completion has any waiters
  3410. * @x: completion structure
  3411. *
  3412. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3413. * 1 if there are no waiters.
  3414. *
  3415. */
  3416. bool completion_done(struct completion *x)
  3417. {
  3418. unsigned long flags;
  3419. int ret = 1;
  3420. spin_lock_irqsave(&x->wait.lock, flags);
  3421. if (!x->done)
  3422. ret = 0;
  3423. spin_unlock_irqrestore(&x->wait.lock, flags);
  3424. return ret;
  3425. }
  3426. EXPORT_SYMBOL(completion_done);
  3427. static long __sched
  3428. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3429. {
  3430. unsigned long flags;
  3431. wait_queue_t wait;
  3432. init_waitqueue_entry(&wait, current);
  3433. __set_current_state(state);
  3434. spin_lock_irqsave(&q->lock, flags);
  3435. __add_wait_queue(q, &wait);
  3436. spin_unlock(&q->lock);
  3437. timeout = schedule_timeout(timeout);
  3438. spin_lock_irq(&q->lock);
  3439. __remove_wait_queue(q, &wait);
  3440. spin_unlock_irqrestore(&q->lock, flags);
  3441. return timeout;
  3442. }
  3443. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3444. {
  3445. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3446. }
  3447. EXPORT_SYMBOL(interruptible_sleep_on);
  3448. long __sched
  3449. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3450. {
  3451. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3452. }
  3453. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3454. void __sched sleep_on(wait_queue_head_t *q)
  3455. {
  3456. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3457. }
  3458. EXPORT_SYMBOL(sleep_on);
  3459. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3460. {
  3461. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3462. }
  3463. EXPORT_SYMBOL(sleep_on_timeout);
  3464. #ifdef CONFIG_RT_MUTEXES
  3465. /*
  3466. * rt_mutex_setprio - set the current priority of a task
  3467. * @p: task
  3468. * @prio: prio value (kernel-internal form)
  3469. *
  3470. * This function changes the 'effective' priority of a task. It does
  3471. * not touch ->normal_prio like __setscheduler().
  3472. *
  3473. * Used by the rt_mutex code to implement priority inheritance logic.
  3474. */
  3475. void rt_mutex_setprio(struct task_struct *p, int prio)
  3476. {
  3477. int oldprio, on_rq, running;
  3478. struct rq *rq;
  3479. const struct sched_class *prev_class;
  3480. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3481. rq = __task_rq_lock(p);
  3482. /*
  3483. * Idle task boosting is a nono in general. There is one
  3484. * exception, when PREEMPT_RT and NOHZ is active:
  3485. *
  3486. * The idle task calls get_next_timer_interrupt() and holds
  3487. * the timer wheel base->lock on the CPU and another CPU wants
  3488. * to access the timer (probably to cancel it). We can safely
  3489. * ignore the boosting request, as the idle CPU runs this code
  3490. * with interrupts disabled and will complete the lock
  3491. * protected section without being interrupted. So there is no
  3492. * real need to boost.
  3493. */
  3494. if (unlikely(p == rq->idle)) {
  3495. WARN_ON(p != rq->curr);
  3496. WARN_ON(p->pi_blocked_on);
  3497. goto out_unlock;
  3498. }
  3499. trace_sched_pi_setprio(p, prio);
  3500. oldprio = p->prio;
  3501. prev_class = p->sched_class;
  3502. on_rq = p->on_rq;
  3503. running = task_current(rq, p);
  3504. if (on_rq)
  3505. dequeue_task(rq, p, 0);
  3506. if (running)
  3507. p->sched_class->put_prev_task(rq, p);
  3508. if (rt_prio(prio)) {
  3509. p->sched_class = &rt_sched_class;
  3510. } else {
  3511. if (rt_prio(oldprio))
  3512. p->rt.timeout = 0;
  3513. p->sched_class = &fair_sched_class;
  3514. }
  3515. p->prio = prio;
  3516. if (running)
  3517. p->sched_class->set_curr_task(rq);
  3518. if (on_rq)
  3519. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3520. check_class_changed(rq, p, prev_class, oldprio);
  3521. out_unlock:
  3522. __task_rq_unlock(rq);
  3523. }
  3524. #endif
  3525. void set_user_nice(struct task_struct *p, long nice)
  3526. {
  3527. int old_prio, delta, on_rq;
  3528. unsigned long flags;
  3529. struct rq *rq;
  3530. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3531. return;
  3532. /*
  3533. * We have to be careful, if called from sys_setpriority(),
  3534. * the task might be in the middle of scheduling on another CPU.
  3535. */
  3536. rq = task_rq_lock(p, &flags);
  3537. /*
  3538. * The RT priorities are set via sched_setscheduler(), but we still
  3539. * allow the 'normal' nice value to be set - but as expected
  3540. * it wont have any effect on scheduling until the task is
  3541. * SCHED_FIFO/SCHED_RR:
  3542. */
  3543. if (task_has_rt_policy(p)) {
  3544. p->static_prio = NICE_TO_PRIO(nice);
  3545. goto out_unlock;
  3546. }
  3547. on_rq = p->on_rq;
  3548. if (on_rq)
  3549. dequeue_task(rq, p, 0);
  3550. p->static_prio = NICE_TO_PRIO(nice);
  3551. set_load_weight(p);
  3552. old_prio = p->prio;
  3553. p->prio = effective_prio(p);
  3554. delta = p->prio - old_prio;
  3555. if (on_rq) {
  3556. enqueue_task(rq, p, 0);
  3557. /*
  3558. * If the task increased its priority or is running and
  3559. * lowered its priority, then reschedule its CPU:
  3560. */
  3561. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3562. resched_task(rq->curr);
  3563. }
  3564. out_unlock:
  3565. task_rq_unlock(rq, p, &flags);
  3566. }
  3567. EXPORT_SYMBOL(set_user_nice);
  3568. /*
  3569. * can_nice - check if a task can reduce its nice value
  3570. * @p: task
  3571. * @nice: nice value
  3572. */
  3573. int can_nice(const struct task_struct *p, const int nice)
  3574. {
  3575. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3576. int nice_rlim = 20 - nice;
  3577. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3578. capable(CAP_SYS_NICE));
  3579. }
  3580. #ifdef __ARCH_WANT_SYS_NICE
  3581. /*
  3582. * sys_nice - change the priority of the current process.
  3583. * @increment: priority increment
  3584. *
  3585. * sys_setpriority is a more generic, but much slower function that
  3586. * does similar things.
  3587. */
  3588. SYSCALL_DEFINE1(nice, int, increment)
  3589. {
  3590. long nice, retval;
  3591. /*
  3592. * Setpriority might change our priority at the same moment.
  3593. * We don't have to worry. Conceptually one call occurs first
  3594. * and we have a single winner.
  3595. */
  3596. if (increment < -40)
  3597. increment = -40;
  3598. if (increment > 40)
  3599. increment = 40;
  3600. nice = TASK_NICE(current) + increment;
  3601. if (nice < -20)
  3602. nice = -20;
  3603. if (nice > 19)
  3604. nice = 19;
  3605. if (increment < 0 && !can_nice(current, nice))
  3606. return -EPERM;
  3607. retval = security_task_setnice(current, nice);
  3608. if (retval)
  3609. return retval;
  3610. set_user_nice(current, nice);
  3611. return 0;
  3612. }
  3613. #endif
  3614. /**
  3615. * task_prio - return the priority value of a given task.
  3616. * @p: the task in question.
  3617. *
  3618. * This is the priority value as seen by users in /proc.
  3619. * RT tasks are offset by -200. Normal tasks are centered
  3620. * around 0, value goes from -16 to +15.
  3621. */
  3622. int task_prio(const struct task_struct *p)
  3623. {
  3624. return p->prio - MAX_RT_PRIO;
  3625. }
  3626. /**
  3627. * task_nice - return the nice value of a given task.
  3628. * @p: the task in question.
  3629. */
  3630. int task_nice(const struct task_struct *p)
  3631. {
  3632. return TASK_NICE(p);
  3633. }
  3634. EXPORT_SYMBOL(task_nice);
  3635. /**
  3636. * idle_cpu - is a given cpu idle currently?
  3637. * @cpu: the processor in question.
  3638. */
  3639. int idle_cpu(int cpu)
  3640. {
  3641. struct rq *rq = cpu_rq(cpu);
  3642. if (rq->curr != rq->idle)
  3643. return 0;
  3644. if (rq->nr_running)
  3645. return 0;
  3646. #ifdef CONFIG_SMP
  3647. if (!llist_empty(&rq->wake_list))
  3648. return 0;
  3649. #endif
  3650. return 1;
  3651. }
  3652. /**
  3653. * idle_task - return the idle task for a given cpu.
  3654. * @cpu: the processor in question.
  3655. */
  3656. struct task_struct *idle_task(int cpu)
  3657. {
  3658. return cpu_rq(cpu)->idle;
  3659. }
  3660. /**
  3661. * find_process_by_pid - find a process with a matching PID value.
  3662. * @pid: the pid in question.
  3663. */
  3664. static struct task_struct *find_process_by_pid(pid_t pid)
  3665. {
  3666. return pid ? find_task_by_vpid(pid) : current;
  3667. }
  3668. /* Actually do priority change: must hold rq lock. */
  3669. static void
  3670. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3671. {
  3672. p->policy = policy;
  3673. p->rt_priority = prio;
  3674. p->normal_prio = normal_prio(p);
  3675. /* we are holding p->pi_lock already */
  3676. p->prio = rt_mutex_getprio(p);
  3677. if (rt_prio(p->prio))
  3678. p->sched_class = &rt_sched_class;
  3679. else
  3680. p->sched_class = &fair_sched_class;
  3681. set_load_weight(p);
  3682. }
  3683. /*
  3684. * check the target process has a UID that matches the current process's
  3685. */
  3686. static bool check_same_owner(struct task_struct *p)
  3687. {
  3688. const struct cred *cred = current_cred(), *pcred;
  3689. bool match;
  3690. rcu_read_lock();
  3691. pcred = __task_cred(p);
  3692. match = (uid_eq(cred->euid, pcred->euid) ||
  3693. uid_eq(cred->euid, pcred->uid));
  3694. rcu_read_unlock();
  3695. return match;
  3696. }
  3697. static int __sched_setscheduler(struct task_struct *p, int policy,
  3698. const struct sched_param *param, bool user)
  3699. {
  3700. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3701. unsigned long flags;
  3702. const struct sched_class *prev_class;
  3703. struct rq *rq;
  3704. int reset_on_fork;
  3705. /* may grab non-irq protected spin_locks */
  3706. BUG_ON(in_interrupt());
  3707. recheck:
  3708. /* double check policy once rq lock held */
  3709. if (policy < 0) {
  3710. reset_on_fork = p->sched_reset_on_fork;
  3711. policy = oldpolicy = p->policy;
  3712. } else {
  3713. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3714. policy &= ~SCHED_RESET_ON_FORK;
  3715. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3716. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3717. policy != SCHED_IDLE)
  3718. return -EINVAL;
  3719. }
  3720. /*
  3721. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3722. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3723. * SCHED_BATCH and SCHED_IDLE is 0.
  3724. */
  3725. if (param->sched_priority < 0 ||
  3726. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3727. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3728. return -EINVAL;
  3729. if (rt_policy(policy) != (param->sched_priority != 0))
  3730. return -EINVAL;
  3731. /*
  3732. * Allow unprivileged RT tasks to decrease priority:
  3733. */
  3734. if (user && !capable(CAP_SYS_NICE)) {
  3735. if (rt_policy(policy)) {
  3736. unsigned long rlim_rtprio =
  3737. task_rlimit(p, RLIMIT_RTPRIO);
  3738. /* can't set/change the rt policy */
  3739. if (policy != p->policy && !rlim_rtprio)
  3740. return -EPERM;
  3741. /* can't increase priority */
  3742. if (param->sched_priority > p->rt_priority &&
  3743. param->sched_priority > rlim_rtprio)
  3744. return -EPERM;
  3745. }
  3746. /*
  3747. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3748. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3749. */
  3750. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3751. if (!can_nice(p, TASK_NICE(p)))
  3752. return -EPERM;
  3753. }
  3754. /* can't change other user's priorities */
  3755. if (!check_same_owner(p))
  3756. return -EPERM;
  3757. /* Normal users shall not reset the sched_reset_on_fork flag */
  3758. if (p->sched_reset_on_fork && !reset_on_fork)
  3759. return -EPERM;
  3760. }
  3761. if (user) {
  3762. retval = security_task_setscheduler(p);
  3763. if (retval)
  3764. return retval;
  3765. }
  3766. /*
  3767. * make sure no PI-waiters arrive (or leave) while we are
  3768. * changing the priority of the task:
  3769. *
  3770. * To be able to change p->policy safely, the appropriate
  3771. * runqueue lock must be held.
  3772. */
  3773. rq = task_rq_lock(p, &flags);
  3774. /*
  3775. * Changing the policy of the stop threads its a very bad idea
  3776. */
  3777. if (p == rq->stop) {
  3778. task_rq_unlock(rq, p, &flags);
  3779. return -EINVAL;
  3780. }
  3781. /*
  3782. * If not changing anything there's no need to proceed further:
  3783. */
  3784. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3785. param->sched_priority == p->rt_priority))) {
  3786. __task_rq_unlock(rq);
  3787. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3788. return 0;
  3789. }
  3790. #ifdef CONFIG_RT_GROUP_SCHED
  3791. if (user) {
  3792. /*
  3793. * Do not allow realtime tasks into groups that have no runtime
  3794. * assigned.
  3795. */
  3796. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3797. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3798. !task_group_is_autogroup(task_group(p))) {
  3799. task_rq_unlock(rq, p, &flags);
  3800. return -EPERM;
  3801. }
  3802. }
  3803. #endif
  3804. /* recheck policy now with rq lock held */
  3805. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3806. policy = oldpolicy = -1;
  3807. task_rq_unlock(rq, p, &flags);
  3808. goto recheck;
  3809. }
  3810. on_rq = p->on_rq;
  3811. running = task_current(rq, p);
  3812. if (on_rq)
  3813. dequeue_task(rq, p, 0);
  3814. if (running)
  3815. p->sched_class->put_prev_task(rq, p);
  3816. p->sched_reset_on_fork = reset_on_fork;
  3817. oldprio = p->prio;
  3818. prev_class = p->sched_class;
  3819. __setscheduler(rq, p, policy, param->sched_priority);
  3820. if (running)
  3821. p->sched_class->set_curr_task(rq);
  3822. if (on_rq) {
  3823. /*
  3824. * We enqueue to tail when the priority of a task is
  3825. * increased (user space view).
  3826. */
  3827. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3828. }
  3829. check_class_changed(rq, p, prev_class, oldprio);
  3830. task_rq_unlock(rq, p, &flags);
  3831. rt_mutex_adjust_pi(p);
  3832. return 0;
  3833. }
  3834. /**
  3835. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3836. * @p: the task in question.
  3837. * @policy: new policy.
  3838. * @param: structure containing the new RT priority.
  3839. *
  3840. * NOTE that the task may be already dead.
  3841. */
  3842. int sched_setscheduler(struct task_struct *p, int policy,
  3843. const struct sched_param *param)
  3844. {
  3845. return __sched_setscheduler(p, policy, param, true);
  3846. }
  3847. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3848. /**
  3849. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3850. * @p: the task in question.
  3851. * @policy: new policy.
  3852. * @param: structure containing the new RT priority.
  3853. *
  3854. * Just like sched_setscheduler, only don't bother checking if the
  3855. * current context has permission. For example, this is needed in
  3856. * stop_machine(): we create temporary high priority worker threads,
  3857. * but our caller might not have that capability.
  3858. */
  3859. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3860. const struct sched_param *param)
  3861. {
  3862. return __sched_setscheduler(p, policy, param, false);
  3863. }
  3864. static int
  3865. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3866. {
  3867. struct sched_param lparam;
  3868. struct task_struct *p;
  3869. int retval;
  3870. if (!param || pid < 0)
  3871. return -EINVAL;
  3872. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3873. return -EFAULT;
  3874. rcu_read_lock();
  3875. retval = -ESRCH;
  3876. p = find_process_by_pid(pid);
  3877. if (p != NULL)
  3878. retval = sched_setscheduler(p, policy, &lparam);
  3879. rcu_read_unlock();
  3880. return retval;
  3881. }
  3882. /**
  3883. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3884. * @pid: the pid in question.
  3885. * @policy: new policy.
  3886. * @param: structure containing the new RT priority.
  3887. */
  3888. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3889. struct sched_param __user *, param)
  3890. {
  3891. /* negative values for policy are not valid */
  3892. if (policy < 0)
  3893. return -EINVAL;
  3894. return do_sched_setscheduler(pid, policy, param);
  3895. }
  3896. /**
  3897. * sys_sched_setparam - set/change the RT priority of a thread
  3898. * @pid: the pid in question.
  3899. * @param: structure containing the new RT priority.
  3900. */
  3901. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3902. {
  3903. return do_sched_setscheduler(pid, -1, param);
  3904. }
  3905. /**
  3906. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3907. * @pid: the pid in question.
  3908. */
  3909. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3910. {
  3911. struct task_struct *p;
  3912. int retval;
  3913. if (pid < 0)
  3914. return -EINVAL;
  3915. retval = -ESRCH;
  3916. rcu_read_lock();
  3917. p = find_process_by_pid(pid);
  3918. if (p) {
  3919. retval = security_task_getscheduler(p);
  3920. if (!retval)
  3921. retval = p->policy
  3922. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3923. }
  3924. rcu_read_unlock();
  3925. return retval;
  3926. }
  3927. /**
  3928. * sys_sched_getparam - get the RT priority of a thread
  3929. * @pid: the pid in question.
  3930. * @param: structure containing the RT priority.
  3931. */
  3932. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3933. {
  3934. struct sched_param lp;
  3935. struct task_struct *p;
  3936. int retval;
  3937. if (!param || pid < 0)
  3938. return -EINVAL;
  3939. rcu_read_lock();
  3940. p = find_process_by_pid(pid);
  3941. retval = -ESRCH;
  3942. if (!p)
  3943. goto out_unlock;
  3944. retval = security_task_getscheduler(p);
  3945. if (retval)
  3946. goto out_unlock;
  3947. lp.sched_priority = p->rt_priority;
  3948. rcu_read_unlock();
  3949. /*
  3950. * This one might sleep, we cannot do it with a spinlock held ...
  3951. */
  3952. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3953. return retval;
  3954. out_unlock:
  3955. rcu_read_unlock();
  3956. return retval;
  3957. }
  3958. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3959. {
  3960. cpumask_var_t cpus_allowed, new_mask;
  3961. struct task_struct *p;
  3962. int retval;
  3963. get_online_cpus();
  3964. rcu_read_lock();
  3965. p = find_process_by_pid(pid);
  3966. if (!p) {
  3967. rcu_read_unlock();
  3968. put_online_cpus();
  3969. return -ESRCH;
  3970. }
  3971. /* Prevent p going away */
  3972. get_task_struct(p);
  3973. rcu_read_unlock();
  3974. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3975. retval = -ENOMEM;
  3976. goto out_put_task;
  3977. }
  3978. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3979. retval = -ENOMEM;
  3980. goto out_free_cpus_allowed;
  3981. }
  3982. retval = -EPERM;
  3983. if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
  3984. goto out_unlock;
  3985. retval = security_task_setscheduler(p);
  3986. if (retval)
  3987. goto out_unlock;
  3988. cpuset_cpus_allowed(p, cpus_allowed);
  3989. cpumask_and(new_mask, in_mask, cpus_allowed);
  3990. again:
  3991. retval = set_cpus_allowed_ptr(p, new_mask);
  3992. if (!retval) {
  3993. cpuset_cpus_allowed(p, cpus_allowed);
  3994. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3995. /*
  3996. * We must have raced with a concurrent cpuset
  3997. * update. Just reset the cpus_allowed to the
  3998. * cpuset's cpus_allowed
  3999. */
  4000. cpumask_copy(new_mask, cpus_allowed);
  4001. goto again;
  4002. }
  4003. }
  4004. out_unlock:
  4005. free_cpumask_var(new_mask);
  4006. out_free_cpus_allowed:
  4007. free_cpumask_var(cpus_allowed);
  4008. out_put_task:
  4009. put_task_struct(p);
  4010. put_online_cpus();
  4011. return retval;
  4012. }
  4013. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4014. struct cpumask *new_mask)
  4015. {
  4016. if (len < cpumask_size())
  4017. cpumask_clear(new_mask);
  4018. else if (len > cpumask_size())
  4019. len = cpumask_size();
  4020. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4021. }
  4022. /**
  4023. * sys_sched_setaffinity - set the cpu affinity of a process
  4024. * @pid: pid of the process
  4025. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4026. * @user_mask_ptr: user-space pointer to the new cpu mask
  4027. */
  4028. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4029. unsigned long __user *, user_mask_ptr)
  4030. {
  4031. cpumask_var_t new_mask;
  4032. int retval;
  4033. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4034. return -ENOMEM;
  4035. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4036. if (retval == 0)
  4037. retval = sched_setaffinity(pid, new_mask);
  4038. free_cpumask_var(new_mask);
  4039. return retval;
  4040. }
  4041. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4042. {
  4043. struct task_struct *p;
  4044. unsigned long flags;
  4045. int retval;
  4046. get_online_cpus();
  4047. rcu_read_lock();
  4048. retval = -ESRCH;
  4049. p = find_process_by_pid(pid);
  4050. if (!p)
  4051. goto out_unlock;
  4052. retval = security_task_getscheduler(p);
  4053. if (retval)
  4054. goto out_unlock;
  4055. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4056. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4057. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4058. out_unlock:
  4059. rcu_read_unlock();
  4060. put_online_cpus();
  4061. return retval;
  4062. }
  4063. /**
  4064. * sys_sched_getaffinity - get the cpu affinity of a process
  4065. * @pid: pid of the process
  4066. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4067. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4068. */
  4069. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4070. unsigned long __user *, user_mask_ptr)
  4071. {
  4072. int ret;
  4073. cpumask_var_t mask;
  4074. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4075. return -EINVAL;
  4076. if (len & (sizeof(unsigned long)-1))
  4077. return -EINVAL;
  4078. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4079. return -ENOMEM;
  4080. ret = sched_getaffinity(pid, mask);
  4081. if (ret == 0) {
  4082. size_t retlen = min_t(size_t, len, cpumask_size());
  4083. if (copy_to_user(user_mask_ptr, mask, retlen))
  4084. ret = -EFAULT;
  4085. else
  4086. ret = retlen;
  4087. }
  4088. free_cpumask_var(mask);
  4089. return ret;
  4090. }
  4091. /**
  4092. * sys_sched_yield - yield the current processor to other threads.
  4093. *
  4094. * This function yields the current CPU to other tasks. If there are no
  4095. * other threads running on this CPU then this function will return.
  4096. */
  4097. SYSCALL_DEFINE0(sched_yield)
  4098. {
  4099. struct rq *rq = this_rq_lock();
  4100. schedstat_inc(rq, yld_count);
  4101. current->sched_class->yield_task(rq);
  4102. /*
  4103. * Since we are going to call schedule() anyway, there's
  4104. * no need to preempt or enable interrupts:
  4105. */
  4106. __release(rq->lock);
  4107. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4108. do_raw_spin_unlock(&rq->lock);
  4109. sched_preempt_enable_no_resched();
  4110. schedule();
  4111. return 0;
  4112. }
  4113. static inline int should_resched(void)
  4114. {
  4115. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4116. }
  4117. static void __cond_resched(void)
  4118. {
  4119. add_preempt_count(PREEMPT_ACTIVE);
  4120. __schedule();
  4121. sub_preempt_count(PREEMPT_ACTIVE);
  4122. }
  4123. int __sched _cond_resched(void)
  4124. {
  4125. if (should_resched()) {
  4126. __cond_resched();
  4127. return 1;
  4128. }
  4129. return 0;
  4130. }
  4131. EXPORT_SYMBOL(_cond_resched);
  4132. /*
  4133. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4134. * call schedule, and on return reacquire the lock.
  4135. *
  4136. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4137. * operations here to prevent schedule() from being called twice (once via
  4138. * spin_unlock(), once by hand).
  4139. */
  4140. int __cond_resched_lock(spinlock_t *lock)
  4141. {
  4142. int resched = should_resched();
  4143. int ret = 0;
  4144. lockdep_assert_held(lock);
  4145. if (spin_needbreak(lock) || resched) {
  4146. spin_unlock(lock);
  4147. if (resched)
  4148. __cond_resched();
  4149. else
  4150. cpu_relax();
  4151. ret = 1;
  4152. spin_lock(lock);
  4153. }
  4154. return ret;
  4155. }
  4156. EXPORT_SYMBOL(__cond_resched_lock);
  4157. int __sched __cond_resched_softirq(void)
  4158. {
  4159. BUG_ON(!in_softirq());
  4160. if (should_resched()) {
  4161. local_bh_enable();
  4162. __cond_resched();
  4163. local_bh_disable();
  4164. return 1;
  4165. }
  4166. return 0;
  4167. }
  4168. EXPORT_SYMBOL(__cond_resched_softirq);
  4169. /**
  4170. * yield - yield the current processor to other threads.
  4171. *
  4172. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  4173. *
  4174. * The scheduler is at all times free to pick the calling task as the most
  4175. * eligible task to run, if removing the yield() call from your code breaks
  4176. * it, its already broken.
  4177. *
  4178. * Typical broken usage is:
  4179. *
  4180. * while (!event)
  4181. * yield();
  4182. *
  4183. * where one assumes that yield() will let 'the other' process run that will
  4184. * make event true. If the current task is a SCHED_FIFO task that will never
  4185. * happen. Never use yield() as a progress guarantee!!
  4186. *
  4187. * If you want to use yield() to wait for something, use wait_event().
  4188. * If you want to use yield() to be 'nice' for others, use cond_resched().
  4189. * If you still want to use yield(), do not!
  4190. */
  4191. void __sched yield(void)
  4192. {
  4193. set_current_state(TASK_RUNNING);
  4194. sys_sched_yield();
  4195. }
  4196. EXPORT_SYMBOL(yield);
  4197. /**
  4198. * yield_to - yield the current processor to another thread in
  4199. * your thread group, or accelerate that thread toward the
  4200. * processor it's on.
  4201. * @p: target task
  4202. * @preempt: whether task preemption is allowed or not
  4203. *
  4204. * It's the caller's job to ensure that the target task struct
  4205. * can't go away on us before we can do any checks.
  4206. *
  4207. * Returns true if we indeed boosted the target task.
  4208. */
  4209. bool __sched yield_to(struct task_struct *p, bool preempt)
  4210. {
  4211. struct task_struct *curr = current;
  4212. struct rq *rq, *p_rq;
  4213. unsigned long flags;
  4214. bool yielded = 0;
  4215. local_irq_save(flags);
  4216. rq = this_rq();
  4217. again:
  4218. p_rq = task_rq(p);
  4219. double_rq_lock(rq, p_rq);
  4220. while (task_rq(p) != p_rq) {
  4221. double_rq_unlock(rq, p_rq);
  4222. goto again;
  4223. }
  4224. if (!curr->sched_class->yield_to_task)
  4225. goto out;
  4226. if (curr->sched_class != p->sched_class)
  4227. goto out;
  4228. if (task_running(p_rq, p) || p->state)
  4229. goto out;
  4230. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4231. if (yielded) {
  4232. schedstat_inc(rq, yld_count);
  4233. /*
  4234. * Make p's CPU reschedule; pick_next_entity takes care of
  4235. * fairness.
  4236. */
  4237. if (preempt && rq != p_rq)
  4238. resched_task(p_rq->curr);
  4239. }
  4240. out:
  4241. double_rq_unlock(rq, p_rq);
  4242. local_irq_restore(flags);
  4243. if (yielded)
  4244. schedule();
  4245. return yielded;
  4246. }
  4247. EXPORT_SYMBOL_GPL(yield_to);
  4248. /*
  4249. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4250. * that process accounting knows that this is a task in IO wait state.
  4251. */
  4252. void __sched io_schedule(void)
  4253. {
  4254. struct rq *rq = raw_rq();
  4255. delayacct_blkio_start();
  4256. atomic_inc(&rq->nr_iowait);
  4257. blk_flush_plug(current);
  4258. current->in_iowait = 1;
  4259. schedule();
  4260. current->in_iowait = 0;
  4261. atomic_dec(&rq->nr_iowait);
  4262. delayacct_blkio_end();
  4263. }
  4264. EXPORT_SYMBOL(io_schedule);
  4265. long __sched io_schedule_timeout(long timeout)
  4266. {
  4267. struct rq *rq = raw_rq();
  4268. long ret;
  4269. delayacct_blkio_start();
  4270. atomic_inc(&rq->nr_iowait);
  4271. blk_flush_plug(current);
  4272. current->in_iowait = 1;
  4273. ret = schedule_timeout(timeout);
  4274. current->in_iowait = 0;
  4275. atomic_dec(&rq->nr_iowait);
  4276. delayacct_blkio_end();
  4277. return ret;
  4278. }
  4279. EXPORT_SYMBOL(io_schedule_timeout);
  4280. /**
  4281. * sys_sched_get_priority_max - return maximum RT priority.
  4282. * @policy: scheduling class.
  4283. *
  4284. * this syscall returns the maximum rt_priority that can be used
  4285. * by a given scheduling class.
  4286. */
  4287. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4288. {
  4289. int ret = -EINVAL;
  4290. switch (policy) {
  4291. case SCHED_FIFO:
  4292. case SCHED_RR:
  4293. ret = MAX_USER_RT_PRIO-1;
  4294. break;
  4295. case SCHED_NORMAL:
  4296. case SCHED_BATCH:
  4297. case SCHED_IDLE:
  4298. ret = 0;
  4299. break;
  4300. }
  4301. return ret;
  4302. }
  4303. /**
  4304. * sys_sched_get_priority_min - return minimum RT priority.
  4305. * @policy: scheduling class.
  4306. *
  4307. * this syscall returns the minimum rt_priority that can be used
  4308. * by a given scheduling class.
  4309. */
  4310. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4311. {
  4312. int ret = -EINVAL;
  4313. switch (policy) {
  4314. case SCHED_FIFO:
  4315. case SCHED_RR:
  4316. ret = 1;
  4317. break;
  4318. case SCHED_NORMAL:
  4319. case SCHED_BATCH:
  4320. case SCHED_IDLE:
  4321. ret = 0;
  4322. }
  4323. return ret;
  4324. }
  4325. /**
  4326. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4327. * @pid: pid of the process.
  4328. * @interval: userspace pointer to the timeslice value.
  4329. *
  4330. * this syscall writes the default timeslice value of a given process
  4331. * into the user-space timespec buffer. A value of '0' means infinity.
  4332. */
  4333. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4334. struct timespec __user *, interval)
  4335. {
  4336. struct task_struct *p;
  4337. unsigned int time_slice;
  4338. unsigned long flags;
  4339. struct rq *rq;
  4340. int retval;
  4341. struct timespec t;
  4342. if (pid < 0)
  4343. return -EINVAL;
  4344. retval = -ESRCH;
  4345. rcu_read_lock();
  4346. p = find_process_by_pid(pid);
  4347. if (!p)
  4348. goto out_unlock;
  4349. retval = security_task_getscheduler(p);
  4350. if (retval)
  4351. goto out_unlock;
  4352. rq = task_rq_lock(p, &flags);
  4353. time_slice = p->sched_class->get_rr_interval(rq, p);
  4354. task_rq_unlock(rq, p, &flags);
  4355. rcu_read_unlock();
  4356. jiffies_to_timespec(time_slice, &t);
  4357. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4358. return retval;
  4359. out_unlock:
  4360. rcu_read_unlock();
  4361. return retval;
  4362. }
  4363. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4364. void sched_show_task(struct task_struct *p)
  4365. {
  4366. unsigned long free = 0;
  4367. unsigned state;
  4368. state = p->state ? __ffs(p->state) + 1 : 0;
  4369. printk(KERN_INFO "%-15.15s %c", p->comm,
  4370. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4371. #if BITS_PER_LONG == 32
  4372. if (state == TASK_RUNNING)
  4373. printk(KERN_CONT " running ");
  4374. else
  4375. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4376. #else
  4377. if (state == TASK_RUNNING)
  4378. printk(KERN_CONT " running task ");
  4379. else
  4380. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4381. #endif
  4382. #ifdef CONFIG_DEBUG_STACK_USAGE
  4383. free = stack_not_used(p);
  4384. #endif
  4385. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4386. task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
  4387. (unsigned long)task_thread_info(p)->flags);
  4388. show_stack(p, NULL);
  4389. }
  4390. void show_state_filter(unsigned long state_filter)
  4391. {
  4392. struct task_struct *g, *p;
  4393. #if BITS_PER_LONG == 32
  4394. printk(KERN_INFO
  4395. " task PC stack pid father\n");
  4396. #else
  4397. printk(KERN_INFO
  4398. " task PC stack pid father\n");
  4399. #endif
  4400. rcu_read_lock();
  4401. do_each_thread(g, p) {
  4402. /*
  4403. * reset the NMI-timeout, listing all files on a slow
  4404. * console might take a lot of time:
  4405. */
  4406. touch_nmi_watchdog();
  4407. if (!state_filter || (p->state & state_filter))
  4408. sched_show_task(p);
  4409. } while_each_thread(g, p);
  4410. touch_all_softlockup_watchdogs();
  4411. #ifdef CONFIG_SYSRQ_SCHED_DEBUG
  4412. sysrq_sched_debug_show();
  4413. #endif
  4414. rcu_read_unlock();
  4415. /*
  4416. * Only show locks if all tasks are dumped:
  4417. */
  4418. if (!state_filter)
  4419. debug_show_all_locks();
  4420. }
  4421. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4422. {
  4423. idle->sched_class = &idle_sched_class;
  4424. }
  4425. /**
  4426. * init_idle - set up an idle thread for a given CPU
  4427. * @idle: task in question
  4428. * @cpu: cpu the idle task belongs to
  4429. *
  4430. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4431. * flag, to make booting more robust.
  4432. */
  4433. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4434. {
  4435. struct rq *rq = cpu_rq(cpu);
  4436. unsigned long flags;
  4437. raw_spin_lock_irqsave(&rq->lock, flags);
  4438. __sched_fork(idle);
  4439. idle->state = TASK_RUNNING;
  4440. idle->se.exec_start = sched_clock();
  4441. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4442. /*
  4443. * We're having a chicken and egg problem, even though we are
  4444. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4445. * lockdep check in task_group() will fail.
  4446. *
  4447. * Similar case to sched_fork(). / Alternatively we could
  4448. * use task_rq_lock() here and obtain the other rq->lock.
  4449. *
  4450. * Silence PROVE_RCU
  4451. */
  4452. rcu_read_lock();
  4453. __set_task_cpu(idle, cpu);
  4454. rcu_read_unlock();
  4455. rq->curr = rq->idle = idle;
  4456. #if defined(CONFIG_SMP)
  4457. idle->on_cpu = 1;
  4458. #endif
  4459. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4460. /* Set the preempt count _outside_ the spinlocks! */
  4461. task_thread_info(idle)->preempt_count = 0;
  4462. /*
  4463. * The idle tasks have their own, simple scheduling class:
  4464. */
  4465. idle->sched_class = &idle_sched_class;
  4466. ftrace_graph_init_idle_task(idle, cpu);
  4467. #if defined(CONFIG_SMP)
  4468. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4469. #endif
  4470. }
  4471. #ifdef CONFIG_SMP
  4472. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4473. {
  4474. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4475. p->sched_class->set_cpus_allowed(p, new_mask);
  4476. cpumask_copy(&p->cpus_allowed, new_mask);
  4477. p->nr_cpus_allowed = cpumask_weight(new_mask);
  4478. }
  4479. /*
  4480. * This is how migration works:
  4481. *
  4482. * 1) we invoke migration_cpu_stop() on the target CPU using
  4483. * stop_one_cpu().
  4484. * 2) stopper starts to run (implicitly forcing the migrated thread
  4485. * off the CPU)
  4486. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4487. * 4) if it's in the wrong runqueue then the migration thread removes
  4488. * it and puts it into the right queue.
  4489. * 5) stopper completes and stop_one_cpu() returns and the migration
  4490. * is done.
  4491. */
  4492. /*
  4493. * Change a given task's CPU affinity. Migrate the thread to a
  4494. * proper CPU and schedule it away if the CPU it's executing on
  4495. * is removed from the allowed bitmask.
  4496. *
  4497. * NOTE: the caller must have a valid reference to the task, the
  4498. * task must not exit() & deallocate itself prematurely. The
  4499. * call is not atomic; no spinlocks may be held.
  4500. */
  4501. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4502. {
  4503. unsigned long flags;
  4504. struct rq *rq;
  4505. unsigned int dest_cpu;
  4506. int ret = 0;
  4507. rq = task_rq_lock(p, &flags);
  4508. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4509. goto out;
  4510. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4511. ret = -EINVAL;
  4512. goto out;
  4513. }
  4514. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4515. ret = -EINVAL;
  4516. goto out;
  4517. }
  4518. do_set_cpus_allowed(p, new_mask);
  4519. /* Can the task run on the task's current CPU? If so, we're done */
  4520. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4521. goto out;
  4522. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4523. if (p->on_rq) {
  4524. struct migration_arg arg = { p, dest_cpu };
  4525. /* Need help from migration thread: drop lock and wait. */
  4526. task_rq_unlock(rq, p, &flags);
  4527. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4528. tlb_migrate_finish(p->mm);
  4529. return 0;
  4530. }
  4531. out:
  4532. task_rq_unlock(rq, p, &flags);
  4533. return ret;
  4534. }
  4535. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4536. /*
  4537. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4538. * this because either it can't run here any more (set_cpus_allowed()
  4539. * away from this CPU, or CPU going down), or because we're
  4540. * attempting to rebalance this task on exec (sched_exec).
  4541. *
  4542. * So we race with normal scheduler movements, but that's OK, as long
  4543. * as the task is no longer on this CPU.
  4544. *
  4545. * Returns non-zero if task was successfully migrated.
  4546. */
  4547. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4548. {
  4549. struct rq *rq_dest, *rq_src;
  4550. bool moved = false;
  4551. int ret = 0;
  4552. if (unlikely(!cpu_active(dest_cpu)))
  4553. return ret;
  4554. rq_src = cpu_rq(src_cpu);
  4555. rq_dest = cpu_rq(dest_cpu);
  4556. raw_spin_lock(&p->pi_lock);
  4557. double_rq_lock(rq_src, rq_dest);
  4558. /* Already moved. */
  4559. if (task_cpu(p) != src_cpu)
  4560. goto done;
  4561. /* Affinity changed (again). */
  4562. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4563. goto fail;
  4564. /*
  4565. * If we're not on a rq, the next wake-up will ensure we're
  4566. * placed properly.
  4567. */
  4568. if (p->on_rq) {
  4569. dequeue_task(rq_src, p, 0);
  4570. set_task_cpu(p, dest_cpu);
  4571. enqueue_task(rq_dest, p, 0);
  4572. check_preempt_curr(rq_dest, p, 0);
  4573. moved = true;
  4574. }
  4575. done:
  4576. ret = 1;
  4577. fail:
  4578. double_rq_unlock(rq_src, rq_dest);
  4579. raw_spin_unlock(&p->pi_lock);
  4580. if (moved && task_notify_on_migrate(p))
  4581. atomic_notifier_call_chain(&migration_notifier_head,
  4582. dest_cpu, (void *)src_cpu);
  4583. return ret;
  4584. }
  4585. /*
  4586. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4587. * and performs thread migration by bumping thread off CPU then
  4588. * 'pushing' onto another runqueue.
  4589. */
  4590. static int migration_cpu_stop(void *data)
  4591. {
  4592. struct migration_arg *arg = data;
  4593. /*
  4594. * The original target cpu might have gone down and we might
  4595. * be on another cpu but it doesn't matter.
  4596. */
  4597. local_irq_disable();
  4598. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4599. local_irq_enable();
  4600. return 0;
  4601. }
  4602. #ifdef CONFIG_HOTPLUG_CPU
  4603. /*
  4604. * Ensures that the idle task is using init_mm right before its cpu goes
  4605. * offline.
  4606. */
  4607. void idle_task_exit(void)
  4608. {
  4609. struct mm_struct *mm = current->active_mm;
  4610. BUG_ON(cpu_online(smp_processor_id()));
  4611. if (mm != &init_mm)
  4612. switch_mm(mm, &init_mm, current);
  4613. mmdrop(mm);
  4614. }
  4615. /*
  4616. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4617. * we might have. Assumes we're called after migrate_tasks() so that the
  4618. * nr_active count is stable.
  4619. *
  4620. * Also see the comment "Global load-average calculations".
  4621. */
  4622. static void calc_load_migrate(struct rq *rq)
  4623. {
  4624. long delta = calc_load_fold_active(rq);
  4625. if (delta)
  4626. atomic_long_add(delta, &calc_load_tasks);
  4627. }
  4628. /*
  4629. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4630. * try_to_wake_up()->select_task_rq().
  4631. *
  4632. * Called with rq->lock held even though we'er in stop_machine() and
  4633. * there's no concurrency possible, we hold the required locks anyway
  4634. * because of lock validation efforts.
  4635. */
  4636. static void migrate_tasks(unsigned int dead_cpu)
  4637. {
  4638. struct rq *rq = cpu_rq(dead_cpu);
  4639. struct task_struct *next, *stop = rq->stop;
  4640. int dest_cpu;
  4641. /*
  4642. * Fudge the rq selection such that the below task selection loop
  4643. * doesn't get stuck on the currently eligible stop task.
  4644. *
  4645. * We're currently inside stop_machine() and the rq is either stuck
  4646. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4647. * either way we should never end up calling schedule() until we're
  4648. * done here.
  4649. */
  4650. rq->stop = NULL;
  4651. for ( ; ; ) {
  4652. /*
  4653. * There's this thread running, bail when that's the only
  4654. * remaining thread.
  4655. */
  4656. if (rq->nr_running == 1)
  4657. break;
  4658. next = pick_next_task(rq);
  4659. BUG_ON(!next);
  4660. next->sched_class->put_prev_task(rq, next);
  4661. /* Find suitable destination for @next, with force if needed. */
  4662. dest_cpu = select_fallback_rq(dead_cpu, next);
  4663. raw_spin_unlock(&rq->lock);
  4664. cpu_relax();
  4665. __migrate_task(next, dead_cpu, dest_cpu);
  4666. raw_spin_lock(&rq->lock);
  4667. }
  4668. rq->stop = stop;
  4669. }
  4670. #endif /* CONFIG_HOTPLUG_CPU */
  4671. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4672. static struct ctl_table sd_ctl_dir[] = {
  4673. {
  4674. .procname = "sched_domain",
  4675. .mode = 0555,
  4676. },
  4677. {}
  4678. };
  4679. static struct ctl_table sd_ctl_root[] = {
  4680. {
  4681. .procname = "kernel",
  4682. .mode = 0555,
  4683. .child = sd_ctl_dir,
  4684. },
  4685. {}
  4686. };
  4687. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4688. {
  4689. struct ctl_table *entry =
  4690. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4691. return entry;
  4692. }
  4693. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4694. {
  4695. struct ctl_table *entry;
  4696. /*
  4697. * In the intermediate directories, both the child directory and
  4698. * procname are dynamically allocated and could fail but the mode
  4699. * will always be set. In the lowest directory the names are
  4700. * static strings and all have proc handlers.
  4701. */
  4702. for (entry = *tablep; entry->mode; entry++) {
  4703. if (entry->child)
  4704. sd_free_ctl_entry(&entry->child);
  4705. if (entry->proc_handler == NULL)
  4706. kfree(entry->procname);
  4707. }
  4708. kfree(*tablep);
  4709. *tablep = NULL;
  4710. }
  4711. static int min_load_idx = 0;
  4712. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4713. static void
  4714. set_table_entry(struct ctl_table *entry,
  4715. const char *procname, void *data, int maxlen,
  4716. umode_t mode, proc_handler *proc_handler,
  4717. bool load_idx)
  4718. {
  4719. entry->procname = procname;
  4720. entry->data = data;
  4721. entry->maxlen = maxlen;
  4722. entry->mode = mode;
  4723. entry->proc_handler = proc_handler;
  4724. if (load_idx) {
  4725. entry->extra1 = &min_load_idx;
  4726. entry->extra2 = &max_load_idx;
  4727. }
  4728. }
  4729. static struct ctl_table *
  4730. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4731. {
  4732. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4733. if (table == NULL)
  4734. return NULL;
  4735. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4736. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4737. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4738. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4739. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4740. sizeof(int), 0644, proc_dointvec_minmax, true);
  4741. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4742. sizeof(int), 0644, proc_dointvec_minmax, true);
  4743. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4744. sizeof(int), 0644, proc_dointvec_minmax, true);
  4745. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4746. sizeof(int), 0644, proc_dointvec_minmax, true);
  4747. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4748. sizeof(int), 0644, proc_dointvec_minmax, true);
  4749. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4750. sizeof(int), 0644, proc_dointvec_minmax, false);
  4751. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4752. sizeof(int), 0644, proc_dointvec_minmax, false);
  4753. set_table_entry(&table[9], "cache_nice_tries",
  4754. &sd->cache_nice_tries,
  4755. sizeof(int), 0644, proc_dointvec_minmax, false);
  4756. set_table_entry(&table[10], "flags", &sd->flags,
  4757. sizeof(int), 0644, proc_dointvec_minmax, false);
  4758. set_table_entry(&table[11], "name", sd->name,
  4759. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4760. /* &table[12] is terminator */
  4761. return table;
  4762. }
  4763. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4764. {
  4765. struct ctl_table *entry, *table;
  4766. struct sched_domain *sd;
  4767. int domain_num = 0, i;
  4768. char buf[32];
  4769. for_each_domain(cpu, sd)
  4770. domain_num++;
  4771. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4772. if (table == NULL)
  4773. return NULL;
  4774. i = 0;
  4775. for_each_domain(cpu, sd) {
  4776. snprintf(buf, 32, "domain%d", i);
  4777. entry->procname = kstrdup(buf, GFP_KERNEL);
  4778. entry->mode = 0555;
  4779. entry->child = sd_alloc_ctl_domain_table(sd);
  4780. entry++;
  4781. i++;
  4782. }
  4783. return table;
  4784. }
  4785. static struct ctl_table_header *sd_sysctl_header;
  4786. static void register_sched_domain_sysctl(void)
  4787. {
  4788. int i, cpu_num = num_possible_cpus();
  4789. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4790. char buf[32];
  4791. WARN_ON(sd_ctl_dir[0].child);
  4792. sd_ctl_dir[0].child = entry;
  4793. if (entry == NULL)
  4794. return;
  4795. for_each_possible_cpu(i) {
  4796. snprintf(buf, 32, "cpu%d", i);
  4797. entry->procname = kstrdup(buf, GFP_KERNEL);
  4798. entry->mode = 0555;
  4799. entry->child = sd_alloc_ctl_cpu_table(i);
  4800. entry++;
  4801. }
  4802. WARN_ON(sd_sysctl_header);
  4803. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4804. }
  4805. /* may be called multiple times per register */
  4806. static void unregister_sched_domain_sysctl(void)
  4807. {
  4808. if (sd_sysctl_header)
  4809. unregister_sysctl_table(sd_sysctl_header);
  4810. sd_sysctl_header = NULL;
  4811. if (sd_ctl_dir[0].child)
  4812. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4813. }
  4814. #else
  4815. static void register_sched_domain_sysctl(void)
  4816. {
  4817. }
  4818. static void unregister_sched_domain_sysctl(void)
  4819. {
  4820. }
  4821. #endif
  4822. static void set_rq_online(struct rq *rq)
  4823. {
  4824. if (!rq->online) {
  4825. const struct sched_class *class;
  4826. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4827. rq->online = 1;
  4828. for_each_class(class) {
  4829. if (class->rq_online)
  4830. class->rq_online(rq);
  4831. }
  4832. }
  4833. }
  4834. static void set_rq_offline(struct rq *rq)
  4835. {
  4836. if (rq->online) {
  4837. const struct sched_class *class;
  4838. for_each_class(class) {
  4839. if (class->rq_offline)
  4840. class->rq_offline(rq);
  4841. }
  4842. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4843. rq->online = 0;
  4844. }
  4845. }
  4846. /*
  4847. * migration_call - callback that gets triggered when a CPU is added.
  4848. * Here we can start up the necessary migration thread for the new CPU.
  4849. */
  4850. static int __cpuinit
  4851. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4852. {
  4853. int cpu = (long)hcpu;
  4854. unsigned long flags;
  4855. struct rq *rq = cpu_rq(cpu);
  4856. switch (action & ~CPU_TASKS_FROZEN) {
  4857. case CPU_UP_PREPARE:
  4858. rq->calc_load_update = calc_load_update;
  4859. break;
  4860. case CPU_ONLINE:
  4861. /* Update our root-domain */
  4862. raw_spin_lock_irqsave(&rq->lock, flags);
  4863. if (rq->rd) {
  4864. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4865. set_rq_online(rq);
  4866. }
  4867. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4868. break;
  4869. #ifdef CONFIG_HOTPLUG_CPU
  4870. case CPU_DYING:
  4871. sched_ttwu_pending();
  4872. /* Update our root-domain */
  4873. raw_spin_lock_irqsave(&rq->lock, flags);
  4874. if (rq->rd) {
  4875. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4876. set_rq_offline(rq);
  4877. }
  4878. migrate_tasks(cpu);
  4879. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4880. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4881. break;
  4882. case CPU_DEAD:
  4883. calc_load_migrate(rq);
  4884. break;
  4885. #endif
  4886. }
  4887. update_max_interval();
  4888. return NOTIFY_OK;
  4889. }
  4890. /*
  4891. * Register at high priority so that task migration (migrate_all_tasks)
  4892. * happens before everything else. This has to be lower priority than
  4893. * the notifier in the perf_event subsystem, though.
  4894. */
  4895. static struct notifier_block __cpuinitdata migration_notifier = {
  4896. .notifier_call = migration_call,
  4897. .priority = CPU_PRI_MIGRATION,
  4898. };
  4899. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4900. unsigned long action, void *hcpu)
  4901. {
  4902. switch (action & ~CPU_TASKS_FROZEN) {
  4903. case CPU_DOWN_FAILED:
  4904. set_cpu_active((long)hcpu, true);
  4905. return NOTIFY_OK;
  4906. default:
  4907. return NOTIFY_DONE;
  4908. }
  4909. }
  4910. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4911. unsigned long action, void *hcpu)
  4912. {
  4913. switch (action & ~CPU_TASKS_FROZEN) {
  4914. case CPU_DOWN_PREPARE:
  4915. set_cpu_active((long)hcpu, false);
  4916. return NOTIFY_OK;
  4917. default:
  4918. return NOTIFY_DONE;
  4919. }
  4920. }
  4921. static int __init migration_init(void)
  4922. {
  4923. void *cpu = (void *)(long)smp_processor_id();
  4924. int err;
  4925. /* Initialize migration for the boot CPU */
  4926. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4927. BUG_ON(err == NOTIFY_BAD);
  4928. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4929. register_cpu_notifier(&migration_notifier);
  4930. /* Register cpu active notifiers */
  4931. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4932. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4933. return 0;
  4934. }
  4935. early_initcall(migration_init);
  4936. #endif
  4937. #ifdef CONFIG_SMP
  4938. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4939. #ifdef CONFIG_SCHED_DEBUG
  4940. static __read_mostly int sched_debug_enabled;
  4941. static int __init sched_debug_setup(char *str)
  4942. {
  4943. sched_debug_enabled = 1;
  4944. return 0;
  4945. }
  4946. early_param("sched_debug", sched_debug_setup);
  4947. static inline bool sched_debug(void)
  4948. {
  4949. return sched_debug_enabled;
  4950. }
  4951. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4952. struct cpumask *groupmask)
  4953. {
  4954. struct sched_group *group = sd->groups;
  4955. char str[256];
  4956. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4957. cpumask_clear(groupmask);
  4958. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4959. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4960. printk("does not load-balance\n");
  4961. if (sd->parent)
  4962. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4963. " has parent");
  4964. return -1;
  4965. }
  4966. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4967. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4968. printk(KERN_ERR "ERROR: domain->span does not contain "
  4969. "CPU%d\n", cpu);
  4970. }
  4971. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4972. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4973. " CPU%d\n", cpu);
  4974. }
  4975. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4976. do {
  4977. if (!group) {
  4978. printk("\n");
  4979. printk(KERN_ERR "ERROR: group is NULL\n");
  4980. break;
  4981. }
  4982. /*
  4983. * Even though we initialize ->power to something semi-sane,
  4984. * we leave power_orig unset. This allows us to detect if
  4985. * domain iteration is still funny without causing /0 traps.
  4986. */
  4987. if (!group->sgp->power_orig) {
  4988. printk(KERN_CONT "\n");
  4989. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4990. "set\n");
  4991. break;
  4992. }
  4993. if (!cpumask_weight(sched_group_cpus(group))) {
  4994. printk(KERN_CONT "\n");
  4995. printk(KERN_ERR "ERROR: empty group\n");
  4996. break;
  4997. }
  4998. if (!(sd->flags & SD_OVERLAP) &&
  4999. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5000. printk(KERN_CONT "\n");
  5001. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5002. break;
  5003. }
  5004. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5005. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5006. printk(KERN_CONT " %s", str);
  5007. if (group->sgp->power != SCHED_POWER_SCALE) {
  5008. printk(KERN_CONT " (cpu_power = %d)",
  5009. group->sgp->power);
  5010. }
  5011. group = group->next;
  5012. } while (group != sd->groups);
  5013. printk(KERN_CONT "\n");
  5014. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5015. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5016. if (sd->parent &&
  5017. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5018. printk(KERN_ERR "ERROR: parent span is not a superset "
  5019. "of domain->span\n");
  5020. return 0;
  5021. }
  5022. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5023. {
  5024. int level = 0;
  5025. if (!sched_debug_enabled)
  5026. return;
  5027. if (!sd) {
  5028. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5029. return;
  5030. }
  5031. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5032. for (;;) {
  5033. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  5034. break;
  5035. level++;
  5036. sd = sd->parent;
  5037. if (!sd)
  5038. break;
  5039. }
  5040. }
  5041. #else /* !CONFIG_SCHED_DEBUG */
  5042. # define sched_domain_debug(sd, cpu) do { } while (0)
  5043. static inline bool sched_debug(void)
  5044. {
  5045. return false;
  5046. }
  5047. #endif /* CONFIG_SCHED_DEBUG */
  5048. static int sd_degenerate(struct sched_domain *sd)
  5049. {
  5050. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5051. return 1;
  5052. /* Following flags need at least 2 groups */
  5053. if (sd->flags & (SD_LOAD_BALANCE |
  5054. SD_BALANCE_NEWIDLE |
  5055. SD_BALANCE_FORK |
  5056. SD_BALANCE_EXEC |
  5057. SD_SHARE_CPUPOWER |
  5058. SD_SHARE_PKG_RESOURCES)) {
  5059. if (sd->groups != sd->groups->next)
  5060. return 0;
  5061. }
  5062. /* Following flags don't use groups */
  5063. if (sd->flags & (SD_WAKE_AFFINE))
  5064. return 0;
  5065. return 1;
  5066. }
  5067. static int
  5068. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5069. {
  5070. unsigned long cflags = sd->flags, pflags = parent->flags;
  5071. if (sd_degenerate(parent))
  5072. return 1;
  5073. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5074. return 0;
  5075. /* Flags needing groups don't count if only 1 group in parent */
  5076. if (parent->groups == parent->groups->next) {
  5077. pflags &= ~(SD_LOAD_BALANCE |
  5078. SD_BALANCE_NEWIDLE |
  5079. SD_BALANCE_FORK |
  5080. SD_BALANCE_EXEC |
  5081. SD_SHARE_CPUPOWER |
  5082. SD_SHARE_PKG_RESOURCES);
  5083. if (nr_node_ids == 1)
  5084. pflags &= ~SD_SERIALIZE;
  5085. }
  5086. if (~cflags & pflags)
  5087. return 0;
  5088. return 1;
  5089. }
  5090. static void free_rootdomain(struct rcu_head *rcu)
  5091. {
  5092. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5093. cpupri_cleanup(&rd->cpupri);
  5094. free_cpumask_var(rd->rto_mask);
  5095. free_cpumask_var(rd->online);
  5096. free_cpumask_var(rd->span);
  5097. kfree(rd);
  5098. }
  5099. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5100. {
  5101. struct root_domain *old_rd = NULL;
  5102. unsigned long flags;
  5103. raw_spin_lock_irqsave(&rq->lock, flags);
  5104. if (rq->rd) {
  5105. old_rd = rq->rd;
  5106. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5107. set_rq_offline(rq);
  5108. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5109. /*
  5110. * If we dont want to free the old_rt yet then
  5111. * set old_rd to NULL to skip the freeing later
  5112. * in this function:
  5113. */
  5114. if (!atomic_dec_and_test(&old_rd->refcount))
  5115. old_rd = NULL;
  5116. }
  5117. atomic_inc(&rd->refcount);
  5118. rq->rd = rd;
  5119. cpumask_set_cpu(rq->cpu, rd->span);
  5120. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5121. set_rq_online(rq);
  5122. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5123. if (old_rd)
  5124. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5125. }
  5126. static int init_rootdomain(struct root_domain *rd)
  5127. {
  5128. memset(rd, 0, sizeof(*rd));
  5129. if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
  5130. goto out;
  5131. if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
  5132. goto free_span;
  5133. if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5134. goto free_online;
  5135. if (cpupri_init(&rd->cpupri) != 0)
  5136. goto free_rto_mask;
  5137. return 0;
  5138. free_rto_mask:
  5139. free_cpumask_var(rd->rto_mask);
  5140. free_online:
  5141. free_cpumask_var(rd->online);
  5142. free_span:
  5143. free_cpumask_var(rd->span);
  5144. out:
  5145. return -ENOMEM;
  5146. }
  5147. /*
  5148. * By default the system creates a single root-domain with all cpus as
  5149. * members (mimicking the global state we have today).
  5150. */
  5151. struct root_domain def_root_domain;
  5152. static void init_defrootdomain(void)
  5153. {
  5154. init_rootdomain(&def_root_domain);
  5155. atomic_set(&def_root_domain.refcount, 1);
  5156. }
  5157. static struct root_domain *alloc_rootdomain(void)
  5158. {
  5159. struct root_domain *rd;
  5160. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5161. if (!rd)
  5162. return NULL;
  5163. if (init_rootdomain(rd) != 0) {
  5164. kfree(rd);
  5165. return NULL;
  5166. }
  5167. return rd;
  5168. }
  5169. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  5170. {
  5171. struct sched_group *tmp, *first;
  5172. if (!sg)
  5173. return;
  5174. first = sg;
  5175. do {
  5176. tmp = sg->next;
  5177. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  5178. kfree(sg->sgp);
  5179. kfree(sg);
  5180. sg = tmp;
  5181. } while (sg != first);
  5182. }
  5183. static void free_sched_domain(struct rcu_head *rcu)
  5184. {
  5185. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5186. /*
  5187. * If its an overlapping domain it has private groups, iterate and
  5188. * nuke them all.
  5189. */
  5190. if (sd->flags & SD_OVERLAP) {
  5191. free_sched_groups(sd->groups, 1);
  5192. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5193. kfree(sd->groups->sgp);
  5194. kfree(sd->groups);
  5195. }
  5196. kfree(sd);
  5197. }
  5198. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5199. {
  5200. call_rcu(&sd->rcu, free_sched_domain);
  5201. }
  5202. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5203. {
  5204. for (; sd; sd = sd->parent)
  5205. destroy_sched_domain(sd, cpu);
  5206. }
  5207. /*
  5208. * Keep a special pointer to the highest sched_domain that has
  5209. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  5210. * allows us to avoid some pointer chasing select_idle_sibling().
  5211. *
  5212. * Also keep a unique ID per domain (we use the first cpu number in
  5213. * the cpumask of the domain), this allows us to quickly tell if
  5214. * two cpus are in the same cache domain, see cpus_share_cache().
  5215. */
  5216. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  5217. DEFINE_PER_CPU(int, sd_llc_size);
  5218. DEFINE_PER_CPU(int, sd_llc_id);
  5219. static void update_top_cache_domain(int cpu)
  5220. {
  5221. struct sched_domain *sd;
  5222. int id = cpu;
  5223. int size = 1;
  5224. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  5225. if (sd) {
  5226. id = cpumask_first(sched_domain_span(sd));
  5227. size = cpumask_weight(sched_domain_span(sd));
  5228. }
  5229. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  5230. per_cpu(sd_llc_size, cpu) = size;
  5231. per_cpu(sd_llc_id, cpu) = id;
  5232. }
  5233. /*
  5234. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5235. * hold the hotplug lock.
  5236. */
  5237. static void
  5238. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5239. {
  5240. struct rq *rq = cpu_rq(cpu);
  5241. struct sched_domain *tmp;
  5242. unsigned long next_balance = rq->next_balance;
  5243. /* Remove the sched domains which do not contribute to scheduling. */
  5244. for (tmp = sd; tmp; ) {
  5245. struct sched_domain *parent = tmp->parent;
  5246. if (!parent)
  5247. break;
  5248. if (sd_parent_degenerate(tmp, parent)) {
  5249. tmp->parent = parent->parent;
  5250. if (parent->parent)
  5251. parent->parent->child = tmp;
  5252. destroy_sched_domain(parent, cpu);
  5253. } else
  5254. tmp = tmp->parent;
  5255. }
  5256. if (sd && sd_degenerate(sd)) {
  5257. tmp = sd;
  5258. sd = sd->parent;
  5259. destroy_sched_domain(tmp, cpu);
  5260. if (sd)
  5261. sd->child = NULL;
  5262. }
  5263. for (tmp = sd; tmp; ) {
  5264. unsigned long interval;
  5265. interval = msecs_to_jiffies(tmp->balance_interval);
  5266. if (time_after(next_balance, tmp->last_balance + interval))
  5267. next_balance = tmp->last_balance + interval;
  5268. tmp = tmp->parent;
  5269. }
  5270. rq->next_balance = next_balance;
  5271. sched_domain_debug(sd, cpu);
  5272. rq_attach_root(rq, rd);
  5273. tmp = rq->sd;
  5274. rcu_assign_pointer(rq->sd, sd);
  5275. destroy_sched_domains(tmp, cpu);
  5276. update_top_cache_domain(cpu);
  5277. }
  5278. /* cpus with isolated domains */
  5279. static cpumask_var_t cpu_isolated_map;
  5280. /* Setup the mask of cpus configured for isolated domains */
  5281. static int __init isolated_cpu_setup(char *str)
  5282. {
  5283. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5284. cpulist_parse(str, cpu_isolated_map);
  5285. return 1;
  5286. }
  5287. __setup("isolcpus=", isolated_cpu_setup);
  5288. static const struct cpumask *cpu_cpu_mask(int cpu)
  5289. {
  5290. return cpumask_of_node(cpu_to_node(cpu));
  5291. }
  5292. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5293. struct sd_data {
  5294. struct sched_domain **__percpu sd;
  5295. struct sched_group **__percpu sg;
  5296. struct sched_group_power **__percpu sgp;
  5297. };
  5298. struct s_data {
  5299. struct sched_domain ** __percpu sd;
  5300. struct root_domain *rd;
  5301. };
  5302. enum s_alloc {
  5303. sa_rootdomain,
  5304. sa_sd,
  5305. sa_sd_storage,
  5306. sa_none,
  5307. };
  5308. struct sched_domain_topology_level;
  5309. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5310. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5311. #define SDTL_OVERLAP 0x01
  5312. struct sched_domain_topology_level {
  5313. sched_domain_init_f init;
  5314. sched_domain_mask_f mask;
  5315. int flags;
  5316. int numa_level;
  5317. struct sd_data data;
  5318. };
  5319. /*
  5320. * Build an iteration mask that can exclude certain CPUs from the upwards
  5321. * domain traversal.
  5322. *
  5323. * Asymmetric node setups can result in situations where the domain tree is of
  5324. * unequal depth, make sure to skip domains that already cover the entire
  5325. * range.
  5326. *
  5327. * In that case build_sched_domains() will have terminated the iteration early
  5328. * and our sibling sd spans will be empty. Domains should always include the
  5329. * cpu they're built on, so check that.
  5330. *
  5331. */
  5332. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  5333. {
  5334. const struct cpumask *span = sched_domain_span(sd);
  5335. struct sd_data *sdd = sd->private;
  5336. struct sched_domain *sibling;
  5337. int i;
  5338. for_each_cpu(i, span) {
  5339. sibling = *per_cpu_ptr(sdd->sd, i);
  5340. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5341. continue;
  5342. cpumask_set_cpu(i, sched_group_mask(sg));
  5343. }
  5344. }
  5345. /*
  5346. * Return the canonical balance cpu for this group, this is the first cpu
  5347. * of this group that's also in the iteration mask.
  5348. */
  5349. int group_balance_cpu(struct sched_group *sg)
  5350. {
  5351. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  5352. }
  5353. static int
  5354. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5355. {
  5356. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5357. const struct cpumask *span = sched_domain_span(sd);
  5358. struct cpumask *covered = sched_domains_tmpmask;
  5359. struct sd_data *sdd = sd->private;
  5360. struct sched_domain *child;
  5361. int i;
  5362. cpumask_clear(covered);
  5363. for_each_cpu(i, span) {
  5364. struct cpumask *sg_span;
  5365. if (cpumask_test_cpu(i, covered))
  5366. continue;
  5367. child = *per_cpu_ptr(sdd->sd, i);
  5368. /* See the comment near build_group_mask(). */
  5369. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  5370. continue;
  5371. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5372. GFP_KERNEL, cpu_to_node(cpu));
  5373. if (!sg)
  5374. goto fail;
  5375. sg_span = sched_group_cpus(sg);
  5376. if (child->child) {
  5377. child = child->child;
  5378. cpumask_copy(sg_span, sched_domain_span(child));
  5379. } else
  5380. cpumask_set_cpu(i, sg_span);
  5381. cpumask_or(covered, covered, sg_span);
  5382. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  5383. if (atomic_inc_return(&sg->sgp->ref) == 1)
  5384. build_group_mask(sd, sg);
  5385. /*
  5386. * Initialize sgp->power such that even if we mess up the
  5387. * domains and no possible iteration will get us here, we won't
  5388. * die on a /0 trap.
  5389. */
  5390. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  5391. /*
  5392. * Make sure the first group of this domain contains the
  5393. * canonical balance cpu. Otherwise the sched_domain iteration
  5394. * breaks. See update_sg_lb_stats().
  5395. */
  5396. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5397. group_balance_cpu(sg) == cpu)
  5398. groups = sg;
  5399. if (!first)
  5400. first = sg;
  5401. if (last)
  5402. last->next = sg;
  5403. last = sg;
  5404. last->next = first;
  5405. }
  5406. sd->groups = groups;
  5407. return 0;
  5408. fail:
  5409. free_sched_groups(first, 0);
  5410. return -ENOMEM;
  5411. }
  5412. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5413. {
  5414. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5415. struct sched_domain *child = sd->child;
  5416. if (child)
  5417. cpu = cpumask_first(sched_domain_span(child));
  5418. if (sg) {
  5419. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5420. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5421. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5422. }
  5423. return cpu;
  5424. }
  5425. /*
  5426. * build_sched_groups will build a circular linked list of the groups
  5427. * covered by the given span, and will set each group's ->cpumask correctly,
  5428. * and ->cpu_power to 0.
  5429. *
  5430. * Assumes the sched_domain tree is fully constructed
  5431. */
  5432. static int
  5433. build_sched_groups(struct sched_domain *sd, int cpu)
  5434. {
  5435. struct sched_group *first = NULL, *last = NULL;
  5436. struct sd_data *sdd = sd->private;
  5437. const struct cpumask *span = sched_domain_span(sd);
  5438. struct cpumask *covered;
  5439. int i;
  5440. get_group(cpu, sdd, &sd->groups);
  5441. atomic_inc(&sd->groups->ref);
  5442. if (cpu != cpumask_first(sched_domain_span(sd)))
  5443. return 0;
  5444. lockdep_assert_held(&sched_domains_mutex);
  5445. covered = sched_domains_tmpmask;
  5446. cpumask_clear(covered);
  5447. for_each_cpu(i, span) {
  5448. struct sched_group *sg;
  5449. int group, j;
  5450. if (cpumask_test_cpu(i, covered))
  5451. continue;
  5452. group = get_group(i, sdd, &sg);
  5453. cpumask_clear(sched_group_cpus(sg));
  5454. sg->sgp->power = 0;
  5455. cpumask_setall(sched_group_mask(sg));
  5456. for_each_cpu(j, span) {
  5457. if (get_group(j, sdd, NULL) != group)
  5458. continue;
  5459. cpumask_set_cpu(j, covered);
  5460. cpumask_set_cpu(j, sched_group_cpus(sg));
  5461. }
  5462. if (!first)
  5463. first = sg;
  5464. if (last)
  5465. last->next = sg;
  5466. last = sg;
  5467. }
  5468. last->next = first;
  5469. return 0;
  5470. }
  5471. /*
  5472. * Initialize sched groups cpu_power.
  5473. *
  5474. * cpu_power indicates the capacity of sched group, which is used while
  5475. * distributing the load between different sched groups in a sched domain.
  5476. * Typically cpu_power for all the groups in a sched domain will be same unless
  5477. * there are asymmetries in the topology. If there are asymmetries, group
  5478. * having more cpu_power will pickup more load compared to the group having
  5479. * less cpu_power.
  5480. */
  5481. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5482. {
  5483. struct sched_group *sg = sd->groups;
  5484. WARN_ON(!sd || !sg);
  5485. do {
  5486. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5487. sg = sg->next;
  5488. } while (sg != sd->groups);
  5489. if (cpu != group_balance_cpu(sg))
  5490. return;
  5491. update_group_power(sd, cpu);
  5492. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5493. }
  5494. int __weak arch_sd_sibling_asym_packing(void)
  5495. {
  5496. return 0*SD_ASYM_PACKING;
  5497. }
  5498. /*
  5499. * Initializers for schedule domains
  5500. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5501. */
  5502. #ifdef CONFIG_SCHED_DEBUG
  5503. # define SD_INIT_NAME(sd, type) sd->name = #type
  5504. #else
  5505. # define SD_INIT_NAME(sd, type) do { } while (0)
  5506. #endif
  5507. #define SD_INIT_FUNC(type) \
  5508. static noinline struct sched_domain * \
  5509. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5510. { \
  5511. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5512. *sd = SD_##type##_INIT; \
  5513. SD_INIT_NAME(sd, type); \
  5514. sd->private = &tl->data; \
  5515. return sd; \
  5516. }
  5517. SD_INIT_FUNC(CPU)
  5518. #ifdef CONFIG_SCHED_SMT
  5519. SD_INIT_FUNC(SIBLING)
  5520. #endif
  5521. #ifdef CONFIG_SCHED_MC
  5522. SD_INIT_FUNC(MC)
  5523. #endif
  5524. #ifdef CONFIG_SCHED_BOOK
  5525. SD_INIT_FUNC(BOOK)
  5526. #endif
  5527. static int default_relax_domain_level = -1;
  5528. int sched_domain_level_max;
  5529. static int __init setup_relax_domain_level(char *str)
  5530. {
  5531. if (kstrtoint(str, 0, &default_relax_domain_level))
  5532. pr_warn("Unable to set relax_domain_level\n");
  5533. return 1;
  5534. }
  5535. __setup("relax_domain_level=", setup_relax_domain_level);
  5536. static void set_domain_attribute(struct sched_domain *sd,
  5537. struct sched_domain_attr *attr)
  5538. {
  5539. int request;
  5540. if (!attr || attr->relax_domain_level < 0) {
  5541. if (default_relax_domain_level < 0)
  5542. return;
  5543. else
  5544. request = default_relax_domain_level;
  5545. } else
  5546. request = attr->relax_domain_level;
  5547. if (request < sd->level) {
  5548. /* turn off idle balance on this domain */
  5549. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5550. } else {
  5551. /* turn on idle balance on this domain */
  5552. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5553. }
  5554. }
  5555. static void __sdt_free(const struct cpumask *cpu_map);
  5556. static int __sdt_alloc(const struct cpumask *cpu_map);
  5557. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5558. const struct cpumask *cpu_map)
  5559. {
  5560. switch (what) {
  5561. case sa_rootdomain:
  5562. if (!atomic_read(&d->rd->refcount))
  5563. free_rootdomain(&d->rd->rcu); /* fall through */
  5564. case sa_sd:
  5565. free_percpu(d->sd); /* fall through */
  5566. case sa_sd_storage:
  5567. __sdt_free(cpu_map); /* fall through */
  5568. case sa_none:
  5569. break;
  5570. }
  5571. }
  5572. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5573. const struct cpumask *cpu_map)
  5574. {
  5575. memset(d, 0, sizeof(*d));
  5576. if (__sdt_alloc(cpu_map))
  5577. return sa_sd_storage;
  5578. d->sd = alloc_percpu(struct sched_domain *);
  5579. if (!d->sd)
  5580. return sa_sd_storage;
  5581. d->rd = alloc_rootdomain();
  5582. if (!d->rd)
  5583. return sa_sd;
  5584. return sa_rootdomain;
  5585. }
  5586. /*
  5587. * NULL the sd_data elements we've used to build the sched_domain and
  5588. * sched_group structure so that the subsequent __free_domain_allocs()
  5589. * will not free the data we're using.
  5590. */
  5591. static void claim_allocations(int cpu, struct sched_domain *sd)
  5592. {
  5593. struct sd_data *sdd = sd->private;
  5594. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5595. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5596. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5597. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5598. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5599. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5600. }
  5601. #ifdef CONFIG_SCHED_SMT
  5602. static const struct cpumask *cpu_smt_mask(int cpu)
  5603. {
  5604. return topology_thread_cpumask(cpu);
  5605. }
  5606. #endif
  5607. /*
  5608. * Topology list, bottom-up.
  5609. */
  5610. static struct sched_domain_topology_level default_topology[] = {
  5611. #ifdef CONFIG_SCHED_SMT
  5612. { sd_init_SIBLING, cpu_smt_mask, },
  5613. #endif
  5614. #ifdef CONFIG_SCHED_MC
  5615. { sd_init_MC, cpu_coregroup_mask, },
  5616. #endif
  5617. #ifdef CONFIG_SCHED_BOOK
  5618. { sd_init_BOOK, cpu_book_mask, },
  5619. #endif
  5620. { sd_init_CPU, cpu_cpu_mask, },
  5621. { NULL, },
  5622. };
  5623. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5624. #ifdef CONFIG_NUMA
  5625. static int sched_domains_numa_levels;
  5626. static int *sched_domains_numa_distance;
  5627. static struct cpumask ***sched_domains_numa_masks;
  5628. static int sched_domains_curr_level;
  5629. static inline unsigned long numa_scale(unsigned long x, int level)
  5630. {
  5631. return x * sched_domains_numa_distance[level] / sched_domains_numa_scale;
  5632. }
  5633. static inline int sd_local_flags(int level)
  5634. {
  5635. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  5636. return 0;
  5637. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  5638. }
  5639. static struct sched_domain *
  5640. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  5641. {
  5642. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5643. int level = tl->numa_level;
  5644. int sd_weight = cpumask_weight(
  5645. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  5646. *sd = (struct sched_domain){
  5647. .min_interval = sd_weight,
  5648. .max_interval = 2*sd_weight,
  5649. .busy_factor = 32,
  5650. .imbalance_pct = 100 + numa_scale(25, level),
  5651. .cache_nice_tries = 2,
  5652. .busy_idx = 3,
  5653. .idle_idx = 2,
  5654. .newidle_idx = 0,
  5655. .wake_idx = 0,
  5656. .forkexec_idx = 0,
  5657. .flags = 1*SD_LOAD_BALANCE
  5658. | 1*SD_BALANCE_NEWIDLE
  5659. | 0*SD_BALANCE_EXEC
  5660. | 0*SD_BALANCE_FORK
  5661. | 0*SD_BALANCE_WAKE
  5662. | 0*SD_WAKE_AFFINE
  5663. | 0*SD_PREFER_LOCAL
  5664. | 0*SD_SHARE_CPUPOWER
  5665. | 0*SD_POWERSAVINGS_BALANCE
  5666. | 0*SD_SHARE_PKG_RESOURCES
  5667. | 1*SD_SERIALIZE
  5668. | 0*SD_PREFER_SIBLING
  5669. | sd_local_flags(level)
  5670. ,
  5671. .last_balance = jiffies,
  5672. .balance_interval = sd_weight,
  5673. };
  5674. SD_INIT_NAME(sd, NUMA);
  5675. sd->private = &tl->data;
  5676. /*
  5677. * Ugly hack to pass state to sd_numa_mask()...
  5678. */
  5679. sched_domains_curr_level = tl->numa_level;
  5680. return sd;
  5681. }
  5682. static const struct cpumask *sd_numa_mask(int cpu)
  5683. {
  5684. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5685. }
  5686. static void sched_numa_warn(const char *str)
  5687. {
  5688. static int done = false;
  5689. int i,j;
  5690. if (done)
  5691. return;
  5692. done = true;
  5693. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5694. for (i = 0; i < nr_node_ids; i++) {
  5695. printk(KERN_WARNING " ");
  5696. for (j = 0; j < nr_node_ids; j++)
  5697. printk(KERN_CONT "%02d ", node_distance(i,j));
  5698. printk(KERN_CONT "\n");
  5699. }
  5700. printk(KERN_WARNING "\n");
  5701. }
  5702. static bool find_numa_distance(int distance)
  5703. {
  5704. int i;
  5705. if (distance == node_distance(0, 0))
  5706. return true;
  5707. for (i = 0; i < sched_domains_numa_levels; i++) {
  5708. if (sched_domains_numa_distance[i] == distance)
  5709. return true;
  5710. }
  5711. return false;
  5712. }
  5713. static void sched_init_numa(void)
  5714. {
  5715. int next_distance, curr_distance = node_distance(0, 0);
  5716. struct sched_domain_topology_level *tl;
  5717. int level = 0;
  5718. int i, j, k;
  5719. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5720. if (!sched_domains_numa_distance)
  5721. return;
  5722. /*
  5723. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5724. * unique distances in the node_distance() table.
  5725. *
  5726. * Assumes node_distance(0,j) includes all distances in
  5727. * node_distance(i,j) in order to avoid cubic time.
  5728. */
  5729. next_distance = curr_distance;
  5730. for (i = 0; i < nr_node_ids; i++) {
  5731. for (j = 0; j < nr_node_ids; j++) {
  5732. for (k = 0; k < nr_node_ids; k++) {
  5733. int distance = node_distance(i, k);
  5734. if (distance > curr_distance &&
  5735. (distance < next_distance ||
  5736. next_distance == curr_distance))
  5737. next_distance = distance;
  5738. /*
  5739. * While not a strong assumption it would be nice to know
  5740. * about cases where if node A is connected to B, B is not
  5741. * equally connected to A.
  5742. */
  5743. if (sched_debug() && node_distance(k, i) != distance)
  5744. sched_numa_warn("Node-distance not symmetric");
  5745. if (sched_debug() && i && !find_numa_distance(distance))
  5746. sched_numa_warn("Node-0 not representative");
  5747. }
  5748. if (next_distance != curr_distance) {
  5749. sched_domains_numa_distance[level++] = next_distance;
  5750. sched_domains_numa_levels = level;
  5751. curr_distance = next_distance;
  5752. } else break;
  5753. }
  5754. /*
  5755. * In case of sched_debug() we verify the above assumption.
  5756. */
  5757. if (!sched_debug())
  5758. break;
  5759. }
  5760. /*
  5761. * 'level' contains the number of unique distances, excluding the
  5762. * identity distance node_distance(i,i).
  5763. *
  5764. * The sched_domains_nume_distance[] array includes the actual distance
  5765. * numbers.
  5766. */
  5767. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5768. if (!sched_domains_numa_masks)
  5769. return;
  5770. /*
  5771. * Now for each level, construct a mask per node which contains all
  5772. * cpus of nodes that are that many hops away from us.
  5773. */
  5774. for (i = 0; i < level; i++) {
  5775. sched_domains_numa_masks[i] =
  5776. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5777. if (!sched_domains_numa_masks[i])
  5778. return;
  5779. for (j = 0; j < nr_node_ids; j++) {
  5780. struct cpumask *mask = kzalloc_node(cpumask_size(), GFP_KERNEL, j);
  5781. if (!mask)
  5782. return;
  5783. sched_domains_numa_masks[i][j] = mask;
  5784. for (k = 0; k < nr_node_ids; k++) {
  5785. if (node_distance(cpu_to_node(j), k) >
  5786. sched_domains_numa_distance[i])
  5787. continue;
  5788. cpumask_or(mask, mask, cpumask_of_node(k));
  5789. }
  5790. }
  5791. }
  5792. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  5793. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5794. if (!tl)
  5795. return;
  5796. /*
  5797. * Copy the default topology bits..
  5798. */
  5799. for (i = 0; default_topology[i].init; i++)
  5800. tl[i] = default_topology[i];
  5801. /*
  5802. * .. and append 'j' levels of NUMA goodness.
  5803. */
  5804. for (j = 0; j < level; i++, j++) {
  5805. tl[i] = (struct sched_domain_topology_level){
  5806. .init = sd_numa_init,
  5807. .mask = sd_numa_mask,
  5808. .flags = SDTL_OVERLAP,
  5809. .numa_level = j,
  5810. };
  5811. }
  5812. sched_domain_topology = tl;
  5813. }
  5814. #else
  5815. static inline void sched_init_numa(void)
  5816. {
  5817. }
  5818. #endif /* CONFIG_NUMA */
  5819. static int __sdt_alloc(const struct cpumask *cpu_map)
  5820. {
  5821. struct sched_domain_topology_level *tl;
  5822. int j;
  5823. for (tl = sched_domain_topology; tl->init; tl++) {
  5824. struct sd_data *sdd = &tl->data;
  5825. sdd->sd = alloc_percpu(struct sched_domain *);
  5826. if (!sdd->sd)
  5827. return -ENOMEM;
  5828. sdd->sg = alloc_percpu(struct sched_group *);
  5829. if (!sdd->sg)
  5830. return -ENOMEM;
  5831. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5832. if (!sdd->sgp)
  5833. return -ENOMEM;
  5834. for_each_cpu(j, cpu_map) {
  5835. struct sched_domain *sd;
  5836. struct sched_group *sg;
  5837. struct sched_group_power *sgp;
  5838. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5839. GFP_KERNEL, cpu_to_node(j));
  5840. if (!sd)
  5841. return -ENOMEM;
  5842. *per_cpu_ptr(sdd->sd, j) = sd;
  5843. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5844. GFP_KERNEL, cpu_to_node(j));
  5845. if (!sg)
  5846. return -ENOMEM;
  5847. sg->next = sg;
  5848. *per_cpu_ptr(sdd->sg, j) = sg;
  5849. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  5850. GFP_KERNEL, cpu_to_node(j));
  5851. if (!sgp)
  5852. return -ENOMEM;
  5853. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5854. }
  5855. }
  5856. return 0;
  5857. }
  5858. static void __sdt_free(const struct cpumask *cpu_map)
  5859. {
  5860. struct sched_domain_topology_level *tl;
  5861. int j;
  5862. for (tl = sched_domain_topology; tl->init; tl++) {
  5863. struct sd_data *sdd = &tl->data;
  5864. for_each_cpu(j, cpu_map) {
  5865. struct sched_domain *sd;
  5866. if (sdd->sd) {
  5867. sd = *per_cpu_ptr(sdd->sd, j);
  5868. if (sd && (sd->flags & SD_OVERLAP))
  5869. free_sched_groups(sd->groups, 0);
  5870. kfree(*per_cpu_ptr(sdd->sd, j));
  5871. }
  5872. if (sdd->sg)
  5873. kfree(*per_cpu_ptr(sdd->sg, j));
  5874. if (sdd->sgp)
  5875. kfree(*per_cpu_ptr(sdd->sgp, j));
  5876. }
  5877. free_percpu(sdd->sd);
  5878. sdd->sd = NULL;
  5879. free_percpu(sdd->sg);
  5880. sdd->sg = NULL;
  5881. free_percpu(sdd->sgp);
  5882. sdd->sgp = NULL;
  5883. }
  5884. }
  5885. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5886. struct s_data *d, const struct cpumask *cpu_map,
  5887. struct sched_domain_attr *attr, struct sched_domain *child,
  5888. int cpu)
  5889. {
  5890. struct sched_domain *sd = tl->init(tl, cpu);
  5891. if (!sd)
  5892. return child;
  5893. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5894. if (child) {
  5895. sd->level = child->level + 1;
  5896. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5897. child->parent = sd;
  5898. }
  5899. sd->child = child;
  5900. set_domain_attribute(sd, attr);
  5901. return sd;
  5902. }
  5903. /*
  5904. * Build sched domains for a given set of cpus and attach the sched domains
  5905. * to the individual cpus
  5906. */
  5907. static int build_sched_domains(const struct cpumask *cpu_map,
  5908. struct sched_domain_attr *attr)
  5909. {
  5910. enum s_alloc alloc_state = sa_none;
  5911. struct sched_domain *sd;
  5912. struct s_data d;
  5913. int i, ret = -ENOMEM;
  5914. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5915. if (alloc_state != sa_rootdomain)
  5916. goto error;
  5917. /* Set up domains for cpus specified by the cpu_map. */
  5918. for_each_cpu(i, cpu_map) {
  5919. struct sched_domain_topology_level *tl;
  5920. sd = NULL;
  5921. for (tl = sched_domain_topology; tl->init; tl++) {
  5922. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5923. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5924. sd->flags |= SD_OVERLAP;
  5925. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5926. break;
  5927. }
  5928. while (sd->child)
  5929. sd = sd->child;
  5930. *per_cpu_ptr(d.sd, i) = sd;
  5931. }
  5932. /* Build the groups for the domains */
  5933. for_each_cpu(i, cpu_map) {
  5934. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5935. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5936. if (sd->flags & SD_OVERLAP) {
  5937. if (build_overlap_sched_groups(sd, i))
  5938. goto error;
  5939. } else {
  5940. if (build_sched_groups(sd, i))
  5941. goto error;
  5942. }
  5943. }
  5944. }
  5945. /* Calculate CPU power for physical packages and nodes */
  5946. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5947. if (!cpumask_test_cpu(i, cpu_map))
  5948. continue;
  5949. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5950. claim_allocations(i, sd);
  5951. init_sched_groups_power(i, sd);
  5952. }
  5953. }
  5954. /* Attach the domains */
  5955. rcu_read_lock();
  5956. for_each_cpu(i, cpu_map) {
  5957. sd = *per_cpu_ptr(d.sd, i);
  5958. cpu_attach_domain(sd, d.rd, i);
  5959. }
  5960. rcu_read_unlock();
  5961. ret = 0;
  5962. error:
  5963. __free_domain_allocs(&d, alloc_state, cpu_map);
  5964. return ret;
  5965. }
  5966. static cpumask_var_t *doms_cur; /* current sched domains */
  5967. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5968. static struct sched_domain_attr *dattr_cur;
  5969. /* attribues of custom domains in 'doms_cur' */
  5970. /*
  5971. * Special case: If a kmalloc of a doms_cur partition (array of
  5972. * cpumask) fails, then fallback to a single sched domain,
  5973. * as determined by the single cpumask fallback_doms.
  5974. */
  5975. static cpumask_var_t fallback_doms;
  5976. /*
  5977. * arch_update_cpu_topology lets virtualized architectures update the
  5978. * cpu core maps. It is supposed to return 1 if the topology changed
  5979. * or 0 if it stayed the same.
  5980. */
  5981. int __weak arch_update_cpu_topology(void)
  5982. {
  5983. return 0;
  5984. }
  5985. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5986. {
  5987. int i;
  5988. cpumask_var_t *doms;
  5989. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5990. if (!doms)
  5991. return NULL;
  5992. for (i = 0; i < ndoms; i++) {
  5993. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5994. free_sched_domains(doms, i);
  5995. return NULL;
  5996. }
  5997. }
  5998. return doms;
  5999. }
  6000. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6001. {
  6002. unsigned int i;
  6003. for (i = 0; i < ndoms; i++)
  6004. free_cpumask_var(doms[i]);
  6005. kfree(doms);
  6006. }
  6007. /*
  6008. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6009. * For now this just excludes isolated cpus, but could be used to
  6010. * exclude other special cases in the future.
  6011. */
  6012. static int init_sched_domains(const struct cpumask *cpu_map)
  6013. {
  6014. int err;
  6015. arch_update_cpu_topology();
  6016. ndoms_cur = 1;
  6017. doms_cur = alloc_sched_domains(ndoms_cur);
  6018. if (!doms_cur)
  6019. doms_cur = &fallback_doms;
  6020. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6021. err = build_sched_domains(doms_cur[0], NULL);
  6022. register_sched_domain_sysctl();
  6023. return err;
  6024. }
  6025. /*
  6026. * Detach sched domains from a group of cpus specified in cpu_map
  6027. * These cpus will now be attached to the NULL domain
  6028. */
  6029. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6030. {
  6031. int i;
  6032. rcu_read_lock();
  6033. for_each_cpu(i, cpu_map)
  6034. cpu_attach_domain(NULL, &def_root_domain, i);
  6035. rcu_read_unlock();
  6036. }
  6037. /* handle null as "default" */
  6038. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6039. struct sched_domain_attr *new, int idx_new)
  6040. {
  6041. struct sched_domain_attr tmp;
  6042. /* fast path */
  6043. if (!new && !cur)
  6044. return 1;
  6045. tmp = SD_ATTR_INIT;
  6046. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6047. new ? (new + idx_new) : &tmp,
  6048. sizeof(struct sched_domain_attr));
  6049. }
  6050. /*
  6051. * Partition sched domains as specified by the 'ndoms_new'
  6052. * cpumasks in the array doms_new[] of cpumasks. This compares
  6053. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6054. * It destroys each deleted domain and builds each new domain.
  6055. *
  6056. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6057. * The masks don't intersect (don't overlap.) We should setup one
  6058. * sched domain for each mask. CPUs not in any of the cpumasks will
  6059. * not be load balanced. If the same cpumask appears both in the
  6060. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6061. * it as it is.
  6062. *
  6063. * The passed in 'doms_new' should be allocated using
  6064. * alloc_sched_domains. This routine takes ownership of it and will
  6065. * free_sched_domains it when done with it. If the caller failed the
  6066. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6067. * and partition_sched_domains() will fallback to the single partition
  6068. * 'fallback_doms', it also forces the domains to be rebuilt.
  6069. *
  6070. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6071. * ndoms_new == 0 is a special case for destroying existing domains,
  6072. * and it will not create the default domain.
  6073. *
  6074. * Call with hotplug lock held
  6075. */
  6076. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6077. struct sched_domain_attr *dattr_new)
  6078. {
  6079. int i, j, n;
  6080. int new_topology;
  6081. mutex_lock(&sched_domains_mutex);
  6082. /* always unregister in case we don't destroy any domains */
  6083. unregister_sched_domain_sysctl();
  6084. /* Let architecture update cpu core mappings. */
  6085. new_topology = arch_update_cpu_topology();
  6086. n = doms_new ? ndoms_new : 0;
  6087. /* Destroy deleted domains */
  6088. for (i = 0; i < ndoms_cur; i++) {
  6089. for (j = 0; j < n && !new_topology; j++) {
  6090. if (cpumask_equal(doms_cur[i], doms_new[j])
  6091. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6092. goto match1;
  6093. }
  6094. /* no match - a current sched domain not in new doms_new[] */
  6095. detach_destroy_domains(doms_cur[i]);
  6096. match1:
  6097. ;
  6098. }
  6099. if (doms_new == NULL) {
  6100. ndoms_cur = 0;
  6101. doms_new = &fallback_doms;
  6102. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6103. WARN_ON_ONCE(dattr_new);
  6104. }
  6105. /* Build new domains */
  6106. for (i = 0; i < ndoms_new; i++) {
  6107. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6108. if (cpumask_equal(doms_new[i], doms_cur[j])
  6109. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6110. goto match2;
  6111. }
  6112. /* no match - add a new doms_new */
  6113. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6114. match2:
  6115. ;
  6116. }
  6117. /* Remember the new sched domains */
  6118. if (doms_cur != &fallback_doms)
  6119. free_sched_domains(doms_cur, ndoms_cur);
  6120. kfree(dattr_cur); /* kfree(NULL) is safe */
  6121. doms_cur = doms_new;
  6122. dattr_cur = dattr_new;
  6123. ndoms_cur = ndoms_new;
  6124. register_sched_domain_sysctl();
  6125. mutex_unlock(&sched_domains_mutex);
  6126. }
  6127. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6128. static void reinit_sched_domains(void)
  6129. {
  6130. get_online_cpus();
  6131. /* Destroy domains first to force the rebuild */
  6132. partition_sched_domains(0, NULL, NULL);
  6133. rebuild_sched_domains();
  6134. put_online_cpus();
  6135. }
  6136. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6137. {
  6138. unsigned int level = 0;
  6139. if (sscanf(buf, "%u", &level) != 1)
  6140. return -EINVAL;
  6141. /*
  6142. * level is always be positive so don't check for
  6143. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6144. * What happens on 0 or 1 byte write,
  6145. * need to check for count as well?
  6146. */
  6147. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6148. return -EINVAL;
  6149. if (smt)
  6150. sched_smt_power_savings = level;
  6151. else
  6152. sched_mc_power_savings = level;
  6153. reinit_sched_domains();
  6154. return count;
  6155. }
  6156. #ifdef CONFIG_SCHED_MC
  6157. static ssize_t sched_mc_power_savings_show(struct device *dev,
  6158. struct device_attribute *attr,
  6159. char *buf)
  6160. {
  6161. return sprintf(buf, "%u\n", sched_mc_power_savings);
  6162. }
  6163. static ssize_t sched_mc_power_savings_store(struct device *dev,
  6164. struct device_attribute *attr,
  6165. const char *buf, size_t count)
  6166. {
  6167. return sched_power_savings_store(buf, count, 0);
  6168. }
  6169. static DEVICE_ATTR(sched_mc_power_savings, 0644,
  6170. sched_mc_power_savings_show,
  6171. sched_mc_power_savings_store);
  6172. #endif
  6173. #ifdef CONFIG_SCHED_SMT
  6174. static ssize_t sched_smt_power_savings_show(struct device *dev,
  6175. struct device_attribute *attr,
  6176. char *buf)
  6177. {
  6178. return sprintf(buf, "%u\n", sched_smt_power_savings);
  6179. }
  6180. static ssize_t sched_smt_power_savings_store(struct device *dev,
  6181. struct device_attribute *attr,
  6182. const char *buf, size_t count)
  6183. {
  6184. return sched_power_savings_store(buf, count, 1);
  6185. }
  6186. static DEVICE_ATTR(sched_smt_power_savings, 0644,
  6187. sched_smt_power_savings_show,
  6188. sched_smt_power_savings_store);
  6189. #endif
  6190. int __init sched_create_sysfs_power_savings_entries(struct device *dev)
  6191. {
  6192. int err = 0;
  6193. #ifdef CONFIG_SCHED_SMT
  6194. if (smt_capable())
  6195. err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
  6196. #endif
  6197. #ifdef CONFIG_SCHED_MC
  6198. if (!err && mc_capable())
  6199. err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
  6200. #endif
  6201. return err;
  6202. }
  6203. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6204. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  6205. /*
  6206. * Update cpusets according to cpu_active mask. If cpusets are
  6207. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6208. * around partition_sched_domains().
  6209. *
  6210. * If we come here as part of a suspend/resume, don't touch cpusets because we
  6211. * want to restore it back to its original state upon resume anyway.
  6212. */
  6213. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6214. void *hcpu)
  6215. {
  6216. switch (action) {
  6217. case CPU_ONLINE_FROZEN:
  6218. case CPU_DOWN_FAILED_FROZEN:
  6219. /*
  6220. * num_cpus_frozen tracks how many CPUs are involved in suspend
  6221. * resume sequence. As long as this is not the last online
  6222. * operation in the resume sequence, just build a single sched
  6223. * domain, ignoring cpusets.
  6224. */
  6225. num_cpus_frozen--;
  6226. if (likely(num_cpus_frozen)) {
  6227. partition_sched_domains(1, NULL, NULL);
  6228. break;
  6229. }
  6230. /*
  6231. * This is the last CPU online operation. So fall through and
  6232. * restore the original sched domains by considering the
  6233. * cpuset configurations.
  6234. */
  6235. case CPU_ONLINE:
  6236. case CPU_DOWN_FAILED:
  6237. cpuset_update_active_cpus();
  6238. break;
  6239. default:
  6240. return NOTIFY_DONE;
  6241. }
  6242. return NOTIFY_OK;
  6243. }
  6244. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6245. void *hcpu)
  6246. {
  6247. switch (action) {
  6248. case CPU_DOWN_PREPARE:
  6249. cpuset_update_active_cpus();
  6250. break;
  6251. case CPU_DOWN_PREPARE_FROZEN:
  6252. num_cpus_frozen++;
  6253. partition_sched_domains(1, NULL, NULL);
  6254. break;
  6255. default:
  6256. return NOTIFY_DONE;
  6257. }
  6258. return NOTIFY_OK;
  6259. }
  6260. void __init sched_init_smp(void)
  6261. {
  6262. cpumask_var_t non_isolated_cpus;
  6263. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6264. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6265. sched_init_numa();
  6266. get_online_cpus();
  6267. mutex_lock(&sched_domains_mutex);
  6268. init_sched_domains(cpu_active_mask);
  6269. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6270. if (cpumask_empty(non_isolated_cpus))
  6271. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6272. mutex_unlock(&sched_domains_mutex);
  6273. put_online_cpus();
  6274. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6275. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6276. init_hrtick();
  6277. /* Move init over to a non-isolated CPU */
  6278. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6279. BUG();
  6280. sched_init_granularity();
  6281. free_cpumask_var(non_isolated_cpus);
  6282. init_sched_rt_class();
  6283. }
  6284. #else
  6285. void __init sched_init_smp(void)
  6286. {
  6287. sched_init_granularity();
  6288. }
  6289. #endif /* CONFIG_SMP */
  6290. const_debug unsigned int sysctl_timer_migration = 1;
  6291. int in_sched_functions(unsigned long addr)
  6292. {
  6293. return in_lock_functions(addr) ||
  6294. (addr >= (unsigned long)__sched_text_start
  6295. && addr < (unsigned long)__sched_text_end);
  6296. }
  6297. #ifdef CONFIG_CGROUP_SCHED
  6298. struct task_group root_task_group;
  6299. LIST_HEAD(task_groups);
  6300. #endif
  6301. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  6302. void __init sched_init(void)
  6303. {
  6304. int i, j;
  6305. unsigned long alloc_size = 0, ptr;
  6306. sec_gaf_supply_rqinfo(offsetof(struct rq, curr),
  6307. offsetof(struct cfs_rq, rq));
  6308. #ifdef CONFIG_FAIR_GROUP_SCHED
  6309. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6310. #endif
  6311. #ifdef CONFIG_RT_GROUP_SCHED
  6312. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6313. #endif
  6314. #ifdef CONFIG_CPUMASK_OFFSTACK
  6315. alloc_size += num_possible_cpus() * cpumask_size();
  6316. #endif
  6317. if (alloc_size) {
  6318. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6319. #ifdef CONFIG_FAIR_GROUP_SCHED
  6320. root_task_group.se = (struct sched_entity **)ptr;
  6321. ptr += nr_cpu_ids * sizeof(void **);
  6322. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6323. ptr += nr_cpu_ids * sizeof(void **);
  6324. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6325. #ifdef CONFIG_RT_GROUP_SCHED
  6326. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6327. ptr += nr_cpu_ids * sizeof(void **);
  6328. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6329. ptr += nr_cpu_ids * sizeof(void **);
  6330. #endif /* CONFIG_RT_GROUP_SCHED */
  6331. #ifdef CONFIG_CPUMASK_OFFSTACK
  6332. for_each_possible_cpu(i) {
  6333. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6334. ptr += cpumask_size();
  6335. }
  6336. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6337. }
  6338. #ifdef CONFIG_SMP
  6339. init_defrootdomain();
  6340. #endif
  6341. init_rt_bandwidth(&def_rt_bandwidth,
  6342. global_rt_period(), global_rt_runtime());
  6343. #ifdef CONFIG_RT_GROUP_SCHED
  6344. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6345. global_rt_period(), global_rt_runtime());
  6346. #endif /* CONFIG_RT_GROUP_SCHED */
  6347. #ifdef CONFIG_CGROUP_SCHED
  6348. list_add(&root_task_group.list, &task_groups);
  6349. INIT_LIST_HEAD(&root_task_group.children);
  6350. INIT_LIST_HEAD(&root_task_group.siblings);
  6351. autogroup_init(&init_task);
  6352. #endif /* CONFIG_CGROUP_SCHED */
  6353. #ifdef CONFIG_CGROUP_CPUACCT
  6354. root_cpuacct.cpustat = &kernel_cpustat;
  6355. root_cpuacct.cpuusage = alloc_percpu(u64);
  6356. /* Too early, not expected to fail */
  6357. BUG_ON(!root_cpuacct.cpuusage);
  6358. #endif
  6359. for_each_possible_cpu(i) {
  6360. struct rq *rq;
  6361. rq = cpu_rq(i);
  6362. raw_spin_lock_init(&rq->lock);
  6363. rq->nr_running = 0;
  6364. rq->calc_load_active = 0;
  6365. rq->calc_load_update = jiffies + LOAD_FREQ;
  6366. init_cfs_rq(&rq->cfs);
  6367. init_rt_rq(&rq->rt, rq);
  6368. #ifdef CONFIG_FAIR_GROUP_SCHED
  6369. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6370. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6371. /*
  6372. * How much cpu bandwidth does root_task_group get?
  6373. *
  6374. * In case of task-groups formed thr' the cgroup filesystem, it
  6375. * gets 100% of the cpu resources in the system. This overall
  6376. * system cpu resource is divided among the tasks of
  6377. * root_task_group and its child task-groups in a fair manner,
  6378. * based on each entity's (task or task-group's) weight
  6379. * (se->load.weight).
  6380. *
  6381. * In other words, if root_task_group has 10 tasks of weight
  6382. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6383. * then A0's share of the cpu resource is:
  6384. *
  6385. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6386. *
  6387. * We achieve this by letting root_task_group's tasks sit
  6388. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6389. */
  6390. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6391. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6392. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6393. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6394. #ifdef CONFIG_RT_GROUP_SCHED
  6395. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6396. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6397. #endif
  6398. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6399. rq->cpu_load[j] = 0;
  6400. rq->last_load_update_tick = jiffies;
  6401. #ifdef CONFIG_SMP
  6402. rq->sd = NULL;
  6403. rq->rd = NULL;
  6404. rq->cpu_power = SCHED_POWER_SCALE;
  6405. rq->post_schedule = 0;
  6406. rq->active_balance = 0;
  6407. rq->next_balance = jiffies;
  6408. rq->push_cpu = 0;
  6409. rq->cpu = i;
  6410. rq->online = 0;
  6411. rq->idle_stamp = 0;
  6412. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6413. INIT_LIST_HEAD(&rq->cfs_tasks);
  6414. rq_attach_root(rq, &def_root_domain);
  6415. #ifdef CONFIG_NO_HZ
  6416. rq->nohz_flags = 0;
  6417. #endif
  6418. #endif
  6419. init_rq_hrtick(rq);
  6420. atomic_set(&rq->nr_iowait, 0);
  6421. }
  6422. set_load_weight(&init_task);
  6423. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6424. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6425. #endif
  6426. #ifdef CONFIG_RT_MUTEXES
  6427. plist_head_init(&init_task.pi_waiters);
  6428. #endif
  6429. /*
  6430. * The boot idle thread does lazy MMU switching as well:
  6431. */
  6432. atomic_inc(&init_mm.mm_count);
  6433. enter_lazy_tlb(&init_mm, current);
  6434. /*
  6435. * Make us the idle thread. Technically, schedule() should not be
  6436. * called from this thread, however somewhere below it might be,
  6437. * but because we are the idle thread, we just pick up running again
  6438. * when this runqueue becomes "idle".
  6439. */
  6440. init_idle(current, smp_processor_id());
  6441. calc_load_update = jiffies + LOAD_FREQ;
  6442. /*
  6443. * During early bootup we pretend to be a normal task:
  6444. */
  6445. current->sched_class = &fair_sched_class;
  6446. #ifdef CONFIG_SMP
  6447. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6448. /* May be allocated at isolcpus cmdline parse time */
  6449. if (cpu_isolated_map == NULL)
  6450. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6451. #endif
  6452. init_sched_fair_class();
  6453. scheduler_running = 1;
  6454. }
  6455. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6456. static inline int preempt_count_equals(int preempt_offset)
  6457. {
  6458. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6459. return (nested == preempt_offset);
  6460. }
  6461. static int __might_sleep_init_called;
  6462. int __init __might_sleep_init(void)
  6463. {
  6464. __might_sleep_init_called = 1;
  6465. return 0;
  6466. }
  6467. early_initcall(__might_sleep_init);
  6468. void __might_sleep(const char *file, int line, int preempt_offset)
  6469. {
  6470. static unsigned long prev_jiffy; /* ratelimiting */
  6471. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6472. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6473. oops_in_progress)
  6474. return;
  6475. if (system_state != SYSTEM_RUNNING &&
  6476. (!__might_sleep_init_called || system_state != SYSTEM_BOOTING))
  6477. return;
  6478. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6479. return;
  6480. prev_jiffy = jiffies;
  6481. printk(KERN_ERR
  6482. "BUG: sleeping function called from invalid context at %s:%d\n",
  6483. file, line);
  6484. printk(KERN_ERR
  6485. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6486. in_atomic(), irqs_disabled(),
  6487. current->pid, current->comm);
  6488. debug_show_held_locks(current);
  6489. if (irqs_disabled())
  6490. print_irqtrace_events(current);
  6491. dump_stack();
  6492. }
  6493. EXPORT_SYMBOL(__might_sleep);
  6494. #endif
  6495. #ifdef CONFIG_MAGIC_SYSRQ
  6496. static void normalize_task(struct rq *rq, struct task_struct *p)
  6497. {
  6498. const struct sched_class *prev_class = p->sched_class;
  6499. int old_prio = p->prio;
  6500. int on_rq;
  6501. on_rq = p->on_rq;
  6502. if (on_rq)
  6503. dequeue_task(rq, p, 0);
  6504. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6505. if (on_rq) {
  6506. enqueue_task(rq, p, 0);
  6507. resched_task(rq->curr);
  6508. }
  6509. check_class_changed(rq, p, prev_class, old_prio);
  6510. }
  6511. void normalize_rt_tasks(void)
  6512. {
  6513. struct task_struct *g, *p;
  6514. unsigned long flags;
  6515. struct rq *rq;
  6516. read_lock_irqsave(&tasklist_lock, flags);
  6517. do_each_thread(g, p) {
  6518. /*
  6519. * Only normalize user tasks:
  6520. */
  6521. if (!p->mm)
  6522. continue;
  6523. p->se.exec_start = 0;
  6524. #ifdef CONFIG_SCHEDSTATS
  6525. p->se.statistics.wait_start = 0;
  6526. p->se.statistics.sleep_start = 0;
  6527. p->se.statistics.block_start = 0;
  6528. #endif
  6529. if (!rt_task(p)) {
  6530. /*
  6531. * Renice negative nice level userspace
  6532. * tasks back to 0:
  6533. */
  6534. if (TASK_NICE(p) < 0 && p->mm)
  6535. set_user_nice(p, 0);
  6536. continue;
  6537. }
  6538. raw_spin_lock(&p->pi_lock);
  6539. rq = __task_rq_lock(p);
  6540. normalize_task(rq, p);
  6541. __task_rq_unlock(rq);
  6542. raw_spin_unlock(&p->pi_lock);
  6543. } while_each_thread(g, p);
  6544. read_unlock_irqrestore(&tasklist_lock, flags);
  6545. }
  6546. #endif /* CONFIG_MAGIC_SYSRQ */
  6547. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6548. /*
  6549. * These functions are only useful for the IA64 MCA handling, or kdb.
  6550. *
  6551. * They can only be called when the whole system has been
  6552. * stopped - every CPU needs to be quiescent, and no scheduling
  6553. * activity can take place. Using them for anything else would
  6554. * be a serious bug, and as a result, they aren't even visible
  6555. * under any other configuration.
  6556. */
  6557. /**
  6558. * curr_task - return the current task for a given cpu.
  6559. * @cpu: the processor in question.
  6560. *
  6561. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6562. */
  6563. struct task_struct *curr_task(int cpu)
  6564. {
  6565. return cpu_curr(cpu);
  6566. }
  6567. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6568. #ifdef CONFIG_IA64
  6569. /**
  6570. * set_curr_task - set the current task for a given cpu.
  6571. * @cpu: the processor in question.
  6572. * @p: the task pointer to set.
  6573. *
  6574. * Description: This function must only be used when non-maskable interrupts
  6575. * are serviced on a separate stack. It allows the architecture to switch the
  6576. * notion of the current task on a cpu in a non-blocking manner. This function
  6577. * must be called with all CPU's synchronized, and interrupts disabled, the
  6578. * and caller must save the original value of the current task (see
  6579. * curr_task() above) and restore that value before reenabling interrupts and
  6580. * re-starting the system.
  6581. *
  6582. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6583. */
  6584. void set_curr_task(int cpu, struct task_struct *p)
  6585. {
  6586. cpu_curr(cpu) = p;
  6587. }
  6588. #endif
  6589. #ifdef CONFIG_CGROUP_SCHED
  6590. /* task_group_lock serializes the addition/removal of task groups */
  6591. static DEFINE_SPINLOCK(task_group_lock);
  6592. static void free_sched_group(struct task_group *tg)
  6593. {
  6594. free_fair_sched_group(tg);
  6595. free_rt_sched_group(tg);
  6596. autogroup_free(tg);
  6597. kfree(tg);
  6598. }
  6599. /* allocate runqueue etc for a new task group */
  6600. struct task_group *sched_create_group(struct task_group *parent)
  6601. {
  6602. struct task_group *tg;
  6603. unsigned long flags;
  6604. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6605. if (!tg)
  6606. return ERR_PTR(-ENOMEM);
  6607. if (!alloc_fair_sched_group(tg, parent))
  6608. goto err;
  6609. if (!alloc_rt_sched_group(tg, parent))
  6610. goto err;
  6611. spin_lock_irqsave(&task_group_lock, flags);
  6612. list_add_rcu(&tg->list, &task_groups);
  6613. WARN_ON(!parent); /* root should already exist */
  6614. tg->parent = parent;
  6615. INIT_LIST_HEAD(&tg->children);
  6616. list_add_rcu(&tg->siblings, &parent->children);
  6617. spin_unlock_irqrestore(&task_group_lock, flags);
  6618. return tg;
  6619. err:
  6620. free_sched_group(tg);
  6621. return ERR_PTR(-ENOMEM);
  6622. }
  6623. /* rcu callback to free various structures associated with a task group */
  6624. static void free_sched_group_rcu(struct rcu_head *rhp)
  6625. {
  6626. /* now it should be safe to free those cfs_rqs */
  6627. free_sched_group(container_of(rhp, struct task_group, rcu));
  6628. }
  6629. /* Destroy runqueue etc associated with a task group */
  6630. void sched_destroy_group(struct task_group *tg)
  6631. {
  6632. unsigned long flags;
  6633. int i;
  6634. /* end participation in shares distribution */
  6635. for_each_possible_cpu(i)
  6636. unregister_fair_sched_group(tg, i);
  6637. spin_lock_irqsave(&task_group_lock, flags);
  6638. list_del_rcu(&tg->list);
  6639. list_del_rcu(&tg->siblings);
  6640. spin_unlock_irqrestore(&task_group_lock, flags);
  6641. /* wait for possible concurrent references to cfs_rqs complete */
  6642. call_rcu(&tg->rcu, free_sched_group_rcu);
  6643. }
  6644. /* change task's runqueue when it moves between groups.
  6645. * The caller of this function should have put the task in its new group
  6646. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6647. * reflect its new group.
  6648. */
  6649. void sched_move_task(struct task_struct *tsk)
  6650. {
  6651. struct task_group *tg;
  6652. int on_rq, running;
  6653. unsigned long flags;
  6654. struct rq *rq;
  6655. rq = task_rq_lock(tsk, &flags);
  6656. running = task_current(rq, tsk);
  6657. on_rq = tsk->on_rq;
  6658. if (on_rq)
  6659. dequeue_task(rq, tsk, 0);
  6660. if (unlikely(running))
  6661. tsk->sched_class->put_prev_task(rq, tsk);
  6662. tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
  6663. lockdep_is_held(&tsk->sighand->siglock)),
  6664. struct task_group, css);
  6665. tg = autogroup_task_group(tsk, tg);
  6666. tsk->sched_task_group = tg;
  6667. #ifdef CONFIG_FAIR_GROUP_SCHED
  6668. if (tsk->sched_class->task_move_group)
  6669. tsk->sched_class->task_move_group(tsk, on_rq);
  6670. else
  6671. #endif
  6672. set_task_rq(tsk, task_cpu(tsk));
  6673. if (unlikely(running))
  6674. tsk->sched_class->set_curr_task(rq);
  6675. if (on_rq)
  6676. enqueue_task(rq, tsk, 0);
  6677. task_rq_unlock(rq, tsk, &flags);
  6678. }
  6679. #endif /* CONFIG_CGROUP_SCHED */
  6680. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6681. static unsigned long to_ratio(u64 period, u64 runtime)
  6682. {
  6683. if (runtime == RUNTIME_INF)
  6684. return 1ULL << 20;
  6685. return div64_u64(runtime << 20, period);
  6686. }
  6687. #endif
  6688. #ifdef CONFIG_RT_GROUP_SCHED
  6689. /*
  6690. * Ensure that the real time constraints are schedulable.
  6691. */
  6692. static DEFINE_MUTEX(rt_constraints_mutex);
  6693. /* Must be called with tasklist_lock held */
  6694. static inline int tg_has_rt_tasks(struct task_group *tg)
  6695. {
  6696. struct task_struct *g, *p;
  6697. do_each_thread(g, p) {
  6698. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6699. return 1;
  6700. } while_each_thread(g, p);
  6701. return 0;
  6702. }
  6703. struct rt_schedulable_data {
  6704. struct task_group *tg;
  6705. u64 rt_period;
  6706. u64 rt_runtime;
  6707. };
  6708. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6709. {
  6710. struct rt_schedulable_data *d = data;
  6711. struct task_group *child;
  6712. unsigned long total, sum = 0;
  6713. u64 period, runtime;
  6714. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6715. runtime = tg->rt_bandwidth.rt_runtime;
  6716. if (tg == d->tg) {
  6717. period = d->rt_period;
  6718. runtime = d->rt_runtime;
  6719. }
  6720. /*
  6721. * Cannot have more runtime than the period.
  6722. */
  6723. if (runtime > period && runtime != RUNTIME_INF)
  6724. return -EINVAL;
  6725. /*
  6726. * Ensure we don't starve existing RT tasks.
  6727. */
  6728. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6729. return -EBUSY;
  6730. total = to_ratio(period, runtime);
  6731. /*
  6732. * Nobody can have more than the global setting allows.
  6733. */
  6734. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6735. return -EINVAL;
  6736. /*
  6737. * The sum of our children's runtime should not exceed our own.
  6738. */
  6739. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6740. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6741. runtime = child->rt_bandwidth.rt_runtime;
  6742. if (child == d->tg) {
  6743. period = d->rt_period;
  6744. runtime = d->rt_runtime;
  6745. }
  6746. sum += to_ratio(period, runtime);
  6747. }
  6748. if (sum > total)
  6749. return -EINVAL;
  6750. return 0;
  6751. }
  6752. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6753. {
  6754. int ret;
  6755. struct rt_schedulable_data data = {
  6756. .tg = tg,
  6757. .rt_period = period,
  6758. .rt_runtime = runtime,
  6759. };
  6760. rcu_read_lock();
  6761. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6762. rcu_read_unlock();
  6763. return ret;
  6764. }
  6765. static int tg_set_rt_bandwidth(struct task_group *tg,
  6766. u64 rt_period, u64 rt_runtime)
  6767. {
  6768. int i, err = 0;
  6769. mutex_lock(&rt_constraints_mutex);
  6770. read_lock(&tasklist_lock);
  6771. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6772. if (err)
  6773. goto unlock;
  6774. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6775. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6776. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6777. for_each_possible_cpu(i) {
  6778. struct rt_rq *rt_rq = tg->rt_rq[i];
  6779. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6780. rt_rq->rt_runtime = rt_runtime;
  6781. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6782. }
  6783. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6784. unlock:
  6785. read_unlock(&tasklist_lock);
  6786. mutex_unlock(&rt_constraints_mutex);
  6787. return err;
  6788. }
  6789. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6790. {
  6791. u64 rt_runtime, rt_period;
  6792. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6793. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6794. if (rt_runtime_us < 0)
  6795. rt_runtime = RUNTIME_INF;
  6796. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6797. }
  6798. long sched_group_rt_runtime(struct task_group *tg)
  6799. {
  6800. u64 rt_runtime_us;
  6801. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6802. return -1;
  6803. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6804. do_div(rt_runtime_us, NSEC_PER_USEC);
  6805. return rt_runtime_us;
  6806. }
  6807. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6808. {
  6809. u64 rt_runtime, rt_period;
  6810. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6811. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6812. if (rt_period == 0)
  6813. return -EINVAL;
  6814. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6815. }
  6816. long sched_group_rt_period(struct task_group *tg)
  6817. {
  6818. u64 rt_period_us;
  6819. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6820. do_div(rt_period_us, NSEC_PER_USEC);
  6821. return rt_period_us;
  6822. }
  6823. static int sched_rt_global_constraints(void)
  6824. {
  6825. u64 runtime, period;
  6826. int ret = 0;
  6827. if (sysctl_sched_rt_period <= 0)
  6828. return -EINVAL;
  6829. runtime = global_rt_runtime();
  6830. period = global_rt_period();
  6831. /*
  6832. * Sanity check on the sysctl variables.
  6833. */
  6834. if (runtime > period && runtime != RUNTIME_INF)
  6835. return -EINVAL;
  6836. mutex_lock(&rt_constraints_mutex);
  6837. read_lock(&tasklist_lock);
  6838. ret = __rt_schedulable(NULL, 0, 0);
  6839. read_unlock(&tasklist_lock);
  6840. mutex_unlock(&rt_constraints_mutex);
  6841. return ret;
  6842. }
  6843. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6844. {
  6845. /* Don't accept realtime tasks when there is no way for them to run */
  6846. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6847. return 0;
  6848. return 1;
  6849. }
  6850. #else /* !CONFIG_RT_GROUP_SCHED */
  6851. static int sched_rt_global_constraints(void)
  6852. {
  6853. unsigned long flags;
  6854. int i;
  6855. if (sysctl_sched_rt_period <= 0)
  6856. return -EINVAL;
  6857. /*
  6858. * There's always some RT tasks in the root group
  6859. * -- migration, kstopmachine etc..
  6860. */
  6861. if (sysctl_sched_rt_runtime == 0)
  6862. return -EBUSY;
  6863. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6864. for_each_possible_cpu(i) {
  6865. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6866. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6867. rt_rq->rt_runtime = global_rt_runtime();
  6868. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6869. }
  6870. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6871. return 0;
  6872. }
  6873. #endif /* CONFIG_RT_GROUP_SCHED */
  6874. int sched_rt_handler(struct ctl_table *table, int write,
  6875. void __user *buffer, size_t *lenp,
  6876. loff_t *ppos)
  6877. {
  6878. int ret;
  6879. int old_period, old_runtime;
  6880. static DEFINE_MUTEX(mutex);
  6881. mutex_lock(&mutex);
  6882. old_period = sysctl_sched_rt_period;
  6883. old_runtime = sysctl_sched_rt_runtime;
  6884. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6885. if (!ret && write) {
  6886. ret = sched_rt_global_constraints();
  6887. if (ret) {
  6888. sysctl_sched_rt_period = old_period;
  6889. sysctl_sched_rt_runtime = old_runtime;
  6890. } else {
  6891. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6892. def_rt_bandwidth.rt_period =
  6893. ns_to_ktime(global_rt_period());
  6894. }
  6895. }
  6896. mutex_unlock(&mutex);
  6897. return ret;
  6898. }
  6899. #ifdef CONFIG_CGROUP_SCHED
  6900. /* return corresponding task_group object of a cgroup */
  6901. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6902. {
  6903. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6904. struct task_group, css);
  6905. }
  6906. static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
  6907. {
  6908. struct task_group *tg, *parent;
  6909. if (!cgrp->parent) {
  6910. /* This is early initialization for the top cgroup */
  6911. return &root_task_group.css;
  6912. }
  6913. parent = cgroup_tg(cgrp->parent);
  6914. tg = sched_create_group(parent);
  6915. if (IS_ERR(tg))
  6916. return ERR_PTR(-ENOMEM);
  6917. return &tg->css;
  6918. }
  6919. static void cpu_cgroup_destroy(struct cgroup *cgrp)
  6920. {
  6921. struct task_group *tg = cgroup_tg(cgrp);
  6922. sched_destroy_group(tg);
  6923. }
  6924. static int cpu_cgroup_can_attach(struct cgroup *cgrp,
  6925. struct cgroup_taskset *tset)
  6926. {
  6927. struct task_struct *task;
  6928. cgroup_taskset_for_each(task, cgrp, tset) {
  6929. #ifdef CONFIG_RT_GROUP_SCHED
  6930. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6931. return -EINVAL;
  6932. #else
  6933. /* We don't support RT-tasks being in separate groups */
  6934. if (task->sched_class != &fair_sched_class)
  6935. return -EINVAL;
  6936. #endif
  6937. }
  6938. return 0;
  6939. }
  6940. static void cpu_cgroup_attach(struct cgroup *cgrp,
  6941. struct cgroup_taskset *tset)
  6942. {
  6943. struct task_struct *task;
  6944. cgroup_taskset_for_each(task, cgrp, tset) {
  6945. sched_move_task(task);
  6946. #ifdef CONFIG_ANDROID_BG_SCAN_MEM
  6947. if (task_notify_on_migrate(task) && thread_group_leader(task))
  6948. raw_notifier_call_chain(&bgtsk_migration_notifier_head,
  6949. 0, NULL);
  6950. #endif
  6951. }
  6952. }
  6953. static void
  6954. cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
  6955. struct task_struct *task)
  6956. {
  6957. /*
  6958. * cgroup_exit() is called in the copy_process() failure path.
  6959. * Ignore this case since the task hasn't ran yet, this avoids
  6960. * trying to poke a half freed task state from generic code.
  6961. */
  6962. if (!(task->flags & PF_EXITING))
  6963. return;
  6964. sched_move_task(task);
  6965. }
  6966. static u64 cpu_notify_on_migrate_read_u64(struct cgroup *cgrp,
  6967. struct cftype *cft)
  6968. {
  6969. struct task_group *tg = cgroup_tg(cgrp);
  6970. return tg->notify_on_migrate;
  6971. }
  6972. static int cpu_notify_on_migrate_write_u64(struct cgroup *cgrp,
  6973. struct cftype *cft, u64 notify)
  6974. {
  6975. struct task_group *tg = cgroup_tg(cgrp);
  6976. tg->notify_on_migrate = (notify > 0);
  6977. return 0;
  6978. }
  6979. #ifdef CONFIG_FAIR_GROUP_SCHED
  6980. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6981. u64 shareval)
  6982. {
  6983. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6984. }
  6985. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6986. {
  6987. struct task_group *tg = cgroup_tg(cgrp);
  6988. return (u64) scale_load_down(tg->shares);
  6989. }
  6990. #ifdef CONFIG_CFS_BANDWIDTH
  6991. static DEFINE_MUTEX(cfs_constraints_mutex);
  6992. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6993. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6994. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6995. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6996. {
  6997. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6998. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6999. if (tg == &root_task_group)
  7000. return -EINVAL;
  7001. /*
  7002. * Ensure we have at some amount of bandwidth every period. This is
  7003. * to prevent reaching a state of large arrears when throttled via
  7004. * entity_tick() resulting in prolonged exit starvation.
  7005. */
  7006. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  7007. return -EINVAL;
  7008. /*
  7009. * Likewise, bound things on the otherside by preventing insane quota
  7010. * periods. This also allows us to normalize in computing quota
  7011. * feasibility.
  7012. */
  7013. if (period > max_cfs_quota_period)
  7014. return -EINVAL;
  7015. mutex_lock(&cfs_constraints_mutex);
  7016. ret = __cfs_schedulable(tg, period, quota);
  7017. if (ret)
  7018. goto out_unlock;
  7019. runtime_enabled = quota != RUNTIME_INF;
  7020. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  7021. /*
  7022. * If we need to toggle cfs_bandwidth_used, off->on must occur
  7023. * before making related changes, and on->off must occur afterwards
  7024. */
  7025. if (runtime_enabled && !runtime_was_enabled)
  7026. cfs_bandwidth_usage_inc();
  7027. raw_spin_lock_irq(&cfs_b->lock);
  7028. cfs_b->period = ns_to_ktime(period);
  7029. cfs_b->quota = quota;
  7030. __refill_cfs_bandwidth_runtime(cfs_b);
  7031. /* restart the period timer (if active) to handle new period expiry */
  7032. if (runtime_enabled && cfs_b->timer_active) {
  7033. /* force a reprogram */
  7034. cfs_b->timer_active = 0;
  7035. __start_cfs_bandwidth(cfs_b);
  7036. }
  7037. raw_spin_unlock_irq(&cfs_b->lock);
  7038. for_each_possible_cpu(i) {
  7039. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  7040. struct rq *rq = cfs_rq->rq;
  7041. raw_spin_lock_irq(&rq->lock);
  7042. cfs_rq->runtime_enabled = runtime_enabled;
  7043. cfs_rq->runtime_remaining = 0;
  7044. if (cfs_rq->throttled)
  7045. unthrottle_cfs_rq(cfs_rq);
  7046. raw_spin_unlock_irq(&rq->lock);
  7047. }
  7048. if (runtime_was_enabled && !runtime_enabled)
  7049. cfs_bandwidth_usage_dec();
  7050. out_unlock:
  7051. mutex_unlock(&cfs_constraints_mutex);
  7052. return ret;
  7053. }
  7054. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  7055. {
  7056. u64 quota, period;
  7057. period = ktime_to_ns(tg->cfs_bandwidth.period);
  7058. if (cfs_quota_us < 0)
  7059. quota = RUNTIME_INF;
  7060. else
  7061. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  7062. return tg_set_cfs_bandwidth(tg, period, quota);
  7063. }
  7064. long tg_get_cfs_quota(struct task_group *tg)
  7065. {
  7066. u64 quota_us;
  7067. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  7068. return -1;
  7069. quota_us = tg->cfs_bandwidth.quota;
  7070. do_div(quota_us, NSEC_PER_USEC);
  7071. return quota_us;
  7072. }
  7073. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  7074. {
  7075. u64 quota, period;
  7076. period = (u64)cfs_period_us * NSEC_PER_USEC;
  7077. quota = tg->cfs_bandwidth.quota;
  7078. return tg_set_cfs_bandwidth(tg, period, quota);
  7079. }
  7080. long tg_get_cfs_period(struct task_group *tg)
  7081. {
  7082. u64 cfs_period_us;
  7083. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  7084. do_div(cfs_period_us, NSEC_PER_USEC);
  7085. return cfs_period_us;
  7086. }
  7087. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  7088. {
  7089. return tg_get_cfs_quota(cgroup_tg(cgrp));
  7090. }
  7091. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  7092. s64 cfs_quota_us)
  7093. {
  7094. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  7095. }
  7096. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7097. {
  7098. return tg_get_cfs_period(cgroup_tg(cgrp));
  7099. }
  7100. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7101. u64 cfs_period_us)
  7102. {
  7103. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  7104. }
  7105. struct cfs_schedulable_data {
  7106. struct task_group *tg;
  7107. u64 period, quota;
  7108. };
  7109. /*
  7110. * normalize group quota/period to be quota/max_period
  7111. * note: units are usecs
  7112. */
  7113. static u64 normalize_cfs_quota(struct task_group *tg,
  7114. struct cfs_schedulable_data *d)
  7115. {
  7116. u64 quota, period;
  7117. if (tg == d->tg) {
  7118. period = d->period;
  7119. quota = d->quota;
  7120. } else {
  7121. period = tg_get_cfs_period(tg);
  7122. quota = tg_get_cfs_quota(tg);
  7123. }
  7124. /* note: these should typically be equivalent */
  7125. if (quota == RUNTIME_INF || quota == -1)
  7126. return RUNTIME_INF;
  7127. return to_ratio(period, quota);
  7128. }
  7129. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  7130. {
  7131. struct cfs_schedulable_data *d = data;
  7132. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7133. s64 quota = 0, parent_quota = -1;
  7134. if (!tg->parent) {
  7135. quota = RUNTIME_INF;
  7136. } else {
  7137. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  7138. quota = normalize_cfs_quota(tg, d);
  7139. parent_quota = parent_b->hierarchal_quota;
  7140. /*
  7141. * ensure max(child_quota) <= parent_quota, inherit when no
  7142. * limit is set
  7143. */
  7144. if (quota == RUNTIME_INF)
  7145. quota = parent_quota;
  7146. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  7147. return -EINVAL;
  7148. }
  7149. cfs_b->hierarchal_quota = quota;
  7150. return 0;
  7151. }
  7152. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  7153. {
  7154. int ret;
  7155. struct cfs_schedulable_data data = {
  7156. .tg = tg,
  7157. .period = period,
  7158. .quota = quota,
  7159. };
  7160. if (quota != RUNTIME_INF) {
  7161. do_div(data.period, NSEC_PER_USEC);
  7162. do_div(data.quota, NSEC_PER_USEC);
  7163. }
  7164. rcu_read_lock();
  7165. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7166. rcu_read_unlock();
  7167. return ret;
  7168. }
  7169. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7170. struct cgroup_map_cb *cb)
  7171. {
  7172. struct task_group *tg = cgroup_tg(cgrp);
  7173. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7174. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  7175. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  7176. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  7177. return 0;
  7178. }
  7179. #endif /* CONFIG_CFS_BANDWIDTH */
  7180. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7181. #ifdef CONFIG_RT_GROUP_SCHED
  7182. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7183. s64 val)
  7184. {
  7185. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7186. }
  7187. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7188. {
  7189. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7190. }
  7191. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7192. u64 rt_period_us)
  7193. {
  7194. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7195. }
  7196. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7197. {
  7198. return sched_group_rt_period(cgroup_tg(cgrp));
  7199. }
  7200. #endif /* CONFIG_RT_GROUP_SCHED */
  7201. static struct cftype cpu_files[] = {
  7202. {
  7203. .name = "notify_on_migrate",
  7204. .read_u64 = cpu_notify_on_migrate_read_u64,
  7205. .write_u64 = cpu_notify_on_migrate_write_u64,
  7206. },
  7207. #ifdef CONFIG_FAIR_GROUP_SCHED
  7208. {
  7209. .name = "shares",
  7210. .read_u64 = cpu_shares_read_u64,
  7211. .write_u64 = cpu_shares_write_u64,
  7212. },
  7213. #endif
  7214. #ifdef CONFIG_CFS_BANDWIDTH
  7215. {
  7216. .name = "cfs_quota_us",
  7217. .read_s64 = cpu_cfs_quota_read_s64,
  7218. .write_s64 = cpu_cfs_quota_write_s64,
  7219. },
  7220. {
  7221. .name = "cfs_period_us",
  7222. .read_u64 = cpu_cfs_period_read_u64,
  7223. .write_u64 = cpu_cfs_period_write_u64,
  7224. },
  7225. {
  7226. .name = "stat",
  7227. .read_map = cpu_stats_show,
  7228. },
  7229. #endif
  7230. #ifdef CONFIG_RT_GROUP_SCHED
  7231. {
  7232. .name = "rt_runtime_us",
  7233. .read_s64 = cpu_rt_runtime_read,
  7234. .write_s64 = cpu_rt_runtime_write,
  7235. },
  7236. {
  7237. .name = "rt_period_us",
  7238. .read_u64 = cpu_rt_period_read_uint,
  7239. .write_u64 = cpu_rt_period_write_uint,
  7240. },
  7241. #endif
  7242. };
  7243. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7244. {
  7245. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7246. }
  7247. struct cgroup_subsys cpu_cgroup_subsys = {
  7248. .name = "cpu",
  7249. .create = cpu_cgroup_create,
  7250. .destroy = cpu_cgroup_destroy,
  7251. .can_attach = cpu_cgroup_can_attach,
  7252. .attach = cpu_cgroup_attach,
  7253. .allow_attach = subsys_cgroup_allow_attach,
  7254. .exit = cpu_cgroup_exit,
  7255. .populate = cpu_cgroup_populate,
  7256. .subsys_id = cpu_cgroup_subsys_id,
  7257. .early_init = 1,
  7258. };
  7259. #endif /* CONFIG_CGROUP_SCHED */
  7260. #ifdef CONFIG_CGROUP_CPUACCT
  7261. /*
  7262. * CPU accounting code for task groups.
  7263. *
  7264. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7265. * (balbir@in.ibm.com).
  7266. */
  7267. /* create a new cpu accounting group */
  7268. static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
  7269. {
  7270. struct cpuacct *ca;
  7271. if (!cgrp->parent)
  7272. return &root_cpuacct.css;
  7273. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7274. if (!ca)
  7275. goto out;
  7276. ca->cpuusage = alloc_percpu(u64);
  7277. if (!ca->cpuusage)
  7278. goto out_free_ca;
  7279. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  7280. if (!ca->cpustat)
  7281. goto out_free_cpuusage;
  7282. return &ca->css;
  7283. out_free_cpuusage:
  7284. free_percpu(ca->cpuusage);
  7285. out_free_ca:
  7286. kfree(ca);
  7287. out:
  7288. return ERR_PTR(-ENOMEM);
  7289. }
  7290. /* destroy an existing cpu accounting group */
  7291. static void cpuacct_destroy(struct cgroup *cgrp)
  7292. {
  7293. struct cpuacct *ca = cgroup_ca(cgrp);
  7294. free_percpu(ca->cpustat);
  7295. free_percpu(ca->cpuusage);
  7296. kfree(ca);
  7297. }
  7298. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7299. {
  7300. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7301. u64 data;
  7302. #ifndef CONFIG_64BIT
  7303. /*
  7304. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7305. */
  7306. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7307. data = *cpuusage;
  7308. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7309. #else
  7310. data = *cpuusage;
  7311. #endif
  7312. return data;
  7313. }
  7314. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7315. {
  7316. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7317. #ifndef CONFIG_64BIT
  7318. /*
  7319. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7320. */
  7321. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7322. *cpuusage = val;
  7323. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7324. #else
  7325. *cpuusage = val;
  7326. #endif
  7327. }
  7328. /* return total cpu usage (in nanoseconds) of a group */
  7329. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7330. {
  7331. struct cpuacct *ca = cgroup_ca(cgrp);
  7332. u64 totalcpuusage = 0;
  7333. int i;
  7334. for_each_present_cpu(i)
  7335. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7336. return totalcpuusage;
  7337. }
  7338. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7339. u64 reset)
  7340. {
  7341. struct cpuacct *ca = cgroup_ca(cgrp);
  7342. int err = 0;
  7343. int i;
  7344. if (reset) {
  7345. err = -EINVAL;
  7346. goto out;
  7347. }
  7348. for_each_present_cpu(i)
  7349. cpuacct_cpuusage_write(ca, i, 0);
  7350. out:
  7351. return err;
  7352. }
  7353. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7354. struct seq_file *m)
  7355. {
  7356. struct cpuacct *ca = cgroup_ca(cgroup);
  7357. u64 percpu;
  7358. int i;
  7359. for_each_present_cpu(i) {
  7360. percpu = cpuacct_cpuusage_read(ca, i);
  7361. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7362. }
  7363. seq_printf(m, "\n");
  7364. return 0;
  7365. }
  7366. static const char *cpuacct_stat_desc[] = {
  7367. [CPUACCT_STAT_USER] = "user",
  7368. [CPUACCT_STAT_SYSTEM] = "system",
  7369. };
  7370. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7371. struct cgroup_map_cb *cb)
  7372. {
  7373. struct cpuacct *ca = cgroup_ca(cgrp);
  7374. int cpu;
  7375. s64 val = 0;
  7376. for_each_online_cpu(cpu) {
  7377. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  7378. val += kcpustat->cpustat[CPUTIME_USER];
  7379. val += kcpustat->cpustat[CPUTIME_NICE];
  7380. }
  7381. val = cputime64_to_clock_t(val);
  7382. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  7383. val = 0;
  7384. for_each_online_cpu(cpu) {
  7385. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  7386. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  7387. val += kcpustat->cpustat[CPUTIME_IRQ];
  7388. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  7389. }
  7390. val = cputime64_to_clock_t(val);
  7391. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  7392. return 0;
  7393. }
  7394. static struct cftype files[] = {
  7395. {
  7396. .name = "usage",
  7397. .read_u64 = cpuusage_read,
  7398. .write_u64 = cpuusage_write,
  7399. },
  7400. {
  7401. .name = "usage_percpu",
  7402. .read_seq_string = cpuacct_percpu_seq_read,
  7403. },
  7404. {
  7405. .name = "stat",
  7406. .read_map = cpuacct_stats_show,
  7407. },
  7408. };
  7409. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7410. {
  7411. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7412. }
  7413. /*
  7414. * charge this task's execution time to its accounting group.
  7415. *
  7416. * called with rq->lock held.
  7417. */
  7418. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7419. {
  7420. struct cpuacct *ca;
  7421. int cpu;
  7422. if (unlikely(!cpuacct_subsys.active))
  7423. return;
  7424. cpu = task_cpu(tsk);
  7425. rcu_read_lock();
  7426. ca = task_ca(tsk);
  7427. for (; ca; ca = parent_ca(ca)) {
  7428. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7429. *cpuusage += cputime;
  7430. }
  7431. rcu_read_unlock();
  7432. }
  7433. struct cgroup_subsys cpuacct_subsys = {
  7434. .name = "cpuacct",
  7435. .create = cpuacct_create,
  7436. .destroy = cpuacct_destroy,
  7437. .populate = cpuacct_populate,
  7438. .subsys_id = cpuacct_subsys_id,
  7439. };
  7440. #endif /* CONFIG_CGROUP_CPUACCT */