ctatc.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "ctsrc.h"
  21. #include "ctamixer.h"
  22. #include "ctdaio.h"
  23. #include "cttimer.h"
  24. #include <linux/delay.h>
  25. #include <linux/slab.h>
  26. #include <sound/pcm.h>
  27. #include <sound/control.h>
  28. #include <sound/asoundef.h>
  29. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  30. #define MAX_MULTI_CHN 8
  31. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  32. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  33. | ((IEC958_AES1_CON_MIXER \
  34. | IEC958_AES1_CON_ORIGINAL) << 8) \
  35. | (0x10 << 16) \
  36. | ((IEC958_AES3_CON_FS_48000) << 24))
  37. static struct snd_pci_quirk __devinitdata subsys_20k1_list[] = {
  38. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X),
  39. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X),
  40. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X),
  41. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X),
  42. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 0x6000,
  43. "UAA", CTUAA),
  44. { } /* terminator */
  45. };
  46. static struct snd_pci_quirk __devinitdata subsys_20k2_list[] = {
  47. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  48. "SB0760", CTSB0760),
  49. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB1270,
  50. "SB1270", CTSB1270),
  51. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  52. "SB0880", CTSB0880),
  53. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  54. "SB0880", CTSB0880),
  55. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  56. "SB0880", CTSB0880),
  57. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000,
  58. PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "HENDRIX",
  59. CTHENDRIX),
  60. { } /* terminator */
  61. };
  62. static const char *ct_subsys_name[NUM_CTCARDS] = {
  63. /* 20k1 models */
  64. [CTSB055X] = "SB055x",
  65. [CTSB073X] = "SB073x",
  66. [CTUAA] = "UAA",
  67. [CT20K1_UNKNOWN] = "Unknown",
  68. /* 20k2 models */
  69. [CTSB0760] = "SB076x",
  70. [CTHENDRIX] = "Hendrix",
  71. [CTSB0880] = "SB0880",
  72. [CTSB1270] = "SB1270",
  73. [CT20K2_UNKNOWN] = "Unknown",
  74. };
  75. static struct {
  76. int (*create)(struct ct_atc *atc,
  77. enum CTALSADEVS device, const char *device_name);
  78. int (*destroy)(void *alsa_dev);
  79. const char *public_name;
  80. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  81. [FRONT] = { .create = ct_alsa_pcm_create,
  82. .destroy = NULL,
  83. .public_name = "Front/WaveIn"},
  84. [SURROUND] = { .create = ct_alsa_pcm_create,
  85. .destroy = NULL,
  86. .public_name = "Surround"},
  87. [CLFE] = { .create = ct_alsa_pcm_create,
  88. .destroy = NULL,
  89. .public_name = "Center/LFE"},
  90. [SIDE] = { .create = ct_alsa_pcm_create,
  91. .destroy = NULL,
  92. .public_name = "Side"},
  93. [IEC958] = { .create = ct_alsa_pcm_create,
  94. .destroy = NULL,
  95. .public_name = "IEC958 Non-audio"},
  96. [MIXER] = { .create = ct_alsa_mix_create,
  97. .destroy = NULL,
  98. .public_name = "Mixer"}
  99. };
  100. typedef int (*create_t)(void *, void **);
  101. typedef int (*destroy_t)(void *);
  102. static struct {
  103. int (*create)(void *hw, void **rmgr);
  104. int (*destroy)(void *mgr);
  105. } rsc_mgr_funcs[NUM_RSCTYP] = {
  106. [SRC] = { .create = (create_t)src_mgr_create,
  107. .destroy = (destroy_t)src_mgr_destroy },
  108. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  109. .destroy = (destroy_t)srcimp_mgr_destroy },
  110. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  111. .destroy = (destroy_t)amixer_mgr_destroy },
  112. [SUM] = { .create = (create_t)sum_mgr_create,
  113. .destroy = (destroy_t)sum_mgr_destroy },
  114. [DAIO] = { .create = (create_t)daio_mgr_create,
  115. .destroy = (destroy_t)daio_mgr_destroy }
  116. };
  117. static int
  118. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  119. /* *
  120. * Only mono and interleaved modes are supported now.
  121. * Always allocates a contiguous channel block.
  122. * */
  123. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  124. {
  125. struct snd_pcm_runtime *runtime;
  126. struct ct_vm *vm;
  127. if (!apcm->substream)
  128. return 0;
  129. runtime = apcm->substream->runtime;
  130. vm = atc->vm;
  131. apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes);
  132. if (!apcm->vm_block)
  133. return -ENOENT;
  134. return 0;
  135. }
  136. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  137. {
  138. struct ct_vm *vm;
  139. if (!apcm->vm_block)
  140. return;
  141. vm = atc->vm;
  142. vm->unmap(vm, apcm->vm_block);
  143. apcm->vm_block = NULL;
  144. }
  145. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  146. {
  147. return atc->vm->get_ptp_phys(atc->vm, index);
  148. }
  149. static unsigned int convert_format(snd_pcm_format_t snd_format)
  150. {
  151. switch (snd_format) {
  152. case SNDRV_PCM_FORMAT_U8:
  153. return SRC_SF_U8;
  154. case SNDRV_PCM_FORMAT_S16_LE:
  155. return SRC_SF_S16;
  156. case SNDRV_PCM_FORMAT_S24_3LE:
  157. return SRC_SF_S24;
  158. case SNDRV_PCM_FORMAT_S32_LE:
  159. return SRC_SF_S32;
  160. case SNDRV_PCM_FORMAT_FLOAT_LE:
  161. return SRC_SF_F32;
  162. default:
  163. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  164. snd_format);
  165. return SRC_SF_S16;
  166. }
  167. }
  168. static unsigned int
  169. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  170. {
  171. unsigned int pitch;
  172. int b;
  173. /* get pitch and convert to fixed-point 8.24 format. */
  174. pitch = (input_rate / output_rate) << 24;
  175. input_rate %= output_rate;
  176. input_rate /= 100;
  177. output_rate /= 100;
  178. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  179. b--;
  180. if (b >= 0) {
  181. input_rate <<= (31 - b);
  182. input_rate /= output_rate;
  183. b = 24 - (31 - b);
  184. if (b >= 0)
  185. input_rate <<= b;
  186. else
  187. input_rate >>= -b;
  188. pitch |= input_rate;
  189. }
  190. return pitch;
  191. }
  192. static int select_rom(unsigned int pitch)
  193. {
  194. if (pitch > 0x00428f5c && pitch < 0x01b851ec) {
  195. /* 0.26 <= pitch <= 1.72 */
  196. return 1;
  197. } else if (pitch == 0x01d66666 || pitch == 0x01d66667) {
  198. /* pitch == 1.8375 */
  199. return 2;
  200. } else if (pitch == 0x02000000) {
  201. /* pitch == 2 */
  202. return 3;
  203. } else if (pitch <= 0x08000000) {
  204. /* 0 <= pitch <= 8 */
  205. return 0;
  206. } else {
  207. return -ENOENT;
  208. }
  209. }
  210. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  211. {
  212. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  213. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  214. struct src_desc desc = {0};
  215. struct amixer_desc mix_dsc = {0};
  216. struct src *src;
  217. struct amixer *amixer;
  218. int err;
  219. int n_amixer = apcm->substream->runtime->channels, i = 0;
  220. int device = apcm->substream->pcm->device;
  221. unsigned int pitch;
  222. /* first release old resources */
  223. atc_pcm_release_resources(atc, apcm);
  224. /* Get SRC resource */
  225. desc.multi = apcm->substream->runtime->channels;
  226. desc.msr = atc->msr;
  227. desc.mode = MEMRD;
  228. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  229. if (err)
  230. goto error1;
  231. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  232. (atc->rsr * atc->msr));
  233. src = apcm->src;
  234. src->ops->set_pitch(src, pitch);
  235. src->ops->set_rom(src, select_rom(pitch));
  236. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  237. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  238. /* Get AMIXER resource */
  239. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  240. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  241. if (!apcm->amixers) {
  242. err = -ENOMEM;
  243. goto error1;
  244. }
  245. mix_dsc.msr = atc->msr;
  246. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  247. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  248. (struct amixer **)&apcm->amixers[i]);
  249. if (err)
  250. goto error1;
  251. apcm->n_amixer++;
  252. }
  253. /* Set up device virtual mem map */
  254. err = ct_map_audio_buffer(atc, apcm);
  255. if (err < 0)
  256. goto error1;
  257. /* Connect resources */
  258. src = apcm->src;
  259. for (i = 0; i < n_amixer; i++) {
  260. amixer = apcm->amixers[i];
  261. mutex_lock(&atc->atc_mutex);
  262. amixer->ops->setup(amixer, &src->rsc,
  263. INIT_VOL, atc->pcm[i+device*2]);
  264. mutex_unlock(&atc->atc_mutex);
  265. src = src->ops->next_interleave(src);
  266. if (!src)
  267. src = apcm->src;
  268. }
  269. ct_timer_prepare(apcm->timer);
  270. return 0;
  271. error1:
  272. atc_pcm_release_resources(atc, apcm);
  273. return err;
  274. }
  275. static int
  276. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  277. {
  278. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  279. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  280. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  281. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  282. struct srcimp *srcimp;
  283. int i;
  284. if (apcm->srcimps) {
  285. for (i = 0; i < apcm->n_srcimp; i++) {
  286. srcimp = apcm->srcimps[i];
  287. srcimp->ops->unmap(srcimp);
  288. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  289. apcm->srcimps[i] = NULL;
  290. }
  291. kfree(apcm->srcimps);
  292. apcm->srcimps = NULL;
  293. }
  294. if (apcm->srccs) {
  295. for (i = 0; i < apcm->n_srcc; i++) {
  296. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  297. apcm->srccs[i] = NULL;
  298. }
  299. kfree(apcm->srccs);
  300. apcm->srccs = NULL;
  301. }
  302. if (apcm->amixers) {
  303. for (i = 0; i < apcm->n_amixer; i++) {
  304. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  305. apcm->amixers[i] = NULL;
  306. }
  307. kfree(apcm->amixers);
  308. apcm->amixers = NULL;
  309. }
  310. if (apcm->mono) {
  311. sum_mgr->put_sum(sum_mgr, apcm->mono);
  312. apcm->mono = NULL;
  313. }
  314. if (apcm->src) {
  315. src_mgr->put_src(src_mgr, apcm->src);
  316. apcm->src = NULL;
  317. }
  318. if (apcm->vm_block) {
  319. /* Undo device virtual mem map */
  320. ct_unmap_audio_buffer(atc, apcm);
  321. apcm->vm_block = NULL;
  322. }
  323. return 0;
  324. }
  325. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  326. {
  327. unsigned int max_cisz;
  328. struct src *src = apcm->src;
  329. if (apcm->started)
  330. return 0;
  331. apcm->started = 1;
  332. max_cisz = src->multi * src->rsc.msr;
  333. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  334. src->ops->set_sa(src, apcm->vm_block->addr);
  335. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  336. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  337. src->ops->set_cisz(src, max_cisz);
  338. src->ops->set_bm(src, 1);
  339. src->ops->set_state(src, SRC_STATE_INIT);
  340. src->ops->commit_write(src);
  341. ct_timer_start(apcm->timer);
  342. return 0;
  343. }
  344. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  345. {
  346. struct src *src;
  347. int i;
  348. ct_timer_stop(apcm->timer);
  349. src = apcm->src;
  350. src->ops->set_bm(src, 0);
  351. src->ops->set_state(src, SRC_STATE_OFF);
  352. src->ops->commit_write(src);
  353. if (apcm->srccs) {
  354. for (i = 0; i < apcm->n_srcc; i++) {
  355. src = apcm->srccs[i];
  356. src->ops->set_bm(src, 0);
  357. src->ops->set_state(src, SRC_STATE_OFF);
  358. src->ops->commit_write(src);
  359. }
  360. }
  361. apcm->started = 0;
  362. return 0;
  363. }
  364. static int
  365. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  366. {
  367. struct src *src = apcm->src;
  368. u32 size, max_cisz;
  369. int position;
  370. if (!src)
  371. return 0;
  372. position = src->ops->get_ca(src);
  373. size = apcm->vm_block->size;
  374. max_cisz = src->multi * src->rsc.msr;
  375. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  376. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  377. }
  378. struct src_node_conf_t {
  379. unsigned int pitch;
  380. unsigned int msr:8;
  381. unsigned int mix_msr:8;
  382. unsigned int imp_msr:8;
  383. unsigned int vo:1;
  384. };
  385. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  386. struct src_node_conf_t *conf, int *n_srcc)
  387. {
  388. unsigned int pitch;
  389. /* get pitch and convert to fixed-point 8.24 format. */
  390. pitch = atc_get_pitch((atc->rsr * atc->msr),
  391. apcm->substream->runtime->rate);
  392. *n_srcc = 0;
  393. if (1 == atc->msr) { /* FIXME: do we really need SRC here if pitch==1 */
  394. *n_srcc = apcm->substream->runtime->channels;
  395. conf[0].pitch = pitch;
  396. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  397. conf[0].vo = 1;
  398. } else if (2 <= atc->msr) {
  399. if (0x8000000 < pitch) {
  400. /* Need two-stage SRCs, SRCIMPs and
  401. * AMIXERs for converting format */
  402. conf[0].pitch = (atc->msr << 24);
  403. conf[0].msr = conf[0].mix_msr = 1;
  404. conf[0].imp_msr = atc->msr;
  405. conf[0].vo = 0;
  406. conf[1].pitch = atc_get_pitch(atc->rsr,
  407. apcm->substream->runtime->rate);
  408. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  409. conf[1].vo = 1;
  410. *n_srcc = apcm->substream->runtime->channels * 2;
  411. } else if (0x1000000 < pitch) {
  412. /* Need one-stage SRCs, SRCIMPs and
  413. * AMIXERs for converting format */
  414. conf[0].pitch = pitch;
  415. conf[0].msr = conf[0].mix_msr
  416. = conf[0].imp_msr = atc->msr;
  417. conf[0].vo = 1;
  418. *n_srcc = apcm->substream->runtime->channels;
  419. }
  420. }
  421. }
  422. static int
  423. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  424. {
  425. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  426. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  427. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  428. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  429. struct src_desc src_dsc = {0};
  430. struct src *src;
  431. struct srcimp_desc srcimp_dsc = {0};
  432. struct srcimp *srcimp;
  433. struct amixer_desc mix_dsc = {0};
  434. struct sum_desc sum_dsc = {0};
  435. unsigned int pitch;
  436. int multi, err, i;
  437. int n_srcimp, n_amixer, n_srcc, n_sum;
  438. struct src_node_conf_t src_node_conf[2] = {{0} };
  439. /* first release old resources */
  440. atc_pcm_release_resources(atc, apcm);
  441. /* The numbers of converting SRCs and SRCIMPs should be determined
  442. * by pitch value. */
  443. multi = apcm->substream->runtime->channels;
  444. /* get pitch and convert to fixed-point 8.24 format. */
  445. pitch = atc_get_pitch((atc->rsr * atc->msr),
  446. apcm->substream->runtime->rate);
  447. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  448. n_sum = (1 == multi) ? 1 : 0;
  449. n_amixer = n_sum * 2 + n_srcc;
  450. n_srcimp = n_srcc;
  451. if ((multi > 1) && (0x8000000 >= pitch)) {
  452. /* Need extra AMIXERs and SRCIMPs for special treatment
  453. * of interleaved recording of conjugate channels */
  454. n_amixer += multi * atc->msr;
  455. n_srcimp += multi * atc->msr;
  456. } else {
  457. n_srcimp += multi;
  458. }
  459. if (n_srcc) {
  460. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  461. if (!apcm->srccs)
  462. return -ENOMEM;
  463. }
  464. if (n_amixer) {
  465. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  466. if (!apcm->amixers) {
  467. err = -ENOMEM;
  468. goto error1;
  469. }
  470. }
  471. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  472. if (!apcm->srcimps) {
  473. err = -ENOMEM;
  474. goto error1;
  475. }
  476. /* Allocate SRCs for sample rate conversion if needed */
  477. src_dsc.multi = 1;
  478. src_dsc.mode = ARCRW;
  479. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  480. src_dsc.msr = src_node_conf[i/multi].msr;
  481. err = src_mgr->get_src(src_mgr, &src_dsc,
  482. (struct src **)&apcm->srccs[i]);
  483. if (err)
  484. goto error1;
  485. src = apcm->srccs[i];
  486. pitch = src_node_conf[i/multi].pitch;
  487. src->ops->set_pitch(src, pitch);
  488. src->ops->set_rom(src, select_rom(pitch));
  489. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  490. apcm->n_srcc++;
  491. }
  492. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  493. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  494. if (i < (n_sum*2))
  495. mix_dsc.msr = atc->msr;
  496. else if (i < (n_sum*2+n_srcc))
  497. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  498. else
  499. mix_dsc.msr = 1;
  500. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  501. (struct amixer **)&apcm->amixers[i]);
  502. if (err)
  503. goto error1;
  504. apcm->n_amixer++;
  505. }
  506. /* Allocate a SUM resource to mix all input channels together */
  507. sum_dsc.msr = atc->msr;
  508. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  509. if (err)
  510. goto error1;
  511. pitch = atc_get_pitch((atc->rsr * atc->msr),
  512. apcm->substream->runtime->rate);
  513. /* Allocate SRCIMP resources */
  514. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  515. if (i < (n_srcc))
  516. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  517. else if (1 == multi)
  518. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  519. else
  520. srcimp_dsc.msr = 1;
  521. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  522. if (err)
  523. goto error1;
  524. apcm->srcimps[i] = srcimp;
  525. apcm->n_srcimp++;
  526. }
  527. /* Allocate a SRC for writing data to host memory */
  528. src_dsc.multi = apcm->substream->runtime->channels;
  529. src_dsc.msr = 1;
  530. src_dsc.mode = MEMWR;
  531. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  532. if (err)
  533. goto error1;
  534. src = apcm->src;
  535. src->ops->set_pitch(src, pitch);
  536. /* Set up device virtual mem map */
  537. err = ct_map_audio_buffer(atc, apcm);
  538. if (err < 0)
  539. goto error1;
  540. return 0;
  541. error1:
  542. atc_pcm_release_resources(atc, apcm);
  543. return err;
  544. }
  545. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  546. {
  547. struct src *src;
  548. struct amixer *amixer;
  549. struct srcimp *srcimp;
  550. struct ct_mixer *mixer = atc->mixer;
  551. struct sum *mono;
  552. struct rsc *out_ports[8] = {NULL};
  553. int err, i, j, n_sum, multi;
  554. unsigned int pitch;
  555. int mix_base = 0, imp_base = 0;
  556. atc_pcm_release_resources(atc, apcm);
  557. /* Get needed resources. */
  558. err = atc_pcm_capture_get_resources(atc, apcm);
  559. if (err)
  560. return err;
  561. /* Connect resources */
  562. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  563. &out_ports[0], &out_ports[1]);
  564. multi = apcm->substream->runtime->channels;
  565. if (1 == multi) {
  566. mono = apcm->mono;
  567. for (i = 0; i < 2; i++) {
  568. amixer = apcm->amixers[i];
  569. amixer->ops->setup(amixer, out_ports[i],
  570. MONO_SUM_SCALE, mono);
  571. }
  572. out_ports[0] = &mono->rsc;
  573. n_sum = 1;
  574. mix_base = n_sum * 2;
  575. }
  576. for (i = 0; i < apcm->n_srcc; i++) {
  577. src = apcm->srccs[i];
  578. srcimp = apcm->srcimps[imp_base+i];
  579. amixer = apcm->amixers[mix_base+i];
  580. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  581. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  582. out_ports[i%multi] = &amixer->rsc;
  583. }
  584. pitch = atc_get_pitch((atc->rsr * atc->msr),
  585. apcm->substream->runtime->rate);
  586. if ((multi > 1) && (pitch <= 0x8000000)) {
  587. /* Special connection for interleaved
  588. * recording with conjugate channels */
  589. for (i = 0; i < multi; i++) {
  590. out_ports[i]->ops->master(out_ports[i]);
  591. for (j = 0; j < atc->msr; j++) {
  592. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  593. amixer->ops->set_input(amixer, out_ports[i]);
  594. amixer->ops->set_scale(amixer, INIT_VOL);
  595. amixer->ops->set_sum(amixer, NULL);
  596. amixer->ops->commit_raw_write(amixer);
  597. out_ports[i]->ops->next_conj(out_ports[i]);
  598. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  599. srcimp->ops->map(srcimp, apcm->src,
  600. &amixer->rsc);
  601. }
  602. }
  603. } else {
  604. for (i = 0; i < multi; i++) {
  605. srcimp = apcm->srcimps[apcm->n_srcc+i];
  606. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  607. }
  608. }
  609. ct_timer_prepare(apcm->timer);
  610. return 0;
  611. }
  612. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  613. {
  614. struct src *src;
  615. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  616. int i, multi;
  617. if (apcm->started)
  618. return 0;
  619. apcm->started = 1;
  620. multi = apcm->substream->runtime->channels;
  621. /* Set up converting SRCs */
  622. for (i = 0; i < apcm->n_srcc; i++) {
  623. src = apcm->srccs[i];
  624. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  625. src_mgr->src_disable(src_mgr, src);
  626. }
  627. /* Set up recording SRC */
  628. src = apcm->src;
  629. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  630. src->ops->set_sa(src, apcm->vm_block->addr);
  631. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  632. src->ops->set_ca(src, apcm->vm_block->addr);
  633. src_mgr->src_disable(src_mgr, src);
  634. /* Disable relevant SRCs firstly */
  635. src_mgr->commit_write(src_mgr);
  636. /* Enable SRCs respectively */
  637. for (i = 0; i < apcm->n_srcc; i++) {
  638. src = apcm->srccs[i];
  639. src->ops->set_state(src, SRC_STATE_RUN);
  640. src->ops->commit_write(src);
  641. src_mgr->src_enable_s(src_mgr, src);
  642. }
  643. src = apcm->src;
  644. src->ops->set_bm(src, 1);
  645. src->ops->set_state(src, SRC_STATE_RUN);
  646. src->ops->commit_write(src);
  647. src_mgr->src_enable_s(src_mgr, src);
  648. /* Enable relevant SRCs synchronously */
  649. src_mgr->commit_write(src_mgr);
  650. ct_timer_start(apcm->timer);
  651. return 0;
  652. }
  653. static int
  654. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  655. {
  656. struct src *src = apcm->src;
  657. if (!src)
  658. return 0;
  659. return src->ops->get_ca(src) - apcm->vm_block->addr;
  660. }
  661. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  662. struct ct_atc_pcm *apcm)
  663. {
  664. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  665. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  666. struct src_desc desc = {0};
  667. struct amixer_desc mix_dsc = {0};
  668. struct src *src;
  669. int err;
  670. int n_amixer = apcm->substream->runtime->channels, i;
  671. unsigned int pitch, rsr = atc->pll_rate;
  672. /* first release old resources */
  673. atc_pcm_release_resources(atc, apcm);
  674. /* Get SRC resource */
  675. desc.multi = apcm->substream->runtime->channels;
  676. desc.msr = 1;
  677. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  678. desc.msr <<= 1;
  679. desc.mode = MEMRD;
  680. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  681. if (err)
  682. goto error1;
  683. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  684. src = apcm->src;
  685. src->ops->set_pitch(src, pitch);
  686. src->ops->set_rom(src, select_rom(pitch));
  687. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  688. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  689. src->ops->set_bp(src, 1);
  690. /* Get AMIXER resource */
  691. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  692. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  693. if (!apcm->amixers) {
  694. err = -ENOMEM;
  695. goto error1;
  696. }
  697. mix_dsc.msr = desc.msr;
  698. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  699. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  700. (struct amixer **)&apcm->amixers[i]);
  701. if (err)
  702. goto error1;
  703. apcm->n_amixer++;
  704. }
  705. /* Set up device virtual mem map */
  706. err = ct_map_audio_buffer(atc, apcm);
  707. if (err < 0)
  708. goto error1;
  709. return 0;
  710. error1:
  711. atc_pcm_release_resources(atc, apcm);
  712. return err;
  713. }
  714. static int atc_pll_init(struct ct_atc *atc, int rate)
  715. {
  716. struct hw *hw = atc->hw;
  717. int err;
  718. err = hw->pll_init(hw, rate);
  719. atc->pll_rate = err ? 0 : rate;
  720. return err;
  721. }
  722. static int
  723. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  724. {
  725. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  726. unsigned int rate = apcm->substream->runtime->rate;
  727. unsigned int status;
  728. int err = 0;
  729. unsigned char iec958_con_fs;
  730. switch (rate) {
  731. case 48000:
  732. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  733. break;
  734. case 44100:
  735. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  736. break;
  737. case 32000:
  738. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  739. break;
  740. default:
  741. return -ENOENT;
  742. }
  743. mutex_lock(&atc->atc_mutex);
  744. dao->ops->get_spos(dao, &status);
  745. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  746. status &= ~(IEC958_AES3_CON_FS << 24);
  747. status |= (iec958_con_fs << 24);
  748. dao->ops->set_spos(dao, status);
  749. dao->ops->commit_write(dao);
  750. }
  751. if ((rate != atc->pll_rate) && (32000 != rate))
  752. err = atc_pll_init(atc, rate);
  753. mutex_unlock(&atc->atc_mutex);
  754. return err;
  755. }
  756. static int
  757. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  758. {
  759. struct src *src;
  760. struct amixer *amixer;
  761. struct dao *dao;
  762. int err;
  763. int i;
  764. atc_pcm_release_resources(atc, apcm);
  765. /* Configure SPDIFOO and PLL to passthrough mode;
  766. * determine pll_rate. */
  767. err = spdif_passthru_playback_setup(atc, apcm);
  768. if (err)
  769. return err;
  770. /* Get needed resources. */
  771. err = spdif_passthru_playback_get_resources(atc, apcm);
  772. if (err)
  773. return err;
  774. /* Connect resources */
  775. src = apcm->src;
  776. for (i = 0; i < apcm->n_amixer; i++) {
  777. amixer = apcm->amixers[i];
  778. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  779. src = src->ops->next_interleave(src);
  780. if (!src)
  781. src = apcm->src;
  782. }
  783. /* Connect to SPDIFOO */
  784. mutex_lock(&atc->atc_mutex);
  785. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  786. amixer = apcm->amixers[0];
  787. dao->ops->set_left_input(dao, &amixer->rsc);
  788. amixer = apcm->amixers[1];
  789. dao->ops->set_right_input(dao, &amixer->rsc);
  790. mutex_unlock(&atc->atc_mutex);
  791. ct_timer_prepare(apcm->timer);
  792. return 0;
  793. }
  794. static int atc_select_line_in(struct ct_atc *atc)
  795. {
  796. struct hw *hw = atc->hw;
  797. struct ct_mixer *mixer = atc->mixer;
  798. struct src *src;
  799. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  800. return 0;
  801. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  802. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  803. hw->select_adc_source(hw, ADC_LINEIN);
  804. src = atc->srcs[2];
  805. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  806. src = atc->srcs[3];
  807. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  808. return 0;
  809. }
  810. static int atc_select_mic_in(struct ct_atc *atc)
  811. {
  812. struct hw *hw = atc->hw;
  813. struct ct_mixer *mixer = atc->mixer;
  814. struct src *src;
  815. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  816. return 0;
  817. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  818. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  819. hw->select_adc_source(hw, ADC_MICIN);
  820. src = atc->srcs[2];
  821. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  822. src = atc->srcs[3];
  823. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  824. return 0;
  825. }
  826. static struct capabilities atc_capabilities(struct ct_atc *atc)
  827. {
  828. struct hw *hw = atc->hw;
  829. return hw->capabilities(hw);
  830. }
  831. static int atc_output_switch_get(struct ct_atc *atc)
  832. {
  833. struct hw *hw = atc->hw;
  834. return hw->output_switch_get(hw);
  835. }
  836. static int atc_output_switch_put(struct ct_atc *atc, int position)
  837. {
  838. struct hw *hw = atc->hw;
  839. return hw->output_switch_put(hw, position);
  840. }
  841. static int atc_mic_source_switch_get(struct ct_atc *atc)
  842. {
  843. struct hw *hw = atc->hw;
  844. return hw->mic_source_switch_get(hw);
  845. }
  846. static int atc_mic_source_switch_put(struct ct_atc *atc, int position)
  847. {
  848. struct hw *hw = atc->hw;
  849. return hw->mic_source_switch_put(hw, position);
  850. }
  851. static int atc_select_digit_io(struct ct_atc *atc)
  852. {
  853. struct hw *hw = atc->hw;
  854. if (hw->is_adc_source_selected(hw, ADC_NONE))
  855. return 0;
  856. hw->select_adc_source(hw, ADC_NONE);
  857. return 0;
  858. }
  859. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  860. {
  861. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  862. if (state)
  863. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  864. else
  865. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  866. daio_mgr->commit_write(daio_mgr);
  867. return 0;
  868. }
  869. static int
  870. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  871. {
  872. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  873. return dao->ops->get_spos(dao, status);
  874. }
  875. static int
  876. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  877. {
  878. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  879. dao->ops->set_spos(dao, status);
  880. dao->ops->commit_write(dao);
  881. return 0;
  882. }
  883. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  884. {
  885. return atc_daio_unmute(atc, state, LINEO1);
  886. }
  887. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  888. {
  889. return atc_daio_unmute(atc, state, LINEO2);
  890. }
  891. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  892. {
  893. return atc_daio_unmute(atc, state, LINEO3);
  894. }
  895. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  896. {
  897. return atc_daio_unmute(atc, state, LINEO4);
  898. }
  899. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  900. {
  901. return atc_daio_unmute(atc, state, LINEIM);
  902. }
  903. static int atc_mic_unmute(struct ct_atc *atc, unsigned char state)
  904. {
  905. return atc_daio_unmute(atc, state, MIC);
  906. }
  907. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  908. {
  909. return atc_daio_unmute(atc, state, SPDIFOO);
  910. }
  911. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  912. {
  913. return atc_daio_unmute(atc, state, SPDIFIO);
  914. }
  915. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  916. {
  917. return atc_dao_get_status(atc, status, SPDIFOO);
  918. }
  919. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  920. {
  921. return atc_dao_set_status(atc, status, SPDIFOO);
  922. }
  923. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  924. {
  925. struct dao_desc da_dsc = {0};
  926. struct dao *dao;
  927. int err;
  928. struct ct_mixer *mixer = atc->mixer;
  929. struct rsc *rscs[2] = {NULL};
  930. unsigned int spos = 0;
  931. mutex_lock(&atc->atc_mutex);
  932. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  933. da_dsc.msr = state ? 1 : atc->msr;
  934. da_dsc.passthru = state ? 1 : 0;
  935. err = dao->ops->reinit(dao, &da_dsc);
  936. if (state) {
  937. spos = IEC958_DEFAULT_CON;
  938. } else {
  939. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  940. &rscs[0], &rscs[1]);
  941. dao->ops->set_left_input(dao, rscs[0]);
  942. dao->ops->set_right_input(dao, rscs[1]);
  943. /* Restore PLL to atc->rsr if needed. */
  944. if (atc->pll_rate != atc->rsr)
  945. err = atc_pll_init(atc, atc->rsr);
  946. }
  947. dao->ops->set_spos(dao, spos);
  948. dao->ops->commit_write(dao);
  949. mutex_unlock(&atc->atc_mutex);
  950. return err;
  951. }
  952. static int atc_release_resources(struct ct_atc *atc)
  953. {
  954. int i;
  955. struct daio_mgr *daio_mgr = NULL;
  956. struct dao *dao = NULL;
  957. struct dai *dai = NULL;
  958. struct daio *daio = NULL;
  959. struct sum_mgr *sum_mgr = NULL;
  960. struct src_mgr *src_mgr = NULL;
  961. struct srcimp_mgr *srcimp_mgr = NULL;
  962. struct srcimp *srcimp = NULL;
  963. struct ct_mixer *mixer = NULL;
  964. /* disconnect internal mixer objects */
  965. if (atc->mixer) {
  966. mixer = atc->mixer;
  967. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  968. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  969. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  970. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  971. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  972. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  973. }
  974. if (atc->daios) {
  975. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  976. for (i = 0; i < atc->n_daio; i++) {
  977. daio = atc->daios[i];
  978. if (daio->type < LINEIM) {
  979. dao = container_of(daio, struct dao, daio);
  980. dao->ops->clear_left_input(dao);
  981. dao->ops->clear_right_input(dao);
  982. } else {
  983. dai = container_of(daio, struct dai, daio);
  984. /* some thing to do for dai ... */
  985. }
  986. daio_mgr->put_daio(daio_mgr, daio);
  987. }
  988. kfree(atc->daios);
  989. atc->daios = NULL;
  990. }
  991. if (atc->pcm) {
  992. sum_mgr = atc->rsc_mgrs[SUM];
  993. for (i = 0; i < atc->n_pcm; i++)
  994. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  995. kfree(atc->pcm);
  996. atc->pcm = NULL;
  997. }
  998. if (atc->srcs) {
  999. src_mgr = atc->rsc_mgrs[SRC];
  1000. for (i = 0; i < atc->n_src; i++)
  1001. src_mgr->put_src(src_mgr, atc->srcs[i]);
  1002. kfree(atc->srcs);
  1003. atc->srcs = NULL;
  1004. }
  1005. if (atc->srcimps) {
  1006. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1007. for (i = 0; i < atc->n_srcimp; i++) {
  1008. srcimp = atc->srcimps[i];
  1009. srcimp->ops->unmap(srcimp);
  1010. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  1011. }
  1012. kfree(atc->srcimps);
  1013. atc->srcimps = NULL;
  1014. }
  1015. return 0;
  1016. }
  1017. static int ct_atc_destroy(struct ct_atc *atc)
  1018. {
  1019. int i = 0;
  1020. if (!atc)
  1021. return 0;
  1022. if (atc->timer) {
  1023. ct_timer_free(atc->timer);
  1024. atc->timer = NULL;
  1025. }
  1026. atc_release_resources(atc);
  1027. /* Destroy internal mixer objects */
  1028. if (atc->mixer)
  1029. ct_mixer_destroy(atc->mixer);
  1030. for (i = 0; i < NUM_RSCTYP; i++) {
  1031. if (rsc_mgr_funcs[i].destroy && atc->rsc_mgrs[i])
  1032. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  1033. }
  1034. if (atc->hw)
  1035. destroy_hw_obj((struct hw *)atc->hw);
  1036. /* Destroy device virtual memory manager object */
  1037. if (atc->vm) {
  1038. ct_vm_destroy(atc->vm);
  1039. atc->vm = NULL;
  1040. }
  1041. kfree(atc);
  1042. return 0;
  1043. }
  1044. static int atc_dev_free(struct snd_device *dev)
  1045. {
  1046. struct ct_atc *atc = dev->device_data;
  1047. return ct_atc_destroy(atc);
  1048. }
  1049. static int __devinit atc_identify_card(struct ct_atc *atc, unsigned int ssid)
  1050. {
  1051. const struct snd_pci_quirk *p;
  1052. const struct snd_pci_quirk *list;
  1053. u16 vendor_id, device_id;
  1054. switch (atc->chip_type) {
  1055. case ATC20K1:
  1056. atc->chip_name = "20K1";
  1057. list = subsys_20k1_list;
  1058. break;
  1059. case ATC20K2:
  1060. atc->chip_name = "20K2";
  1061. list = subsys_20k2_list;
  1062. break;
  1063. default:
  1064. return -ENOENT;
  1065. }
  1066. if (ssid) {
  1067. vendor_id = ssid >> 16;
  1068. device_id = ssid & 0xffff;
  1069. } else {
  1070. vendor_id = atc->pci->subsystem_vendor;
  1071. device_id = atc->pci->subsystem_device;
  1072. }
  1073. p = snd_pci_quirk_lookup_id(vendor_id, device_id, list);
  1074. if (p) {
  1075. if (p->value < 0) {
  1076. printk(KERN_ERR "ctxfi: "
  1077. "Device %04x:%04x is black-listed\n",
  1078. vendor_id, device_id);
  1079. return -ENOENT;
  1080. }
  1081. atc->model = p->value;
  1082. } else {
  1083. if (atc->chip_type == ATC20K1)
  1084. atc->model = CT20K1_UNKNOWN;
  1085. else
  1086. atc->model = CT20K2_UNKNOWN;
  1087. }
  1088. atc->model_name = ct_subsys_name[atc->model];
  1089. snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n",
  1090. atc->chip_name, atc->model_name,
  1091. vendor_id, device_id);
  1092. return 0;
  1093. }
  1094. int __devinit ct_atc_create_alsa_devs(struct ct_atc *atc)
  1095. {
  1096. enum CTALSADEVS i;
  1097. int err;
  1098. alsa_dev_funcs[MIXER].public_name = atc->chip_name;
  1099. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1100. if (!alsa_dev_funcs[i].create)
  1101. continue;
  1102. err = alsa_dev_funcs[i].create(atc, i,
  1103. alsa_dev_funcs[i].public_name);
  1104. if (err) {
  1105. printk(KERN_ERR "ctxfi: "
  1106. "Creating alsa device %d failed!\n", i);
  1107. return err;
  1108. }
  1109. }
  1110. return 0;
  1111. }
  1112. static int __devinit atc_create_hw_devs(struct ct_atc *atc)
  1113. {
  1114. struct hw *hw;
  1115. struct card_conf info = {0};
  1116. int i, err;
  1117. err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw);
  1118. if (err) {
  1119. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1120. return err;
  1121. }
  1122. atc->hw = hw;
  1123. /* Initialize card hardware. */
  1124. info.rsr = atc->rsr;
  1125. info.msr = atc->msr;
  1126. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1127. err = hw->card_init(hw, &info);
  1128. if (err < 0)
  1129. return err;
  1130. for (i = 0; i < NUM_RSCTYP; i++) {
  1131. if (!rsc_mgr_funcs[i].create)
  1132. continue;
  1133. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1134. if (err) {
  1135. printk(KERN_ERR "ctxfi: "
  1136. "Failed to create rsc_mgr %d!!!\n", i);
  1137. return err;
  1138. }
  1139. }
  1140. return 0;
  1141. }
  1142. static int atc_get_resources(struct ct_atc *atc)
  1143. {
  1144. struct daio_desc da_desc = {0};
  1145. struct daio_mgr *daio_mgr;
  1146. struct src_desc src_dsc = {0};
  1147. struct src_mgr *src_mgr;
  1148. struct srcimp_desc srcimp_dsc = {0};
  1149. struct srcimp_mgr *srcimp_mgr;
  1150. struct sum_desc sum_dsc = {0};
  1151. struct sum_mgr *sum_mgr;
  1152. int err, i, num_srcs, num_daios;
  1153. num_daios = ((atc->model == CTSB1270) ? 8 : 7);
  1154. num_srcs = ((atc->model == CTSB1270) ? 6 : 4);
  1155. atc->daios = kzalloc(sizeof(void *)*num_daios, GFP_KERNEL);
  1156. if (!atc->daios)
  1157. return -ENOMEM;
  1158. atc->srcs = kzalloc(sizeof(void *)*num_srcs, GFP_KERNEL);
  1159. if (!atc->srcs)
  1160. return -ENOMEM;
  1161. atc->srcimps = kzalloc(sizeof(void *)*num_srcs, GFP_KERNEL);
  1162. if (!atc->srcimps)
  1163. return -ENOMEM;
  1164. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1165. if (!atc->pcm)
  1166. return -ENOMEM;
  1167. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1168. da_desc.msr = atc->msr;
  1169. for (i = 0, atc->n_daio = 0; i < num_daios; i++) {
  1170. da_desc.type = (atc->model != CTSB073X) ? i :
  1171. ((i == SPDIFIO) ? SPDIFI1 : i);
  1172. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1173. (struct daio **)&atc->daios[i]);
  1174. if (err) {
  1175. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1176. "resource %d!!!\n", i);
  1177. return err;
  1178. }
  1179. atc->n_daio++;
  1180. }
  1181. src_mgr = atc->rsc_mgrs[SRC];
  1182. src_dsc.multi = 1;
  1183. src_dsc.msr = atc->msr;
  1184. src_dsc.mode = ARCRW;
  1185. for (i = 0, atc->n_src = 0; i < num_srcs; i++) {
  1186. err = src_mgr->get_src(src_mgr, &src_dsc,
  1187. (struct src **)&atc->srcs[i]);
  1188. if (err)
  1189. return err;
  1190. atc->n_src++;
  1191. }
  1192. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1193. srcimp_dsc.msr = 8;
  1194. for (i = 0, atc->n_srcimp = 0; i < num_srcs; i++) {
  1195. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1196. (struct srcimp **)&atc->srcimps[i]);
  1197. if (err)
  1198. return err;
  1199. atc->n_srcimp++;
  1200. }
  1201. sum_mgr = atc->rsc_mgrs[SUM];
  1202. sum_dsc.msr = atc->msr;
  1203. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1204. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1205. (struct sum **)&atc->pcm[i]);
  1206. if (err)
  1207. return err;
  1208. atc->n_pcm++;
  1209. }
  1210. return 0;
  1211. }
  1212. static void
  1213. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1214. struct src **srcs, struct srcimp **srcimps)
  1215. {
  1216. struct rsc *rscs[2] = {NULL};
  1217. struct src *src;
  1218. struct srcimp *srcimp;
  1219. int i = 0;
  1220. rscs[0] = &dai->daio.rscl;
  1221. rscs[1] = &dai->daio.rscr;
  1222. for (i = 0; i < 2; i++) {
  1223. src = srcs[i];
  1224. srcimp = srcimps[i];
  1225. srcimp->ops->map(srcimp, src, rscs[i]);
  1226. src_mgr->src_disable(src_mgr, src);
  1227. }
  1228. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1229. src = srcs[0];
  1230. src->ops->set_pm(src, 1);
  1231. for (i = 0; i < 2; i++) {
  1232. src = srcs[i];
  1233. src->ops->set_state(src, SRC_STATE_RUN);
  1234. src->ops->commit_write(src);
  1235. src_mgr->src_enable_s(src_mgr, src);
  1236. }
  1237. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1238. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1239. dai->ops->set_enb_src(dai, 1);
  1240. dai->ops->set_enb_srt(dai, 1);
  1241. dai->ops->commit_write(dai);
  1242. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1243. }
  1244. static void atc_connect_resources(struct ct_atc *atc)
  1245. {
  1246. struct dai *dai;
  1247. struct dao *dao;
  1248. struct src *src;
  1249. struct sum *sum;
  1250. struct ct_mixer *mixer;
  1251. struct rsc *rscs[2] = {NULL};
  1252. int i, j;
  1253. mixer = atc->mixer;
  1254. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1255. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1256. dao = container_of(atc->daios[j], struct dao, daio);
  1257. dao->ops->set_left_input(dao, rscs[0]);
  1258. dao->ops->set_right_input(dao, rscs[1]);
  1259. }
  1260. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1261. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1262. (struct src **)&atc->srcs[2],
  1263. (struct srcimp **)&atc->srcimps[2]);
  1264. src = atc->srcs[2];
  1265. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1266. src = atc->srcs[3];
  1267. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1268. if (atc->model == CTSB1270) {
  1269. /* Titanium HD has a dedicated ADC for the Mic. */
  1270. dai = container_of(atc->daios[MIC], struct dai, daio);
  1271. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1272. (struct src **)&atc->srcs[4],
  1273. (struct srcimp **)&atc->srcimps[4]);
  1274. src = atc->srcs[4];
  1275. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  1276. src = atc->srcs[5];
  1277. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  1278. }
  1279. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1280. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1281. (struct src **)&atc->srcs[0],
  1282. (struct srcimp **)&atc->srcimps[0]);
  1283. src = atc->srcs[0];
  1284. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1285. src = atc->srcs[1];
  1286. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1287. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1288. sum = atc->pcm[j];
  1289. mixer->set_input_left(mixer, i, &sum->rsc);
  1290. sum = atc->pcm[j+1];
  1291. mixer->set_input_right(mixer, i, &sum->rsc);
  1292. }
  1293. }
  1294. #ifdef CONFIG_PM
  1295. static int atc_suspend(struct ct_atc *atc, pm_message_t state)
  1296. {
  1297. int i;
  1298. struct hw *hw = atc->hw;
  1299. snd_power_change_state(atc->card, SNDRV_CTL_POWER_D3hot);
  1300. for (i = FRONT; i < NUM_PCMS; i++) {
  1301. if (!atc->pcms[i])
  1302. continue;
  1303. snd_pcm_suspend_all(atc->pcms[i]);
  1304. }
  1305. atc_release_resources(atc);
  1306. hw->suspend(hw, state);
  1307. return 0;
  1308. }
  1309. static int atc_hw_resume(struct ct_atc *atc)
  1310. {
  1311. struct hw *hw = atc->hw;
  1312. struct card_conf info = {0};
  1313. /* Re-initialize card hardware. */
  1314. info.rsr = atc->rsr;
  1315. info.msr = atc->msr;
  1316. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1317. return hw->resume(hw, &info);
  1318. }
  1319. static int atc_resources_resume(struct ct_atc *atc)
  1320. {
  1321. struct ct_mixer *mixer;
  1322. int err = 0;
  1323. /* Get resources */
  1324. err = atc_get_resources(atc);
  1325. if (err < 0) {
  1326. atc_release_resources(atc);
  1327. return err;
  1328. }
  1329. /* Build topology */
  1330. atc_connect_resources(atc);
  1331. mixer = atc->mixer;
  1332. mixer->resume(mixer);
  1333. return 0;
  1334. }
  1335. static int atc_resume(struct ct_atc *atc)
  1336. {
  1337. int err = 0;
  1338. /* Do hardware resume. */
  1339. err = atc_hw_resume(atc);
  1340. if (err < 0) {
  1341. printk(KERN_ERR "ctxfi: pci_enable_device failed, "
  1342. "disabling device\n");
  1343. snd_card_disconnect(atc->card);
  1344. return err;
  1345. }
  1346. err = atc_resources_resume(atc);
  1347. if (err < 0)
  1348. return err;
  1349. snd_power_change_state(atc->card, SNDRV_CTL_POWER_D0);
  1350. return 0;
  1351. }
  1352. #endif
  1353. static struct ct_atc atc_preset __devinitdata = {
  1354. .map_audio_buffer = ct_map_audio_buffer,
  1355. .unmap_audio_buffer = ct_unmap_audio_buffer,
  1356. .pcm_playback_prepare = atc_pcm_playback_prepare,
  1357. .pcm_release_resources = atc_pcm_release_resources,
  1358. .pcm_playback_start = atc_pcm_playback_start,
  1359. .pcm_playback_stop = atc_pcm_stop,
  1360. .pcm_playback_position = atc_pcm_playback_position,
  1361. .pcm_capture_prepare = atc_pcm_capture_prepare,
  1362. .pcm_capture_start = atc_pcm_capture_start,
  1363. .pcm_capture_stop = atc_pcm_stop,
  1364. .pcm_capture_position = atc_pcm_capture_position,
  1365. .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare,
  1366. .get_ptp_phys = atc_get_ptp_phys,
  1367. .select_line_in = atc_select_line_in,
  1368. .select_mic_in = atc_select_mic_in,
  1369. .select_digit_io = atc_select_digit_io,
  1370. .line_front_unmute = atc_line_front_unmute,
  1371. .line_surround_unmute = atc_line_surround_unmute,
  1372. .line_clfe_unmute = atc_line_clfe_unmute,
  1373. .line_rear_unmute = atc_line_rear_unmute,
  1374. .line_in_unmute = atc_line_in_unmute,
  1375. .mic_unmute = atc_mic_unmute,
  1376. .spdif_out_unmute = atc_spdif_out_unmute,
  1377. .spdif_in_unmute = atc_spdif_in_unmute,
  1378. .spdif_out_get_status = atc_spdif_out_get_status,
  1379. .spdif_out_set_status = atc_spdif_out_set_status,
  1380. .spdif_out_passthru = atc_spdif_out_passthru,
  1381. .capabilities = atc_capabilities,
  1382. .output_switch_get = atc_output_switch_get,
  1383. .output_switch_put = atc_output_switch_put,
  1384. .mic_source_switch_get = atc_mic_source_switch_get,
  1385. .mic_source_switch_put = atc_mic_source_switch_put,
  1386. #ifdef CONFIG_PM
  1387. .suspend = atc_suspend,
  1388. .resume = atc_resume,
  1389. #endif
  1390. };
  1391. /**
  1392. * ct_atc_create - create and initialize a hardware manager
  1393. * @card: corresponding alsa card object
  1394. * @pci: corresponding kernel pci device object
  1395. * @ratc: return created object address in it
  1396. *
  1397. * Creates and initializes a hardware manager.
  1398. *
  1399. * Creates kmallocated ct_atc structure. Initializes hardware.
  1400. * Returns 0 if succeeds, or negative error code if fails.
  1401. */
  1402. int __devinit ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1403. unsigned int rsr, unsigned int msr,
  1404. int chip_type, unsigned int ssid,
  1405. struct ct_atc **ratc)
  1406. {
  1407. struct ct_atc *atc;
  1408. static struct snd_device_ops ops = {
  1409. .dev_free = atc_dev_free,
  1410. };
  1411. int err;
  1412. *ratc = NULL;
  1413. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1414. if (!atc)
  1415. return -ENOMEM;
  1416. /* Set operations */
  1417. *atc = atc_preset;
  1418. atc->card = card;
  1419. atc->pci = pci;
  1420. atc->rsr = rsr;
  1421. atc->msr = msr;
  1422. atc->chip_type = chip_type;
  1423. mutex_init(&atc->atc_mutex);
  1424. /* Find card model */
  1425. err = atc_identify_card(atc, ssid);
  1426. if (err < 0) {
  1427. printk(KERN_ERR "ctatc: Card not recognised\n");
  1428. goto error1;
  1429. }
  1430. /* Set up device virtual memory management object */
  1431. err = ct_vm_create(&atc->vm, pci);
  1432. if (err < 0)
  1433. goto error1;
  1434. /* Create all atc hw devices */
  1435. err = atc_create_hw_devs(atc);
  1436. if (err < 0)
  1437. goto error1;
  1438. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1439. if (err) {
  1440. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1441. goto error1;
  1442. }
  1443. /* Get resources */
  1444. err = atc_get_resources(atc);
  1445. if (err < 0)
  1446. goto error1;
  1447. /* Build topology */
  1448. atc_connect_resources(atc);
  1449. atc->timer = ct_timer_new(atc);
  1450. if (!atc->timer)
  1451. goto error1;
  1452. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1453. if (err < 0)
  1454. goto error1;
  1455. snd_card_set_dev(card, &pci->dev);
  1456. *ratc = atc;
  1457. return 0;
  1458. error1:
  1459. ct_atc_destroy(atc);
  1460. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1461. return err;
  1462. }