rt2500pci.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148
  1. /*
  2. Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include <linux/slab.h>
  30. #include "rt2x00.h"
  31. #include "rt2x00pci.h"
  32. #include "rt2500pci.h"
  33. /*
  34. * Register access.
  35. * All access to the CSR registers will go through the methods
  36. * rt2x00pci_register_read and rt2x00pci_register_write.
  37. * BBP and RF register require indirect register access,
  38. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  39. * These indirect registers work with busy bits,
  40. * and we will try maximal REGISTER_BUSY_COUNT times to access
  41. * the register while taking a REGISTER_BUSY_DELAY us delay
  42. * between each attampt. When the busy bit is still set at that time,
  43. * the access attempt is considered to have failed,
  44. * and we will print an error.
  45. */
  46. #define WAIT_FOR_BBP(__dev, __reg) \
  47. rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  48. #define WAIT_FOR_RF(__dev, __reg) \
  49. rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  50. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  51. const unsigned int word, const u8 value)
  52. {
  53. u32 reg;
  54. mutex_lock(&rt2x00dev->csr_mutex);
  55. /*
  56. * Wait until the BBP becomes available, afterwards we
  57. * can safely write the new data into the register.
  58. */
  59. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  60. reg = 0;
  61. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  62. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  63. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  64. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  65. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  66. }
  67. mutex_unlock(&rt2x00dev->csr_mutex);
  68. }
  69. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  70. const unsigned int word, u8 *value)
  71. {
  72. u32 reg;
  73. mutex_lock(&rt2x00dev->csr_mutex);
  74. /*
  75. * Wait until the BBP becomes available, afterwards we
  76. * can safely write the read request into the register.
  77. * After the data has been written, we wait until hardware
  78. * returns the correct value, if at any time the register
  79. * doesn't become available in time, reg will be 0xffffffff
  80. * which means we return 0xff to the caller.
  81. */
  82. if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  83. reg = 0;
  84. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  85. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  86. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  87. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  88. WAIT_FOR_BBP(rt2x00dev, &reg);
  89. }
  90. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  91. mutex_unlock(&rt2x00dev->csr_mutex);
  92. }
  93. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  94. const unsigned int word, const u32 value)
  95. {
  96. u32 reg;
  97. mutex_lock(&rt2x00dev->csr_mutex);
  98. /*
  99. * Wait until the RF becomes available, afterwards we
  100. * can safely write the new data into the register.
  101. */
  102. if (WAIT_FOR_RF(rt2x00dev, &reg)) {
  103. reg = 0;
  104. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  105. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  106. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  107. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  108. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  109. rt2x00_rf_write(rt2x00dev, word, value);
  110. }
  111. mutex_unlock(&rt2x00dev->csr_mutex);
  112. }
  113. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  114. {
  115. struct rt2x00_dev *rt2x00dev = eeprom->data;
  116. u32 reg;
  117. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  118. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  119. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  120. eeprom->reg_data_clock =
  121. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  122. eeprom->reg_chip_select =
  123. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  124. }
  125. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  126. {
  127. struct rt2x00_dev *rt2x00dev = eeprom->data;
  128. u32 reg = 0;
  129. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  130. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  131. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  132. !!eeprom->reg_data_clock);
  133. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  134. !!eeprom->reg_chip_select);
  135. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  136. }
  137. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  138. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  139. .owner = THIS_MODULE,
  140. .csr = {
  141. .read = rt2x00pci_register_read,
  142. .write = rt2x00pci_register_write,
  143. .flags = RT2X00DEBUGFS_OFFSET,
  144. .word_base = CSR_REG_BASE,
  145. .word_size = sizeof(u32),
  146. .word_count = CSR_REG_SIZE / sizeof(u32),
  147. },
  148. .eeprom = {
  149. .read = rt2x00_eeprom_read,
  150. .write = rt2x00_eeprom_write,
  151. .word_base = EEPROM_BASE,
  152. .word_size = sizeof(u16),
  153. .word_count = EEPROM_SIZE / sizeof(u16),
  154. },
  155. .bbp = {
  156. .read = rt2500pci_bbp_read,
  157. .write = rt2500pci_bbp_write,
  158. .word_base = BBP_BASE,
  159. .word_size = sizeof(u8),
  160. .word_count = BBP_SIZE / sizeof(u8),
  161. },
  162. .rf = {
  163. .read = rt2x00_rf_read,
  164. .write = rt2500pci_rf_write,
  165. .word_base = RF_BASE,
  166. .word_size = sizeof(u32),
  167. .word_count = RF_SIZE / sizeof(u32),
  168. },
  169. };
  170. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  171. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  172. {
  173. u32 reg;
  174. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  175. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  176. }
  177. #ifdef CONFIG_RT2X00_LIB_LEDS
  178. static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
  179. enum led_brightness brightness)
  180. {
  181. struct rt2x00_led *led =
  182. container_of(led_cdev, struct rt2x00_led, led_dev);
  183. unsigned int enabled = brightness != LED_OFF;
  184. u32 reg;
  185. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  186. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  187. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  188. else if (led->type == LED_TYPE_ACTIVITY)
  189. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  190. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  191. }
  192. static int rt2500pci_blink_set(struct led_classdev *led_cdev,
  193. unsigned long *delay_on,
  194. unsigned long *delay_off)
  195. {
  196. struct rt2x00_led *led =
  197. container_of(led_cdev, struct rt2x00_led, led_dev);
  198. u32 reg;
  199. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  200. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  201. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  202. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  203. return 0;
  204. }
  205. static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
  206. struct rt2x00_led *led,
  207. enum led_type type)
  208. {
  209. led->rt2x00dev = rt2x00dev;
  210. led->type = type;
  211. led->led_dev.brightness_set = rt2500pci_brightness_set;
  212. led->led_dev.blink_set = rt2500pci_blink_set;
  213. led->flags = LED_INITIALIZED;
  214. }
  215. #endif /* CONFIG_RT2X00_LIB_LEDS */
  216. /*
  217. * Configuration handlers.
  218. */
  219. static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
  220. const unsigned int filter_flags)
  221. {
  222. u32 reg;
  223. /*
  224. * Start configuration steps.
  225. * Note that the version error will always be dropped
  226. * and broadcast frames will always be accepted since
  227. * there is no filter for it at this time.
  228. */
  229. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  230. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  231. !(filter_flags & FIF_FCSFAIL));
  232. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  233. !(filter_flags & FIF_PLCPFAIL));
  234. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  235. !(filter_flags & FIF_CONTROL));
  236. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  237. !(filter_flags & FIF_PROMISC_IN_BSS));
  238. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  239. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  240. !rt2x00dev->intf_ap_count);
  241. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  242. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  243. !(filter_flags & FIF_ALLMULTI));
  244. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  245. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  246. }
  247. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  248. struct rt2x00_intf *intf,
  249. struct rt2x00intf_conf *conf,
  250. const unsigned int flags)
  251. {
  252. struct data_queue *queue = rt2x00dev->bcn;
  253. unsigned int bcn_preload;
  254. u32 reg;
  255. if (flags & CONFIG_UPDATE_TYPE) {
  256. /*
  257. * Enable beacon config
  258. */
  259. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  260. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  261. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  262. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  263. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  264. /*
  265. * Enable synchronisation.
  266. */
  267. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  268. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  269. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  270. }
  271. if (flags & CONFIG_UPDATE_MAC)
  272. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  273. conf->mac, sizeof(conf->mac));
  274. if (flags & CONFIG_UPDATE_BSSID)
  275. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  276. conf->bssid, sizeof(conf->bssid));
  277. }
  278. static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
  279. struct rt2x00lib_erp *erp,
  280. u32 changed)
  281. {
  282. int preamble_mask;
  283. u32 reg;
  284. /*
  285. * When short preamble is enabled, we should set bit 0x08
  286. */
  287. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  288. preamble_mask = erp->short_preamble << 3;
  289. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  290. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
  291. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
  292. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  293. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  294. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  295. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  296. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  297. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  298. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  299. GET_DURATION(ACK_SIZE, 10));
  300. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  301. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  302. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  303. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  304. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  305. GET_DURATION(ACK_SIZE, 20));
  306. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  307. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  308. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  309. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  310. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  311. GET_DURATION(ACK_SIZE, 55));
  312. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  313. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  314. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  315. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  316. rt2x00_set_field32(&reg, ARCSR2_LENGTH,
  317. GET_DURATION(ACK_SIZE, 110));
  318. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  319. }
  320. if (changed & BSS_CHANGED_BASIC_RATES)
  321. rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  322. if (changed & BSS_CHANGED_ERP_SLOT) {
  323. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  324. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  325. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  326. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  327. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  328. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  329. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  330. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  331. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  332. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  333. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  334. }
  335. if (changed & BSS_CHANGED_BEACON_INT) {
  336. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  337. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  338. erp->beacon_int * 16);
  339. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  340. erp->beacon_int * 16);
  341. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  342. }
  343. }
  344. static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
  345. struct antenna_setup *ant)
  346. {
  347. u32 reg;
  348. u8 r14;
  349. u8 r2;
  350. /*
  351. * We should never come here because rt2x00lib is supposed
  352. * to catch this and send us the correct antenna explicitely.
  353. */
  354. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  355. ant->tx == ANTENNA_SW_DIVERSITY);
  356. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  357. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  358. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  359. /*
  360. * Configure the TX antenna.
  361. */
  362. switch (ant->tx) {
  363. case ANTENNA_A:
  364. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  365. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  366. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  367. break;
  368. case ANTENNA_B:
  369. default:
  370. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  371. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  372. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  373. break;
  374. }
  375. /*
  376. * Configure the RX antenna.
  377. */
  378. switch (ant->rx) {
  379. case ANTENNA_A:
  380. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  381. break;
  382. case ANTENNA_B:
  383. default:
  384. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  385. break;
  386. }
  387. /*
  388. * RT2525E and RT5222 need to flip TX I/Q
  389. */
  390. if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
  391. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  392. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  393. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  394. /*
  395. * RT2525E does not need RX I/Q Flip.
  396. */
  397. if (rt2x00_rf(rt2x00dev, RF2525E))
  398. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  399. } else {
  400. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  401. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  402. }
  403. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  404. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  405. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  406. }
  407. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  408. struct rf_channel *rf, const int txpower)
  409. {
  410. u8 r70;
  411. /*
  412. * Set TXpower.
  413. */
  414. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  415. /*
  416. * Switch on tuning bits.
  417. * For RT2523 devices we do not need to update the R1 register.
  418. */
  419. if (!rt2x00_rf(rt2x00dev, RF2523))
  420. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  421. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  422. /*
  423. * For RT2525 we should first set the channel to half band higher.
  424. */
  425. if (rt2x00_rf(rt2x00dev, RF2525)) {
  426. static const u32 vals[] = {
  427. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  428. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  429. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  430. 0x00080d2e, 0x00080d3a
  431. };
  432. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  433. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  434. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  435. if (rf->rf4)
  436. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  437. }
  438. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  439. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  440. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  441. if (rf->rf4)
  442. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  443. /*
  444. * Channel 14 requires the Japan filter bit to be set.
  445. */
  446. r70 = 0x46;
  447. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  448. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  449. msleep(1);
  450. /*
  451. * Switch off tuning bits.
  452. * For RT2523 devices we do not need to update the R1 register.
  453. */
  454. if (!rt2x00_rf(rt2x00dev, RF2523)) {
  455. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  456. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  457. }
  458. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  459. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  460. /*
  461. * Clear false CRC during channel switch.
  462. */
  463. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  464. }
  465. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  466. const int txpower)
  467. {
  468. u32 rf3;
  469. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  470. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  471. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  472. }
  473. static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  474. struct rt2x00lib_conf *libconf)
  475. {
  476. u32 reg;
  477. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  478. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  479. libconf->conf->long_frame_max_tx_count);
  480. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  481. libconf->conf->short_frame_max_tx_count);
  482. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  483. }
  484. static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
  485. struct rt2x00lib_conf *libconf)
  486. {
  487. enum dev_state state =
  488. (libconf->conf->flags & IEEE80211_CONF_PS) ?
  489. STATE_SLEEP : STATE_AWAKE;
  490. u32 reg;
  491. if (state == STATE_SLEEP) {
  492. rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
  493. rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
  494. (rt2x00dev->beacon_int - 20) * 16);
  495. rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
  496. libconf->conf->listen_interval - 1);
  497. /* We must first disable autowake before it can be enabled */
  498. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  499. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  500. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
  501. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  502. } else {
  503. rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
  504. rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
  505. rt2x00pci_register_write(rt2x00dev, CSR20, reg);
  506. }
  507. rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
  508. }
  509. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  510. struct rt2x00lib_conf *libconf,
  511. const unsigned int flags)
  512. {
  513. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  514. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  515. libconf->conf->power_level);
  516. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  517. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  518. rt2500pci_config_txpower(rt2x00dev,
  519. libconf->conf->power_level);
  520. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  521. rt2500pci_config_retry_limit(rt2x00dev, libconf);
  522. if (flags & IEEE80211_CONF_CHANGE_PS)
  523. rt2500pci_config_ps(rt2x00dev, libconf);
  524. }
  525. /*
  526. * Link tuning
  527. */
  528. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  529. struct link_qual *qual)
  530. {
  531. u32 reg;
  532. /*
  533. * Update FCS error count from register.
  534. */
  535. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  536. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  537. /*
  538. * Update False CCA count from register.
  539. */
  540. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  541. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  542. }
  543. static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
  544. struct link_qual *qual, u8 vgc_level)
  545. {
  546. if (qual->vgc_level_reg != vgc_level) {
  547. rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
  548. qual->vgc_level = vgc_level;
  549. qual->vgc_level_reg = vgc_level;
  550. }
  551. }
  552. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
  553. struct link_qual *qual)
  554. {
  555. rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
  556. }
  557. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
  558. struct link_qual *qual, const u32 count)
  559. {
  560. /*
  561. * To prevent collisions with MAC ASIC on chipsets
  562. * up to version C the link tuning should halt after 20
  563. * seconds while being associated.
  564. */
  565. if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
  566. rt2x00dev->intf_associated && count > 20)
  567. return;
  568. /*
  569. * Chipset versions C and lower should directly continue
  570. * to the dynamic CCA tuning. Chipset version D and higher
  571. * should go straight to dynamic CCA tuning when they
  572. * are not associated.
  573. */
  574. if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
  575. !rt2x00dev->intf_associated)
  576. goto dynamic_cca_tune;
  577. /*
  578. * A too low RSSI will cause too much false CCA which will
  579. * then corrupt the R17 tuning. To remidy this the tuning should
  580. * be stopped (While making sure the R17 value will not exceed limits)
  581. */
  582. if (qual->rssi < -80 && count > 20) {
  583. if (qual->vgc_level_reg >= 0x41)
  584. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  585. return;
  586. }
  587. /*
  588. * Special big-R17 for short distance
  589. */
  590. if (qual->rssi >= -58) {
  591. rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
  592. return;
  593. }
  594. /*
  595. * Special mid-R17 for middle distance
  596. */
  597. if (qual->rssi >= -74) {
  598. rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
  599. return;
  600. }
  601. /*
  602. * Leave short or middle distance condition, restore r17
  603. * to the dynamic tuning range.
  604. */
  605. if (qual->vgc_level_reg >= 0x41) {
  606. rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
  607. return;
  608. }
  609. dynamic_cca_tune:
  610. /*
  611. * R17 is inside the dynamic tuning range,
  612. * start tuning the link based on the false cca counter.
  613. */
  614. if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
  615. rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
  616. else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
  617. rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
  618. }
  619. /*
  620. * Queue handlers.
  621. */
  622. static void rt2500pci_start_queue(struct data_queue *queue)
  623. {
  624. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  625. u32 reg;
  626. switch (queue->qid) {
  627. case QID_RX:
  628. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  629. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
  630. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  631. break;
  632. case QID_BEACON:
  633. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  634. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  635. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  636. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  637. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  638. break;
  639. default:
  640. break;
  641. }
  642. }
  643. static void rt2500pci_kick_queue(struct data_queue *queue)
  644. {
  645. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  646. u32 reg;
  647. switch (queue->qid) {
  648. case QID_AC_VO:
  649. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  650. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
  651. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  652. break;
  653. case QID_AC_VI:
  654. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  655. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
  656. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  657. break;
  658. case QID_ATIM:
  659. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  660. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
  661. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  662. break;
  663. default:
  664. break;
  665. }
  666. }
  667. static void rt2500pci_stop_queue(struct data_queue *queue)
  668. {
  669. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  670. u32 reg;
  671. switch (queue->qid) {
  672. case QID_AC_VO:
  673. case QID_AC_VI:
  674. case QID_ATIM:
  675. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  676. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  677. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  678. break;
  679. case QID_RX:
  680. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  681. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
  682. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  683. break;
  684. case QID_BEACON:
  685. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  686. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  687. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  688. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  689. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  690. /*
  691. * Wait for possibly running tbtt tasklets.
  692. */
  693. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  694. break;
  695. default:
  696. break;
  697. }
  698. }
  699. /*
  700. * Initialization functions.
  701. */
  702. static bool rt2500pci_get_entry_state(struct queue_entry *entry)
  703. {
  704. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  705. u32 word;
  706. if (entry->queue->qid == QID_RX) {
  707. rt2x00_desc_read(entry_priv->desc, 0, &word);
  708. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  709. } else {
  710. rt2x00_desc_read(entry_priv->desc, 0, &word);
  711. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  712. rt2x00_get_field32(word, TXD_W0_VALID));
  713. }
  714. }
  715. static void rt2500pci_clear_entry(struct queue_entry *entry)
  716. {
  717. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  718. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  719. u32 word;
  720. if (entry->queue->qid == QID_RX) {
  721. rt2x00_desc_read(entry_priv->desc, 1, &word);
  722. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  723. rt2x00_desc_write(entry_priv->desc, 1, word);
  724. rt2x00_desc_read(entry_priv->desc, 0, &word);
  725. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  726. rt2x00_desc_write(entry_priv->desc, 0, word);
  727. } else {
  728. rt2x00_desc_read(entry_priv->desc, 0, &word);
  729. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  730. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  731. rt2x00_desc_write(entry_priv->desc, 0, word);
  732. }
  733. }
  734. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  735. {
  736. struct queue_entry_priv_pci *entry_priv;
  737. u32 reg;
  738. /*
  739. * Initialize registers.
  740. */
  741. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  742. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  743. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  744. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
  745. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  746. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  747. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  748. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  749. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  750. entry_priv->desc_dma);
  751. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  752. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  753. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  754. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  755. entry_priv->desc_dma);
  756. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  757. entry_priv = rt2x00dev->atim->entries[0].priv_data;
  758. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  759. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  760. entry_priv->desc_dma);
  761. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  762. entry_priv = rt2x00dev->bcn->entries[0].priv_data;
  763. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  764. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  765. entry_priv->desc_dma);
  766. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  767. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  768. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  769. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  770. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  771. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  772. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  773. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  774. entry_priv->desc_dma);
  775. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  776. return 0;
  777. }
  778. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  779. {
  780. u32 reg;
  781. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  782. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  783. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  784. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  785. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  786. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  787. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  788. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  789. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  790. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  791. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  792. rt2x00dev->rx->data_size / 128);
  793. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  794. /*
  795. * Always use CWmin and CWmax set in descriptor.
  796. */
  797. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  798. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  799. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  800. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  801. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  802. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  803. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  804. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  805. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  806. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  807. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  808. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  809. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  810. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  811. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  812. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  813. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  814. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  815. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  816. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  817. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  818. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  819. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  820. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  821. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  822. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  823. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  824. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  825. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  826. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  827. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  828. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  829. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  830. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  831. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  832. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  833. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  834. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  835. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  836. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  837. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  838. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  839. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  840. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  841. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  842. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  843. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  844. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  845. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  846. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  847. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  848. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  849. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  850. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  851. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  852. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  853. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  854. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  855. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  856. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  857. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  858. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  859. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  860. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  861. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  862. return -EBUSY;
  863. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  864. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  865. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  866. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  867. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  868. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  869. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  870. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  871. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  872. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  873. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  874. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  875. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  876. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  877. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  878. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  879. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  880. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  881. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  882. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  883. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  884. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  885. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  886. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  887. /*
  888. * We must clear the FCS and FIFO error count.
  889. * These registers are cleared on read,
  890. * so we may pass a useless variable to store the value.
  891. */
  892. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  893. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  894. return 0;
  895. }
  896. static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  897. {
  898. unsigned int i;
  899. u8 value;
  900. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  901. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  902. if ((value != 0xff) && (value != 0x00))
  903. return 0;
  904. udelay(REGISTER_BUSY_DELAY);
  905. }
  906. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  907. return -EACCES;
  908. }
  909. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  910. {
  911. unsigned int i;
  912. u16 eeprom;
  913. u8 reg_id;
  914. u8 value;
  915. if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
  916. return -EACCES;
  917. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  918. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  919. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  920. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  921. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  922. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  923. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  924. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  925. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  926. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  927. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  928. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  929. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  930. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  931. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  932. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  933. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  934. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  935. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  936. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  937. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  938. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  939. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  940. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  941. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  942. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  943. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  944. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  945. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  946. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  947. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  948. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  949. if (eeprom != 0xffff && eeprom != 0x0000) {
  950. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  951. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  952. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  953. }
  954. }
  955. return 0;
  956. }
  957. /*
  958. * Device state switch handlers.
  959. */
  960. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  961. enum dev_state state)
  962. {
  963. int mask = (state == STATE_RADIO_IRQ_OFF);
  964. u32 reg;
  965. unsigned long flags;
  966. /*
  967. * When interrupts are being enabled, the interrupt registers
  968. * should clear the register to assure a clean state.
  969. */
  970. if (state == STATE_RADIO_IRQ_ON) {
  971. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  972. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  973. }
  974. /*
  975. * Only toggle the interrupts bits we are going to use.
  976. * Non-checked interrupt bits are disabled by default.
  977. */
  978. spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
  979. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  980. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  981. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  982. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  983. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  984. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  985. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  986. spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
  987. if (state == STATE_RADIO_IRQ_OFF) {
  988. /*
  989. * Ensure that all tasklets are finished.
  990. */
  991. tasklet_kill(&rt2x00dev->txstatus_tasklet);
  992. tasklet_kill(&rt2x00dev->rxdone_tasklet);
  993. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  994. }
  995. }
  996. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  997. {
  998. /*
  999. * Initialize all registers.
  1000. */
  1001. if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
  1002. rt2500pci_init_registers(rt2x00dev) ||
  1003. rt2500pci_init_bbp(rt2x00dev)))
  1004. return -EIO;
  1005. return 0;
  1006. }
  1007. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  1008. {
  1009. /*
  1010. * Disable power
  1011. */
  1012. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  1013. }
  1014. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  1015. enum dev_state state)
  1016. {
  1017. u32 reg, reg2;
  1018. unsigned int i;
  1019. char put_to_sleep;
  1020. char bbp_state;
  1021. char rf_state;
  1022. put_to_sleep = (state != STATE_AWAKE);
  1023. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  1024. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  1025. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  1026. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  1027. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  1028. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  1029. /*
  1030. * Device is not guaranteed to be in the requested state yet.
  1031. * We must wait until the register indicates that the
  1032. * device has entered the correct state.
  1033. */
  1034. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  1035. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
  1036. bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
  1037. rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
  1038. if (bbp_state == state && rf_state == state)
  1039. return 0;
  1040. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  1041. msleep(10);
  1042. }
  1043. return -EBUSY;
  1044. }
  1045. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  1046. enum dev_state state)
  1047. {
  1048. int retval = 0;
  1049. switch (state) {
  1050. case STATE_RADIO_ON:
  1051. retval = rt2500pci_enable_radio(rt2x00dev);
  1052. break;
  1053. case STATE_RADIO_OFF:
  1054. rt2500pci_disable_radio(rt2x00dev);
  1055. break;
  1056. case STATE_RADIO_IRQ_ON:
  1057. case STATE_RADIO_IRQ_OFF:
  1058. rt2500pci_toggle_irq(rt2x00dev, state);
  1059. break;
  1060. case STATE_DEEP_SLEEP:
  1061. case STATE_SLEEP:
  1062. case STATE_STANDBY:
  1063. case STATE_AWAKE:
  1064. retval = rt2500pci_set_state(rt2x00dev, state);
  1065. break;
  1066. default:
  1067. retval = -ENOTSUPP;
  1068. break;
  1069. }
  1070. if (unlikely(retval))
  1071. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  1072. state, retval);
  1073. return retval;
  1074. }
  1075. /*
  1076. * TX descriptor initialization
  1077. */
  1078. static void rt2500pci_write_tx_desc(struct queue_entry *entry,
  1079. struct txentry_desc *txdesc)
  1080. {
  1081. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1082. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1083. __le32 *txd = entry_priv->desc;
  1084. u32 word;
  1085. /*
  1086. * Start writing the descriptor words.
  1087. */
  1088. rt2x00_desc_read(txd, 1, &word);
  1089. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1090. rt2x00_desc_write(txd, 1, word);
  1091. rt2x00_desc_read(txd, 2, &word);
  1092. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1093. rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
  1094. rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
  1095. rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
  1096. rt2x00_desc_write(txd, 2, word);
  1097. rt2x00_desc_read(txd, 3, &word);
  1098. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
  1099. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
  1100. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
  1101. txdesc->u.plcp.length_low);
  1102. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
  1103. txdesc->u.plcp.length_high);
  1104. rt2x00_desc_write(txd, 3, word);
  1105. rt2x00_desc_read(txd, 10, &word);
  1106. rt2x00_set_field32(&word, TXD_W10_RTS,
  1107. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  1108. rt2x00_desc_write(txd, 10, word);
  1109. /*
  1110. * Writing TXD word 0 must the last to prevent a race condition with
  1111. * the device, whereby the device may take hold of the TXD before we
  1112. * finished updating it.
  1113. */
  1114. rt2x00_desc_read(txd, 0, &word);
  1115. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1116. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1117. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1118. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1119. rt2x00_set_field32(&word, TXD_W0_ACK,
  1120. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1121. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1122. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1123. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1124. (txdesc->rate_mode == RATE_MODE_OFDM));
  1125. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1126. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
  1127. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1128. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  1129. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
  1130. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1131. rt2x00_desc_write(txd, 0, word);
  1132. /*
  1133. * Register descriptor details in skb frame descriptor.
  1134. */
  1135. skbdesc->desc = txd;
  1136. skbdesc->desc_len = TXD_DESC_SIZE;
  1137. }
  1138. /*
  1139. * TX data initialization
  1140. */
  1141. static void rt2500pci_write_beacon(struct queue_entry *entry,
  1142. struct txentry_desc *txdesc)
  1143. {
  1144. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1145. u32 reg;
  1146. /*
  1147. * Disable beaconing while we are reloading the beacon data,
  1148. * otherwise we might be sending out invalid data.
  1149. */
  1150. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1151. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1152. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1153. rt2x00queue_map_txskb(entry);
  1154. /*
  1155. * Write the TX descriptor for the beacon.
  1156. */
  1157. rt2500pci_write_tx_desc(entry, txdesc);
  1158. /*
  1159. * Dump beacon to userspace through debugfs.
  1160. */
  1161. rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
  1162. /*
  1163. * Enable beaconing again.
  1164. */
  1165. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1166. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1167. }
  1168. /*
  1169. * RX control handlers
  1170. */
  1171. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1172. struct rxdone_entry_desc *rxdesc)
  1173. {
  1174. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1175. u32 word0;
  1176. u32 word2;
  1177. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  1178. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  1179. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1180. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1181. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1182. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1183. /*
  1184. * Obtain the status about this packet.
  1185. * When frame was received with an OFDM bitrate,
  1186. * the signal is the PLCP value. If it was received with
  1187. * a CCK bitrate the signal is the rate in 100kbit/s.
  1188. */
  1189. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1190. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1191. entry->queue->rt2x00dev->rssi_offset;
  1192. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1193. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1194. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1195. else
  1196. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1197. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1198. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1199. }
  1200. /*
  1201. * Interrupt functions.
  1202. */
  1203. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1204. const enum data_queue_qid queue_idx)
  1205. {
  1206. struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
  1207. struct queue_entry_priv_pci *entry_priv;
  1208. struct queue_entry *entry;
  1209. struct txdone_entry_desc txdesc;
  1210. u32 word;
  1211. while (!rt2x00queue_empty(queue)) {
  1212. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1213. entry_priv = entry->priv_data;
  1214. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1215. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1216. !rt2x00_get_field32(word, TXD_W0_VALID))
  1217. break;
  1218. /*
  1219. * Obtain the status about this packet.
  1220. */
  1221. txdesc.flags = 0;
  1222. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1223. case 0: /* Success */
  1224. case 1: /* Success with retry */
  1225. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1226. break;
  1227. case 2: /* Failure, excessive retries */
  1228. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1229. /* Don't break, this is a failed frame! */
  1230. default: /* Failure */
  1231. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1232. }
  1233. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1234. rt2x00lib_txdone(entry, &txdesc);
  1235. }
  1236. }
  1237. static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
  1238. struct rt2x00_field32 irq_field)
  1239. {
  1240. u32 reg;
  1241. /*
  1242. * Enable a single interrupt. The interrupt mask register
  1243. * access needs locking.
  1244. */
  1245. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1246. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  1247. rt2x00_set_field32(&reg, irq_field, 0);
  1248. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  1249. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1250. }
  1251. static void rt2500pci_txstatus_tasklet(unsigned long data)
  1252. {
  1253. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1254. u32 reg;
  1255. /*
  1256. * Handle all tx queues.
  1257. */
  1258. rt2500pci_txdone(rt2x00dev, QID_ATIM);
  1259. rt2500pci_txdone(rt2x00dev, QID_AC_VO);
  1260. rt2500pci_txdone(rt2x00dev, QID_AC_VI);
  1261. /*
  1262. * Enable all TXDONE interrupts again.
  1263. */
  1264. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
  1265. spin_lock_irq(&rt2x00dev->irqmask_lock);
  1266. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  1267. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
  1268. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
  1269. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
  1270. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  1271. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  1272. }
  1273. }
  1274. static void rt2500pci_tbtt_tasklet(unsigned long data)
  1275. {
  1276. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1277. rt2x00lib_beacondone(rt2x00dev);
  1278. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1279. rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
  1280. }
  1281. static void rt2500pci_rxdone_tasklet(unsigned long data)
  1282. {
  1283. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  1284. if (rt2x00pci_rxdone(rt2x00dev))
  1285. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1286. else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1287. rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
  1288. }
  1289. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1290. {
  1291. struct rt2x00_dev *rt2x00dev = dev_instance;
  1292. u32 reg, mask;
  1293. /*
  1294. * Get the interrupt sources & saved to local variable.
  1295. * Write register value back to clear pending interrupts.
  1296. */
  1297. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1298. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1299. if (!reg)
  1300. return IRQ_NONE;
  1301. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1302. return IRQ_HANDLED;
  1303. mask = reg;
  1304. /*
  1305. * Schedule tasklets for interrupt handling.
  1306. */
  1307. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1308. tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
  1309. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1310. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  1311. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
  1312. rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
  1313. rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
  1314. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  1315. /*
  1316. * Mask out all txdone interrupts.
  1317. */
  1318. rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
  1319. rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
  1320. rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
  1321. }
  1322. /*
  1323. * Disable all interrupts for which a tasklet was scheduled right now,
  1324. * the tasklet will reenable the appropriate interrupts.
  1325. */
  1326. spin_lock(&rt2x00dev->irqmask_lock);
  1327. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  1328. reg |= mask;
  1329. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  1330. spin_unlock(&rt2x00dev->irqmask_lock);
  1331. return IRQ_HANDLED;
  1332. }
  1333. /*
  1334. * Device probe functions.
  1335. */
  1336. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1337. {
  1338. struct eeprom_93cx6 eeprom;
  1339. u32 reg;
  1340. u16 word;
  1341. u8 *mac;
  1342. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1343. eeprom.data = rt2x00dev;
  1344. eeprom.register_read = rt2500pci_eepromregister_read;
  1345. eeprom.register_write = rt2500pci_eepromregister_write;
  1346. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1347. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1348. eeprom.reg_data_in = 0;
  1349. eeprom.reg_data_out = 0;
  1350. eeprom.reg_data_clock = 0;
  1351. eeprom.reg_chip_select = 0;
  1352. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1353. EEPROM_SIZE / sizeof(u16));
  1354. /*
  1355. * Start validation of the data that has been read.
  1356. */
  1357. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1358. if (!is_valid_ether_addr(mac)) {
  1359. random_ether_addr(mac);
  1360. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1361. }
  1362. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1363. if (word == 0xffff) {
  1364. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1365. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1366. ANTENNA_SW_DIVERSITY);
  1367. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1368. ANTENNA_SW_DIVERSITY);
  1369. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1370. LED_MODE_DEFAULT);
  1371. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1372. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1373. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1374. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1375. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1376. }
  1377. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1378. if (word == 0xffff) {
  1379. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1380. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1381. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1382. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1383. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1384. }
  1385. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1386. if (word == 0xffff) {
  1387. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1388. DEFAULT_RSSI_OFFSET);
  1389. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1390. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1391. }
  1392. return 0;
  1393. }
  1394. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1395. {
  1396. u32 reg;
  1397. u16 value;
  1398. u16 eeprom;
  1399. /*
  1400. * Read EEPROM word for configuration.
  1401. */
  1402. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1403. /*
  1404. * Identify RF chipset.
  1405. */
  1406. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1407. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1408. rt2x00_set_chip(rt2x00dev, RT2560, value,
  1409. rt2x00_get_field32(reg, CSR0_REVISION));
  1410. if (!rt2x00_rf(rt2x00dev, RF2522) &&
  1411. !rt2x00_rf(rt2x00dev, RF2523) &&
  1412. !rt2x00_rf(rt2x00dev, RF2524) &&
  1413. !rt2x00_rf(rt2x00dev, RF2525) &&
  1414. !rt2x00_rf(rt2x00dev, RF2525E) &&
  1415. !rt2x00_rf(rt2x00dev, RF5222)) {
  1416. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1417. return -ENODEV;
  1418. }
  1419. /*
  1420. * Identify default antenna configuration.
  1421. */
  1422. rt2x00dev->default_ant.tx =
  1423. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1424. rt2x00dev->default_ant.rx =
  1425. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1426. /*
  1427. * Store led mode, for correct led behaviour.
  1428. */
  1429. #ifdef CONFIG_RT2X00_LIB_LEDS
  1430. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1431. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1432. if (value == LED_MODE_TXRX_ACTIVITY ||
  1433. value == LED_MODE_DEFAULT ||
  1434. value == LED_MODE_ASUS)
  1435. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1436. LED_TYPE_ACTIVITY);
  1437. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1438. /*
  1439. * Detect if this device has an hardware controlled radio.
  1440. */
  1441. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
  1442. __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
  1443. /*
  1444. * On this device RFKILL initialized during probe does not work.
  1445. */
  1446. __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
  1447. }
  1448. /*
  1449. * Check if the BBP tuning should be enabled.
  1450. */
  1451. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1452. if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1453. __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
  1454. /*
  1455. * Read the RSSI <-> dBm offset information.
  1456. */
  1457. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1458. rt2x00dev->rssi_offset =
  1459. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1460. return 0;
  1461. }
  1462. /*
  1463. * RF value list for RF2522
  1464. * Supports: 2.4 GHz
  1465. */
  1466. static const struct rf_channel rf_vals_bg_2522[] = {
  1467. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1468. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1469. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1470. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1471. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1472. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1473. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1474. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1475. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1476. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1477. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1478. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1479. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1480. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1481. };
  1482. /*
  1483. * RF value list for RF2523
  1484. * Supports: 2.4 GHz
  1485. */
  1486. static const struct rf_channel rf_vals_bg_2523[] = {
  1487. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1488. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1489. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1490. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1491. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1492. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1493. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1494. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1495. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1496. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1497. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1498. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1499. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1500. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1501. };
  1502. /*
  1503. * RF value list for RF2524
  1504. * Supports: 2.4 GHz
  1505. */
  1506. static const struct rf_channel rf_vals_bg_2524[] = {
  1507. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1508. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1509. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1510. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1511. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1512. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1513. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1514. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1515. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1516. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1517. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1518. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1519. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1520. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1521. };
  1522. /*
  1523. * RF value list for RF2525
  1524. * Supports: 2.4 GHz
  1525. */
  1526. static const struct rf_channel rf_vals_bg_2525[] = {
  1527. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1528. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1529. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1530. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1531. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1532. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1533. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1534. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1535. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1536. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1537. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1538. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1539. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1540. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1541. };
  1542. /*
  1543. * RF value list for RF2525e
  1544. * Supports: 2.4 GHz
  1545. */
  1546. static const struct rf_channel rf_vals_bg_2525e[] = {
  1547. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1548. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1549. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1550. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1551. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1552. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1553. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1554. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1555. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1556. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1557. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1558. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1559. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1560. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1561. };
  1562. /*
  1563. * RF value list for RF5222
  1564. * Supports: 2.4 GHz & 5.2 GHz
  1565. */
  1566. static const struct rf_channel rf_vals_5222[] = {
  1567. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1568. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1569. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1570. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1571. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1572. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1573. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1574. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1575. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1576. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1577. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1578. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1579. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1580. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1581. /* 802.11 UNI / HyperLan 2 */
  1582. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1583. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1584. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1585. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1586. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1587. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1588. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1589. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1590. /* 802.11 HyperLan 2 */
  1591. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1592. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1593. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1594. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1595. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1596. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1597. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1598. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1599. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1600. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1601. /* 802.11 UNII */
  1602. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1603. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1604. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1605. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1606. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1607. };
  1608. static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1609. {
  1610. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1611. struct channel_info *info;
  1612. char *tx_power;
  1613. unsigned int i;
  1614. /*
  1615. * Initialize all hw fields.
  1616. */
  1617. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1618. IEEE80211_HW_SIGNAL_DBM |
  1619. IEEE80211_HW_SUPPORTS_PS |
  1620. IEEE80211_HW_PS_NULLFUNC_STACK;
  1621. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1622. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1623. rt2x00_eeprom_addr(rt2x00dev,
  1624. EEPROM_MAC_ADDR_0));
  1625. /*
  1626. * Initialize hw_mode information.
  1627. */
  1628. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1629. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1630. if (rt2x00_rf(rt2x00dev, RF2522)) {
  1631. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1632. spec->channels = rf_vals_bg_2522;
  1633. } else if (rt2x00_rf(rt2x00dev, RF2523)) {
  1634. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1635. spec->channels = rf_vals_bg_2523;
  1636. } else if (rt2x00_rf(rt2x00dev, RF2524)) {
  1637. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1638. spec->channels = rf_vals_bg_2524;
  1639. } else if (rt2x00_rf(rt2x00dev, RF2525)) {
  1640. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1641. spec->channels = rf_vals_bg_2525;
  1642. } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
  1643. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1644. spec->channels = rf_vals_bg_2525e;
  1645. } else if (rt2x00_rf(rt2x00dev, RF5222)) {
  1646. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1647. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1648. spec->channels = rf_vals_5222;
  1649. }
  1650. /*
  1651. * Create channel information array
  1652. */
  1653. info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
  1654. if (!info)
  1655. return -ENOMEM;
  1656. spec->channels_info = info;
  1657. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1658. for (i = 0; i < 14; i++) {
  1659. info[i].max_power = MAX_TXPOWER;
  1660. info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1661. }
  1662. if (spec->num_channels > 14) {
  1663. for (i = 14; i < spec->num_channels; i++) {
  1664. info[i].max_power = MAX_TXPOWER;
  1665. info[i].default_power1 = DEFAULT_TXPOWER;
  1666. }
  1667. }
  1668. return 0;
  1669. }
  1670. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1671. {
  1672. int retval;
  1673. u32 reg;
  1674. /*
  1675. * Allocate eeprom data.
  1676. */
  1677. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1678. if (retval)
  1679. return retval;
  1680. retval = rt2500pci_init_eeprom(rt2x00dev);
  1681. if (retval)
  1682. return retval;
  1683. /*
  1684. * Enable rfkill polling by setting GPIO direction of the
  1685. * rfkill switch GPIO pin correctly.
  1686. */
  1687. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  1688. rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
  1689. rt2x00pci_register_write(rt2x00dev, GPIOCSR, reg);
  1690. /*
  1691. * Initialize hw specifications.
  1692. */
  1693. retval = rt2500pci_probe_hw_mode(rt2x00dev);
  1694. if (retval)
  1695. return retval;
  1696. /*
  1697. * This device requires the atim queue and DMA-mapped skbs.
  1698. */
  1699. __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
  1700. __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
  1701. __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
  1702. /*
  1703. * Set the rssi offset.
  1704. */
  1705. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1706. return 0;
  1707. }
  1708. /*
  1709. * IEEE80211 stack callback functions.
  1710. */
  1711. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
  1712. struct ieee80211_vif *vif)
  1713. {
  1714. struct rt2x00_dev *rt2x00dev = hw->priv;
  1715. u64 tsf;
  1716. u32 reg;
  1717. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1718. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1719. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1720. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1721. return tsf;
  1722. }
  1723. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1724. {
  1725. struct rt2x00_dev *rt2x00dev = hw->priv;
  1726. u32 reg;
  1727. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1728. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1729. }
  1730. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1731. .tx = rt2x00mac_tx,
  1732. .start = rt2x00mac_start,
  1733. .stop = rt2x00mac_stop,
  1734. .add_interface = rt2x00mac_add_interface,
  1735. .remove_interface = rt2x00mac_remove_interface,
  1736. .config = rt2x00mac_config,
  1737. .configure_filter = rt2x00mac_configure_filter,
  1738. .sw_scan_start = rt2x00mac_sw_scan_start,
  1739. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  1740. .get_stats = rt2x00mac_get_stats,
  1741. .bss_info_changed = rt2x00mac_bss_info_changed,
  1742. .conf_tx = rt2x00mac_conf_tx,
  1743. .get_tsf = rt2500pci_get_tsf,
  1744. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1745. .rfkill_poll = rt2x00mac_rfkill_poll,
  1746. .flush = rt2x00mac_flush,
  1747. .set_antenna = rt2x00mac_set_antenna,
  1748. .get_antenna = rt2x00mac_get_antenna,
  1749. .get_ringparam = rt2x00mac_get_ringparam,
  1750. .tx_frames_pending = rt2x00mac_tx_frames_pending,
  1751. };
  1752. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1753. .irq_handler = rt2500pci_interrupt,
  1754. .txstatus_tasklet = rt2500pci_txstatus_tasklet,
  1755. .tbtt_tasklet = rt2500pci_tbtt_tasklet,
  1756. .rxdone_tasklet = rt2500pci_rxdone_tasklet,
  1757. .probe_hw = rt2500pci_probe_hw,
  1758. .initialize = rt2x00pci_initialize,
  1759. .uninitialize = rt2x00pci_uninitialize,
  1760. .get_entry_state = rt2500pci_get_entry_state,
  1761. .clear_entry = rt2500pci_clear_entry,
  1762. .set_device_state = rt2500pci_set_device_state,
  1763. .rfkill_poll = rt2500pci_rfkill_poll,
  1764. .link_stats = rt2500pci_link_stats,
  1765. .reset_tuner = rt2500pci_reset_tuner,
  1766. .link_tuner = rt2500pci_link_tuner,
  1767. .start_queue = rt2500pci_start_queue,
  1768. .kick_queue = rt2500pci_kick_queue,
  1769. .stop_queue = rt2500pci_stop_queue,
  1770. .flush_queue = rt2x00pci_flush_queue,
  1771. .write_tx_desc = rt2500pci_write_tx_desc,
  1772. .write_beacon = rt2500pci_write_beacon,
  1773. .fill_rxdone = rt2500pci_fill_rxdone,
  1774. .config_filter = rt2500pci_config_filter,
  1775. .config_intf = rt2500pci_config_intf,
  1776. .config_erp = rt2500pci_config_erp,
  1777. .config_ant = rt2500pci_config_ant,
  1778. .config = rt2500pci_config,
  1779. };
  1780. static const struct data_queue_desc rt2500pci_queue_rx = {
  1781. .entry_num = 32,
  1782. .data_size = DATA_FRAME_SIZE,
  1783. .desc_size = RXD_DESC_SIZE,
  1784. .priv_size = sizeof(struct queue_entry_priv_pci),
  1785. };
  1786. static const struct data_queue_desc rt2500pci_queue_tx = {
  1787. .entry_num = 32,
  1788. .data_size = DATA_FRAME_SIZE,
  1789. .desc_size = TXD_DESC_SIZE,
  1790. .priv_size = sizeof(struct queue_entry_priv_pci),
  1791. };
  1792. static const struct data_queue_desc rt2500pci_queue_bcn = {
  1793. .entry_num = 1,
  1794. .data_size = MGMT_FRAME_SIZE,
  1795. .desc_size = TXD_DESC_SIZE,
  1796. .priv_size = sizeof(struct queue_entry_priv_pci),
  1797. };
  1798. static const struct data_queue_desc rt2500pci_queue_atim = {
  1799. .entry_num = 8,
  1800. .data_size = DATA_FRAME_SIZE,
  1801. .desc_size = TXD_DESC_SIZE,
  1802. .priv_size = sizeof(struct queue_entry_priv_pci),
  1803. };
  1804. static const struct rt2x00_ops rt2500pci_ops = {
  1805. .name = KBUILD_MODNAME,
  1806. .max_sta_intf = 1,
  1807. .max_ap_intf = 1,
  1808. .eeprom_size = EEPROM_SIZE,
  1809. .rf_size = RF_SIZE,
  1810. .tx_queues = NUM_TX_QUEUES,
  1811. .extra_tx_headroom = 0,
  1812. .rx = &rt2500pci_queue_rx,
  1813. .tx = &rt2500pci_queue_tx,
  1814. .bcn = &rt2500pci_queue_bcn,
  1815. .atim = &rt2500pci_queue_atim,
  1816. .lib = &rt2500pci_rt2x00_ops,
  1817. .hw = &rt2500pci_mac80211_ops,
  1818. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1819. .debugfs = &rt2500pci_rt2x00debug,
  1820. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1821. };
  1822. /*
  1823. * RT2500pci module information.
  1824. */
  1825. static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
  1826. { PCI_DEVICE(0x1814, 0x0201) },
  1827. { 0, }
  1828. };
  1829. MODULE_AUTHOR(DRV_PROJECT);
  1830. MODULE_VERSION(DRV_VERSION);
  1831. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1832. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1833. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1834. MODULE_LICENSE("GPL");
  1835. static int rt2500pci_probe(struct pci_dev *pci_dev,
  1836. const struct pci_device_id *id)
  1837. {
  1838. return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
  1839. }
  1840. static struct pci_driver rt2500pci_driver = {
  1841. .name = KBUILD_MODNAME,
  1842. .id_table = rt2500pci_device_table,
  1843. .probe = rt2500pci_probe,
  1844. .remove = __devexit_p(rt2x00pci_remove),
  1845. .suspend = rt2x00pci_suspend,
  1846. .resume = rt2x00pci_resume,
  1847. };
  1848. static int __init rt2500pci_init(void)
  1849. {
  1850. return pci_register_driver(&rt2500pci_driver);
  1851. }
  1852. static void __exit rt2500pci_exit(void)
  1853. {
  1854. pci_unregister_driver(&rt2500pci_driver);
  1855. }
  1856. module_init(rt2500pci_init);
  1857. module_exit(rt2500pci_exit);