swap_state.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. /*
  2. * linux/mm/swap_state.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. * Swap reorganised 29.12.95, Stephen Tweedie
  6. *
  7. * Rewritten to use page cache, (C) 1998 Stephen Tweedie
  8. */
  9. #include <linux/mm.h>
  10. #include <linux/gfp.h>
  11. #include <linux/kernel_stat.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <linux/init.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/pagevec.h>
  19. #include <linux/migrate.h>
  20. #include <linux/page_cgroup.h>
  21. #include <asm/pgtable.h>
  22. /*
  23. * swapper_space is a fiction, retained to simplify the path through
  24. * vmscan's shrink_page_list.
  25. */
  26. static const struct address_space_operations swap_aops = {
  27. .writepage = swap_writepage,
  28. .set_page_dirty = __set_page_dirty_no_writeback,
  29. .migratepage = migrate_page,
  30. };
  31. static struct backing_dev_info swap_backing_dev_info = {
  32. .name = "swap",
  33. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
  34. };
  35. struct address_space swapper_spaces[MAX_SWAPFILES] = {
  36. [0 ... MAX_SWAPFILES - 1] = {
  37. .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
  38. .i_mmap_writable = ATOMIC_INIT(0),
  39. .a_ops = &swap_aops,
  40. .backing_dev_info = &swap_backing_dev_info,
  41. }
  42. };
  43. #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
  44. static struct {
  45. unsigned long add_total;
  46. unsigned long del_total;
  47. unsigned long find_success;
  48. unsigned long find_total;
  49. } swap_cache_info;
  50. unsigned long total_swapcache_pages(void)
  51. {
  52. int i;
  53. unsigned long ret = 0;
  54. for (i = 0; i < MAX_SWAPFILES; i++)
  55. ret += swapper_spaces[i].nrpages;
  56. return ret;
  57. }
  58. void show_swap_cache_info(void)
  59. {
  60. printk("%lu pages in swap cache\n", total_swapcache_pages());
  61. printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
  62. swap_cache_info.add_total, swap_cache_info.del_total,
  63. swap_cache_info.find_success, swap_cache_info.find_total);
  64. printk("Free swap = %ldkB\n",
  65. get_nr_swap_pages() << (PAGE_SHIFT - 10));
  66. printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
  67. }
  68. /*
  69. * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
  70. * but sets SwapCache flag and private instead of mapping and index.
  71. */
  72. int __add_to_swap_cache(struct page *page, swp_entry_t entry)
  73. {
  74. int error;
  75. struct address_space *address_space;
  76. VM_BUG_ON(!PageLocked(page));
  77. VM_BUG_ON(PageSwapCache(page));
  78. VM_BUG_ON(!PageSwapBacked(page));
  79. page_cache_get(page);
  80. SetPageSwapCache(page);
  81. set_page_private(page, entry.val);
  82. address_space = swap_address_space(entry);
  83. spin_lock_irq(&address_space->tree_lock);
  84. error = radix_tree_insert(&address_space->page_tree,
  85. entry.val, page);
  86. if (likely(!error)) {
  87. address_space->nrpages++;
  88. __inc_zone_page_state(page, NR_FILE_PAGES);
  89. __inc_zone_page_state(page, NR_SWAPCACHE);
  90. INC_CACHE_INFO(add_total);
  91. }
  92. spin_unlock_irq(&address_space->tree_lock);
  93. if (unlikely(error)) {
  94. /*
  95. * Only the context which have set SWAP_HAS_CACHE flag
  96. * would call add_to_swap_cache().
  97. * So add_to_swap_cache() doesn't returns -EEXIST.
  98. */
  99. VM_BUG_ON(error == -EEXIST);
  100. set_page_private(page, 0UL);
  101. ClearPageSwapCache(page);
  102. page_cache_release(page);
  103. }
  104. return error;
  105. }
  106. int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
  107. {
  108. int error;
  109. error = radix_tree_maybe_preload(gfp_mask);
  110. if (!error) {
  111. error = __add_to_swap_cache(page, entry);
  112. radix_tree_preload_end();
  113. }
  114. return error;
  115. }
  116. /*
  117. * This must be called only on pages that have
  118. * been verified to be in the swap cache.
  119. */
  120. void __delete_from_swap_cache(struct page *page)
  121. {
  122. swp_entry_t entry;
  123. struct address_space *address_space;
  124. VM_BUG_ON(!PageLocked(page));
  125. VM_BUG_ON(!PageSwapCache(page));
  126. VM_BUG_ON(PageWriteback(page));
  127. entry.val = page_private(page);
  128. address_space = swap_address_space(entry);
  129. radix_tree_delete(&address_space->page_tree, page_private(page));
  130. set_page_private(page, 0);
  131. ClearPageSwapCache(page);
  132. address_space->nrpages--;
  133. __dec_zone_page_state(page, NR_FILE_PAGES);
  134. __dec_zone_page_state(page, NR_SWAPCACHE);
  135. INC_CACHE_INFO(del_total);
  136. }
  137. /**
  138. * add_to_swap - allocate swap space for a page
  139. * @page: page we want to move to swap
  140. *
  141. * Allocate swap space for the page and add the page to the
  142. * swap cache. Caller needs to hold the page lock.
  143. */
  144. int add_to_swap(struct page *page)
  145. {
  146. swp_entry_t entry;
  147. int err;
  148. VM_BUG_ON(!PageLocked(page));
  149. VM_BUG_ON(!PageUptodate(page));
  150. entry = get_swap_page();
  151. if (!entry.val)
  152. return 0;
  153. if (unlikely(PageTransHuge(page)))
  154. if (unlikely(split_huge_page(page))) {
  155. swapcache_free(entry, NULL);
  156. return 0;
  157. }
  158. /*
  159. * Radix-tree node allocations from PF_MEMALLOC contexts could
  160. * completely exhaust the page allocator. __GFP_NOMEMALLOC
  161. * stops emergency reserves from being allocated.
  162. *
  163. * TODO: this could cause a theoretical memory reclaim
  164. * deadlock in the swap out path.
  165. */
  166. /*
  167. * Add it to the swap cache and mark it dirty
  168. */
  169. err = add_to_swap_cache(page, entry,
  170. __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
  171. if (!err) { /* Success */
  172. SetPageDirty(page);
  173. return 1;
  174. } else { /* -ENOMEM radix-tree allocation failure */
  175. /*
  176. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  177. * clear SWAP_HAS_CACHE flag.
  178. */
  179. swapcache_free(entry, NULL);
  180. return 0;
  181. }
  182. }
  183. /*
  184. * This must be called only on pages that have
  185. * been verified to be in the swap cache and locked.
  186. * It will never put the page into the free list,
  187. * the caller has a reference on the page.
  188. */
  189. void delete_from_swap_cache(struct page *page)
  190. {
  191. swp_entry_t entry;
  192. struct address_space *address_space;
  193. entry.val = page_private(page);
  194. address_space = swap_address_space(entry);
  195. spin_lock_irq(&address_space->tree_lock);
  196. __delete_from_swap_cache(page);
  197. spin_unlock_irq(&address_space->tree_lock);
  198. swapcache_free(entry, page);
  199. page_cache_release(page);
  200. }
  201. /*
  202. * If we are the only user, then try to free up the swap cache.
  203. *
  204. * Its ok to check for PageSwapCache without the page lock
  205. * here because we are going to recheck again inside
  206. * try_to_free_swap() _with_ the lock.
  207. * - Marcelo
  208. */
  209. static inline void free_swap_cache(struct page *page)
  210. {
  211. if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
  212. try_to_free_swap(page);
  213. unlock_page(page);
  214. }
  215. }
  216. /*
  217. * Perform a free_page(), also freeing any swap cache associated with
  218. * this page if it is the last user of the page.
  219. */
  220. void free_page_and_swap_cache(struct page *page)
  221. {
  222. free_swap_cache(page);
  223. page_cache_release(page);
  224. }
  225. /*
  226. * Passed an array of pages, drop them all from swapcache and then release
  227. * them. They are removed from the LRU and freed if this is their last use.
  228. */
  229. void free_pages_and_swap_cache(struct page **pages, int nr)
  230. {
  231. struct page **pagep = pages;
  232. lru_add_drain();
  233. while (nr) {
  234. int todo = min(nr, PAGEVEC_SIZE);
  235. int i;
  236. for (i = 0; i < todo; i++)
  237. free_swap_cache(pagep[i]);
  238. release_pages(pagep, todo, 0);
  239. pagep += todo;
  240. nr -= todo;
  241. }
  242. }
  243. /*
  244. * Lookup a swap entry in the swap cache. A found page will be returned
  245. * unlocked and with its refcount incremented - we rely on the kernel
  246. * lock getting page table operations atomic even if we drop the page
  247. * lock before returning.
  248. */
  249. struct page * lookup_swap_cache(swp_entry_t entry)
  250. {
  251. struct page *page;
  252. page = find_get_page(swap_address_space(entry), entry.val);
  253. if (page)
  254. INC_CACHE_INFO(find_success);
  255. INC_CACHE_INFO(find_total);
  256. return page;
  257. }
  258. /*
  259. * Locate a page of swap in physical memory, reserving swap cache space
  260. * and reading the disk if it is not already cached.
  261. * A failure return means that either the page allocation failed or that
  262. * the swap entry is no longer in use.
  263. */
  264. struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
  265. struct vm_area_struct *vma, unsigned long addr)
  266. {
  267. struct page *found_page, *new_page = NULL;
  268. int err;
  269. do {
  270. /*
  271. * First check the swap cache. Since this is normally
  272. * called after lookup_swap_cache() failed, re-calling
  273. * that would confuse statistics.
  274. */
  275. found_page = find_get_page(swap_address_space(entry),
  276. entry.val);
  277. if (found_page)
  278. break;
  279. /*
  280. * Get a new page to read into from swap.
  281. */
  282. if (!new_page) {
  283. new_page = alloc_page_vma(gfp_mask, vma, addr);
  284. if (!new_page)
  285. break; /* Out of memory */
  286. }
  287. /*
  288. * call radix_tree_preload() while we can wait.
  289. */
  290. err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
  291. if (err)
  292. break;
  293. /*
  294. * Swap entry may have been freed since our caller observed it.
  295. */
  296. err = swapcache_prepare(entry);
  297. if (err == -EEXIST) {
  298. radix_tree_preload_end();
  299. /*
  300. * We might race against get_swap_page() and stumble
  301. * across a SWAP_HAS_CACHE swap_map entry whose page
  302. * has not been brought into the swapcache yet, while
  303. * the other end is scheduled away waiting on discard
  304. * I/O completion at scan_swap_map().
  305. *
  306. * In order to avoid turning this transitory state
  307. * into a permanent loop around this -EEXIST case
  308. * if !CONFIG_PREEMPT and the I/O completion happens
  309. * to be waiting on the CPU waitqueue where we are now
  310. * busy looping, we just conditionally invoke the
  311. * scheduler here, if there are some more important
  312. * tasks to run.
  313. */
  314. cond_resched();
  315. continue;
  316. }
  317. if (err) { /* swp entry is obsolete ? */
  318. radix_tree_preload_end();
  319. break;
  320. }
  321. /* May fail (-ENOMEM) if radix-tree node allocation failed. */
  322. __set_page_locked(new_page);
  323. SetPageSwapBacked(new_page);
  324. err = __add_to_swap_cache(new_page, entry);
  325. if (likely(!err)) {
  326. radix_tree_preload_end();
  327. /*
  328. * Initiate read into locked page and return.
  329. */
  330. lru_cache_add_anon(new_page);
  331. swap_readpage(new_page);
  332. return new_page;
  333. }
  334. radix_tree_preload_end();
  335. ClearPageSwapBacked(new_page);
  336. __clear_page_locked(new_page);
  337. /*
  338. * add_to_swap_cache() doesn't return -EEXIST, so we can safely
  339. * clear SWAP_HAS_CACHE flag.
  340. */
  341. swapcache_free(entry, NULL);
  342. } while (err != -ENOMEM);
  343. if (new_page)
  344. page_cache_release(new_page);
  345. return found_page;
  346. }
  347. /**
  348. * swapin_readahead - swap in pages in hope we need them soon
  349. * @entry: swap entry of this memory
  350. * @gfp_mask: memory allocation flags
  351. * @vma: user vma this address belongs to
  352. * @addr: target address for mempolicy
  353. *
  354. * Returns the struct page for entry and addr, after queueing swapin.
  355. *
  356. * Primitive swap readahead code. We simply read an aligned block of
  357. * (1 << page_cluster) entries in the swap area. This method is chosen
  358. * because it doesn't cost us any seek time. We also make sure to queue
  359. * the 'original' request together with the readahead ones...
  360. *
  361. * This has been extended to use the NUMA policies from the mm triggering
  362. * the readahead.
  363. *
  364. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  365. */
  366. struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
  367. struct vm_area_struct *vma, unsigned long addr)
  368. {
  369. #ifdef CONFIG_SWAP_ENABLE_READAHEAD
  370. struct page *page;
  371. unsigned long offset = swp_offset(entry);
  372. unsigned long start_offset, end_offset;
  373. unsigned long mask = is_swap_fast(entry) ? 0 : (1UL << page_cluster) - 1;
  374. struct blk_plug plug;
  375. /* Read a page_cluster sized and aligned cluster around offset. */
  376. start_offset = offset & ~mask;
  377. end_offset = offset | mask;
  378. if (!start_offset) /* First page is swap header. */
  379. start_offset++;
  380. blk_start_plug(&plug);
  381. for (offset = start_offset; offset <= end_offset ; offset++) {
  382. /* Ok, do the async read-ahead now */
  383. page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
  384. gfp_mask, vma, addr);
  385. if (!page)
  386. continue;
  387. page_cache_release(page);
  388. }
  389. blk_finish_plug(&plug);
  390. lru_add_drain(); /* Push any new pages onto the LRU now */
  391. #endif /* CONFIG_SWAP_ENABLE_READAHEAD */
  392. return read_swap_cache_async(entry, gfp_mask, vma, addr);
  393. }