fork.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/seccomp.h>
  36. #include <linux/swap.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/futex.h>
  40. #include <linux/compat.h>
  41. #include <linux/kthread.h>
  42. #include <linux/task_io_accounting_ops.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/ptrace.h>
  45. #include <linux/mount.h>
  46. #include <linux/audit.h>
  47. #include <linux/memcontrol.h>
  48. #include <linux/ftrace.h>
  49. #include <linux/proc_fs.h>
  50. #include <linux/profile.h>
  51. #include <linux/rmap.h>
  52. #include <linux/ksm.h>
  53. #include <linux/acct.h>
  54. #include <linux/tsacct_kern.h>
  55. #include <linux/cn_proc.h>
  56. #include <linux/freezer.h>
  57. #include <linux/delayacct.h>
  58. #include <linux/taskstats_kern.h>
  59. #include <linux/random.h>
  60. #include <linux/tty.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/fs_struct.h>
  63. #include <linux/magic.h>
  64. #include <linux/perf_event.h>
  65. #include <linux/posix-timers.h>
  66. #include <linux/user-return-notifier.h>
  67. #include <linux/oom.h>
  68. #include <linux/khugepaged.h>
  69. #include <linux/signalfd.h>
  70. #include <linux/compiler.h>
  71. #include <asm/pgtable.h>
  72. #include <asm/pgalloc.h>
  73. #include <asm/uaccess.h>
  74. #include <asm/mmu_context.h>
  75. #include <asm/cacheflush.h>
  76. #include <asm/tlbflush.h>
  77. #include <trace/events/sched.h>
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/task.h>
  80. /*
  81. * Protected counters by write_lock_irq(&tasklist_lock)
  82. */
  83. unsigned long total_forks; /* Handle normal Linux uptimes. */
  84. int nr_threads; /* The idle threads do not count.. */
  85. int max_threads; /* tunable limit on nr_threads */
  86. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  87. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  88. #ifdef CONFIG_PROVE_RCU
  89. int lockdep_tasklist_lock_is_held(void)
  90. {
  91. return lockdep_is_held(&tasklist_lock);
  92. }
  93. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  94. #endif /* #ifdef CONFIG_PROVE_RCU */
  95. int nr_processes(void)
  96. {
  97. int cpu;
  98. int total = 0;
  99. for_each_possible_cpu(cpu)
  100. total += per_cpu(process_counts, cpu);
  101. return total;
  102. }
  103. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  104. # define alloc_task_struct_node(node) \
  105. kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
  106. # define free_task_struct(tsk) \
  107. kmem_cache_free(task_struct_cachep, (tsk))
  108. static struct kmem_cache *task_struct_cachep;
  109. #endif
  110. #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
  111. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  112. int node)
  113. {
  114. #ifdef CONFIG_DEBUG_STACK_USAGE
  115. gfp_t mask = GFP_KERNEL | __GFP_ZERO;
  116. #else
  117. gfp_t mask = GFP_KERNEL;
  118. #endif
  119. struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
  120. return page ? page_address(page) : NULL;
  121. }
  122. static inline void free_thread_info(struct thread_info *ti)
  123. {
  124. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  125. }
  126. #endif
  127. /* SLAB cache for signal_struct structures (tsk->signal) */
  128. static struct kmem_cache *signal_cachep;
  129. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  130. struct kmem_cache *sighand_cachep;
  131. /* SLAB cache for files_struct structures (tsk->files) */
  132. struct kmem_cache *files_cachep;
  133. /* SLAB cache for fs_struct structures (tsk->fs) */
  134. struct kmem_cache *fs_cachep;
  135. /* SLAB cache for vm_area_struct structures */
  136. struct kmem_cache *vm_area_cachep;
  137. /* SLAB cache for mm_struct structures (tsk->mm) */
  138. static struct kmem_cache *mm_cachep;
  139. /* Notifier list called when a task struct is freed */
  140. static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
  141. static void account_kernel_stack(struct thread_info *ti, int account)
  142. {
  143. struct zone *zone = page_zone(virt_to_page(ti));
  144. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  145. }
  146. void free_task(struct task_struct *tsk)
  147. {
  148. account_kernel_stack(tsk->stack, -1);
  149. free_thread_info(tsk->stack);
  150. rt_mutex_debug_task_free(tsk);
  151. ftrace_graph_exit_task(tsk);
  152. put_seccomp_filter(tsk);
  153. free_task_struct(tsk);
  154. }
  155. EXPORT_SYMBOL(free_task);
  156. static inline void free_signal_struct(struct signal_struct *sig)
  157. {
  158. taskstats_tgid_free(sig);
  159. sched_autogroup_exit(sig);
  160. kmem_cache_free(signal_cachep, sig);
  161. }
  162. static inline void put_signal_struct(struct signal_struct *sig)
  163. {
  164. if (atomic_dec_and_test(&sig->sigcnt))
  165. free_signal_struct(sig);
  166. }
  167. int task_free_register(struct notifier_block *n)
  168. {
  169. return atomic_notifier_chain_register(&task_free_notifier, n);
  170. }
  171. EXPORT_SYMBOL(task_free_register);
  172. int task_free_unregister(struct notifier_block *n)
  173. {
  174. return atomic_notifier_chain_unregister(&task_free_notifier, n);
  175. }
  176. EXPORT_SYMBOL(task_free_unregister);
  177. void __put_task_struct(struct task_struct *tsk)
  178. {
  179. WARN_ON(!tsk->exit_state);
  180. WARN_ON(atomic_read(&tsk->usage));
  181. WARN_ON(tsk == current);
  182. security_task_free(tsk);
  183. exit_creds(tsk);
  184. delayacct_tsk_free(tsk);
  185. put_signal_struct(tsk->signal);
  186. atomic_notifier_call_chain(&task_free_notifier, 0, tsk);
  187. if (!profile_handoff_task(tsk))
  188. free_task(tsk);
  189. }
  190. EXPORT_SYMBOL_GPL(__put_task_struct);
  191. /*
  192. * macro override instead of weak attribute alias, to workaround
  193. * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
  194. */
  195. #ifndef arch_task_cache_init
  196. #define arch_task_cache_init()
  197. #endif
  198. void __init fork_init(unsigned long mempages)
  199. {
  200. #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  201. #ifndef ARCH_MIN_TASKALIGN
  202. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  203. #endif
  204. /* create a slab on which task_structs can be allocated */
  205. task_struct_cachep =
  206. kmem_cache_create("task_struct", sizeof(struct task_struct),
  207. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  208. #endif
  209. /* do the arch specific task caches init */
  210. arch_task_cache_init();
  211. /*
  212. * The default maximum number of threads is set to a safe
  213. * value: the thread structures can take up at most half
  214. * of memory.
  215. */
  216. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  217. /*
  218. * we need to allow at least 20 threads to boot a system
  219. */
  220. if (max_threads < 20)
  221. max_threads = 20;
  222. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  223. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  224. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  225. init_task.signal->rlim[RLIMIT_NPROC];
  226. }
  227. int __weak arch_dup_task_struct(struct task_struct *dst,
  228. struct task_struct *src)
  229. {
  230. *dst = *src;
  231. return 0;
  232. }
  233. static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
  234. {
  235. struct task_struct *tsk;
  236. struct thread_info *ti;
  237. unsigned long *stackend;
  238. int err;
  239. if (node == NUMA_NO_NODE)
  240. node = tsk_fork_get_node(orig);
  241. prepare_to_copy(orig);
  242. tsk = alloc_task_struct_node(node);
  243. if (!tsk)
  244. return NULL;
  245. ti = alloc_thread_info_node(tsk, node);
  246. if (!ti) {
  247. free_task_struct(tsk);
  248. return NULL;
  249. }
  250. err = arch_dup_task_struct(tsk, orig);
  251. if (err)
  252. goto out;
  253. tsk->flags &= ~PF_SU;
  254. tsk->stack = ti;
  255. #ifdef CONFIG_SECCOMP
  256. /*
  257. * We must handle setting up seccomp filters once we're under
  258. * the sighand lock in case orig has changed between now and
  259. * then. Until then, filter must be NULL to avoid messing up
  260. * the usage counts on the error path calling free_task.
  261. */
  262. tsk->seccomp.filter = NULL;
  263. #endif
  264. setup_thread_stack(tsk, orig);
  265. clear_user_return_notifier(tsk);
  266. clear_tsk_need_resched(tsk);
  267. stackend = end_of_stack(tsk);
  268. *stackend = STACK_END_MAGIC; /* for overflow detection */
  269. #ifdef CONFIG_CC_STACKPROTECTOR
  270. tsk->stack_canary = get_random_int();
  271. #endif
  272. /*
  273. * One for us, one for whoever does the "release_task()" (usually
  274. * parent)
  275. */
  276. atomic_set(&tsk->usage, 2);
  277. #ifdef CONFIG_BLK_DEV_IO_TRACE
  278. tsk->btrace_seq = 0;
  279. #endif
  280. tsk->splice_pipe = NULL;
  281. account_kernel_stack(ti, 1);
  282. return tsk;
  283. out:
  284. free_thread_info(ti);
  285. free_task_struct(tsk);
  286. return NULL;
  287. }
  288. #ifdef CONFIG_MMU
  289. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  290. {
  291. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  292. struct rb_node **rb_link, *rb_parent;
  293. int retval;
  294. unsigned long charge;
  295. down_write(&oldmm->mmap_sem);
  296. flush_cache_dup_mm(oldmm);
  297. /*
  298. * Not linked in yet - no deadlock potential:
  299. */
  300. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  301. /* No ordering required: file already has been exposed. */
  302. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  303. mm->locked_vm = 0;
  304. mm->mmap = NULL;
  305. mm->mmap_cache = NULL;
  306. mm->free_area_cache = oldmm->mmap_base;
  307. mm->cached_hole_size = ~0UL;
  308. mm->map_count = 0;
  309. cpumask_clear(mm_cpumask(mm));
  310. mm->mm_rb = RB_ROOT;
  311. rb_link = &mm->mm_rb.rb_node;
  312. rb_parent = NULL;
  313. pprev = &mm->mmap;
  314. retval = ksm_fork(mm, oldmm);
  315. if (retval)
  316. goto out;
  317. retval = khugepaged_fork(mm, oldmm);
  318. if (retval)
  319. goto out;
  320. prev = NULL;
  321. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  322. struct file *file;
  323. if (mpnt->vm_flags & VM_DONTCOPY) {
  324. long pages = vma_pages(mpnt);
  325. mm->total_vm -= pages;
  326. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  327. -pages);
  328. continue;
  329. }
  330. charge = 0;
  331. if (mpnt->vm_flags & VM_ACCOUNT) {
  332. unsigned long len;
  333. len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  334. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  335. goto fail_nomem;
  336. charge = len;
  337. }
  338. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  339. if (!tmp)
  340. goto fail_nomem;
  341. *tmp = *mpnt;
  342. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  343. retval = vma_dup_policy(mpnt, tmp);
  344. if (retval)
  345. goto fail_nomem_policy;
  346. tmp->vm_mm = mm;
  347. if (anon_vma_fork(tmp, mpnt))
  348. goto fail_nomem_anon_vma_fork;
  349. tmp->vm_flags &= ~VM_LOCKED;
  350. tmp->vm_next = tmp->vm_prev = NULL;
  351. file = tmp->vm_file;
  352. if (file) {
  353. struct inode *inode = file->f_path.dentry->d_inode;
  354. struct address_space *mapping = file->f_mapping;
  355. get_file(file);
  356. if (tmp->vm_flags & VM_DENYWRITE)
  357. atomic_dec(&inode->i_writecount);
  358. mutex_lock(&mapping->i_mmap_mutex);
  359. if (tmp->vm_flags & VM_SHARED)
  360. atomic_inc(&mapping->i_mmap_writable);
  361. flush_dcache_mmap_lock(mapping);
  362. /* insert tmp into the share list, just after mpnt */
  363. vma_prio_tree_add(tmp, mpnt);
  364. flush_dcache_mmap_unlock(mapping);
  365. mutex_unlock(&mapping->i_mmap_mutex);
  366. }
  367. /*
  368. * Clear hugetlb-related page reserves for children. This only
  369. * affects MAP_PRIVATE mappings. Faults generated by the child
  370. * are not guaranteed to succeed, even if read-only
  371. */
  372. if (is_vm_hugetlb_page(tmp))
  373. reset_vma_resv_huge_pages(tmp);
  374. /*
  375. * Link in the new vma and copy the page table entries.
  376. */
  377. *pprev = tmp;
  378. pprev = &tmp->vm_next;
  379. tmp->vm_prev = prev;
  380. prev = tmp;
  381. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  382. rb_link = &tmp->vm_rb.rb_right;
  383. rb_parent = &tmp->vm_rb;
  384. mm->map_count++;
  385. retval = copy_page_range(mm, oldmm, mpnt);
  386. if (tmp->vm_ops && tmp->vm_ops->open)
  387. tmp->vm_ops->open(tmp);
  388. if (retval)
  389. goto out;
  390. }
  391. /* a new mm has just been created */
  392. arch_dup_mmap(oldmm, mm);
  393. retval = 0;
  394. out:
  395. up_write(&mm->mmap_sem);
  396. flush_tlb_mm(oldmm);
  397. up_write(&oldmm->mmap_sem);
  398. return retval;
  399. fail_nomem_anon_vma_fork:
  400. mpol_put(vma_policy(tmp));
  401. fail_nomem_policy:
  402. kmem_cache_free(vm_area_cachep, tmp);
  403. fail_nomem:
  404. retval = -ENOMEM;
  405. vm_unacct_memory(charge);
  406. goto out;
  407. }
  408. static inline int mm_alloc_pgd(struct mm_struct *mm)
  409. {
  410. mm->pgd = pgd_alloc(mm);
  411. if (unlikely(!mm->pgd))
  412. return -ENOMEM;
  413. return 0;
  414. }
  415. static inline void mm_free_pgd(struct mm_struct *mm)
  416. {
  417. pgd_free(mm, mm->pgd);
  418. }
  419. #else
  420. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  421. {
  422. down_write(&oldmm->mmap_sem);
  423. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  424. up_write(&oldmm->mmap_sem);
  425. return 0;
  426. }
  427. #define mm_alloc_pgd(mm) (0)
  428. #define mm_free_pgd(mm)
  429. #endif /* CONFIG_MMU */
  430. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  431. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  432. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  433. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  434. static int __init coredump_filter_setup(char *s)
  435. {
  436. default_dump_filter =
  437. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  438. MMF_DUMP_FILTER_MASK;
  439. return 1;
  440. }
  441. __setup("coredump_filter=", coredump_filter_setup);
  442. #include <linux/init_task.h>
  443. static void mm_init_aio(struct mm_struct *mm)
  444. {
  445. #ifdef CONFIG_AIO
  446. spin_lock_init(&mm->ioctx_lock);
  447. INIT_HLIST_HEAD(&mm->ioctx_list);
  448. #endif
  449. }
  450. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  451. {
  452. atomic_set(&mm->mm_users, 1);
  453. atomic_set(&mm->mm_count, 1);
  454. init_rwsem(&mm->mmap_sem);
  455. INIT_LIST_HEAD(&mm->mmlist);
  456. mm->flags = (current->mm) ?
  457. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  458. mm->core_state = NULL;
  459. atomic_long_set(&mm->nr_ptes, 0);
  460. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  461. spin_lock_init(&mm->page_table_lock);
  462. mm->free_area_cache = TASK_UNMAPPED_BASE;
  463. mm->cached_hole_size = ~0UL;
  464. mm_init_aio(mm);
  465. mm_init_owner(mm, p);
  466. if (likely(!mm_alloc_pgd(mm))) {
  467. mm->def_flags = 0;
  468. mmu_notifier_mm_init(mm);
  469. return mm;
  470. }
  471. free_mm(mm);
  472. return NULL;
  473. }
  474. static void check_mm(struct mm_struct *mm)
  475. {
  476. int i;
  477. for (i = 0; i < NR_MM_COUNTERS; i++) {
  478. long x = atomic_long_read(&mm->rss_stat.count[i]);
  479. if (unlikely(x))
  480. printk(KERN_ALERT "BUG: Bad rss-counter state "
  481. "mm:%p idx:%d val:%ld\n", mm, i, x);
  482. }
  483. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  484. VM_BUG_ON(mm->pmd_huge_pte);
  485. #endif
  486. }
  487. /*
  488. * Allocate and initialize an mm_struct.
  489. */
  490. struct mm_struct *mm_alloc(void)
  491. {
  492. struct mm_struct *mm;
  493. mm = allocate_mm();
  494. if (!mm)
  495. return NULL;
  496. memset(mm, 0, sizeof(*mm));
  497. mm_init_cpumask(mm);
  498. return mm_init(mm, current);
  499. }
  500. /*
  501. * Called when the last reference to the mm
  502. * is dropped: either by a lazy thread or by
  503. * mmput. Free the page directory and the mm.
  504. */
  505. void __mmdrop(struct mm_struct *mm)
  506. {
  507. BUG_ON(mm == &init_mm);
  508. mm_free_pgd(mm);
  509. destroy_context(mm);
  510. mmu_notifier_mm_destroy(mm);
  511. check_mm(mm);
  512. free_mm(mm);
  513. }
  514. EXPORT_SYMBOL_GPL(__mmdrop);
  515. static inline void __mmput(struct mm_struct *mm)
  516. {
  517. VM_BUG_ON(atomic_read(&mm->mm_users));
  518. exit_aio(mm);
  519. ksm_exit(mm);
  520. khugepaged_exit(mm); /* must run before exit_mmap */
  521. exit_mmap(mm);
  522. set_mm_exe_file(mm, NULL);
  523. if (!list_empty(&mm->mmlist)) {
  524. spin_lock(&mmlist_lock);
  525. list_del(&mm->mmlist);
  526. spin_unlock(&mmlist_lock);
  527. }
  528. if (mm->binfmt)
  529. module_put(mm->binfmt->module);
  530. mmdrop(mm);
  531. }
  532. /*
  533. * Decrement the use count and release all resources for an mm.
  534. */
  535. int mmput(struct mm_struct *mm)
  536. {
  537. int mm_freed = 0;
  538. might_sleep();
  539. if (atomic_dec_and_test(&mm->mm_users)) {
  540. mm_freed = 1;
  541. __mmput(mm);
  542. }
  543. return mm_freed;
  544. }
  545. EXPORT_SYMBOL_GPL(mmput);
  546. static void mmput_async_fn(struct work_struct *work)
  547. {
  548. struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
  549. __mmput(mm);
  550. }
  551. void mmput_async(struct mm_struct *mm)
  552. {
  553. if (atomic_dec_and_test(&mm->mm_users)) {
  554. INIT_WORK(&mm->async_put_work, mmput_async_fn);
  555. schedule_work(&mm->async_put_work);
  556. }
  557. }
  558. /*
  559. * We added or removed a vma mapping the executable. The vmas are only mapped
  560. * during exec and are not mapped with the mmap system call.
  561. * Callers must hold down_write() on the mm's mmap_sem for these
  562. */
  563. void added_exe_file_vma(struct mm_struct *mm)
  564. {
  565. mm->num_exe_file_vmas++;
  566. }
  567. void removed_exe_file_vma(struct mm_struct *mm)
  568. {
  569. mm->num_exe_file_vmas--;
  570. if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
  571. fput(mm->exe_file);
  572. mm->exe_file = NULL;
  573. }
  574. }
  575. /**
  576. * set_mm_exe_file - change a reference to the mm's executable file
  577. *
  578. * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
  579. *
  580. * Main users are mmput(), sys_execve() and sys_prctl(PR_SET_MM_MAP/EXE_FILE).
  581. * Callers prevent concurrent invocations: in mmput() nobody alive left,
  582. * in execve task is single-threaded, prctl holds mmap_sem exclusively.
  583. */
  584. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  585. {
  586. struct file *old_exe_file = rcu_dereference_protected(mm->exe_file,
  587. !atomic_read(&mm->mm_users) || current->in_execve ||
  588. lockdep_is_held(&mm->mmap_sem));
  589. if (new_exe_file)
  590. get_file(new_exe_file);
  591. rcu_assign_pointer(mm->exe_file, new_exe_file);
  592. if (old_exe_file)
  593. fput(old_exe_file);
  594. mm->num_exe_file_vmas = 0;
  595. }
  596. /**
  597. * get_mm_exe_file - acquire a reference to the mm's executable file
  598. *
  599. * Returns %NULL if mm has no associated executable file.
  600. * User must release file via fput().
  601. */
  602. struct file *get_mm_exe_file(struct mm_struct *mm)
  603. {
  604. struct file *exe_file;
  605. rcu_read_lock();
  606. exe_file = rcu_dereference(mm->exe_file);
  607. if (exe_file && !get_file_rcu(exe_file))
  608. exe_file = NULL;
  609. rcu_read_unlock();
  610. return exe_file;
  611. }
  612. /**
  613. * get_task_mm - acquire a reference to the task's mm
  614. *
  615. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  616. * this kernel workthread has transiently adopted a user mm with use_mm,
  617. * to do its AIO) is not set and if so returns a reference to it, after
  618. * bumping up the use count. User must release the mm via mmput()
  619. * after use. Typically used by /proc and ptrace.
  620. */
  621. struct mm_struct *get_task_mm(struct task_struct *task)
  622. {
  623. struct mm_struct *mm;
  624. task_lock(task);
  625. mm = task->mm;
  626. if (mm) {
  627. if (task->flags & PF_KTHREAD)
  628. mm = NULL;
  629. else
  630. atomic_inc(&mm->mm_users);
  631. }
  632. task_unlock(task);
  633. return mm;
  634. }
  635. EXPORT_SYMBOL_GPL(get_task_mm);
  636. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  637. {
  638. struct mm_struct *mm;
  639. int err;
  640. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  641. if (err)
  642. return ERR_PTR(err);
  643. mm = get_task_mm(task);
  644. if (mm && mm != current->mm &&
  645. !ptrace_may_access(task, mode)) {
  646. mmput(mm);
  647. mm = ERR_PTR(-EACCES);
  648. }
  649. mutex_unlock(&task->signal->cred_guard_mutex);
  650. return mm;
  651. }
  652. static void complete_vfork_done(struct task_struct *tsk)
  653. {
  654. struct completion *vfork;
  655. task_lock(tsk);
  656. vfork = tsk->vfork_done;
  657. if (likely(vfork)) {
  658. tsk->vfork_done = NULL;
  659. complete(vfork);
  660. }
  661. task_unlock(tsk);
  662. }
  663. static int wait_for_vfork_done(struct task_struct *child,
  664. struct completion *vfork)
  665. {
  666. int killed;
  667. freezer_do_not_count();
  668. killed = wait_for_completion_killable(vfork);
  669. freezer_count();
  670. if (killed) {
  671. task_lock(child);
  672. child->vfork_done = NULL;
  673. task_unlock(child);
  674. }
  675. put_task_struct(child);
  676. return killed;
  677. }
  678. /* Please note the differences between mmput and mm_release.
  679. * mmput is called whenever we stop holding onto a mm_struct,
  680. * error success whatever.
  681. *
  682. * mm_release is called after a mm_struct has been removed
  683. * from the current process.
  684. *
  685. * This difference is important for error handling, when we
  686. * only half set up a mm_struct for a new process and need to restore
  687. * the old one. Because we mmput the new mm_struct before
  688. * restoring the old one. . .
  689. * Eric Biederman 10 January 1998
  690. */
  691. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  692. {
  693. /* Get rid of any futexes when releasing the mm */
  694. #ifdef CONFIG_FUTEX
  695. if (unlikely(tsk->robust_list)) {
  696. exit_robust_list(tsk);
  697. tsk->robust_list = NULL;
  698. }
  699. #ifdef CONFIG_COMPAT
  700. if (unlikely(tsk->compat_robust_list)) {
  701. compat_exit_robust_list(tsk);
  702. tsk->compat_robust_list = NULL;
  703. }
  704. #endif
  705. if (unlikely(!list_empty(&tsk->pi_state_list)))
  706. exit_pi_state_list(tsk);
  707. #endif
  708. /* Get rid of any cached register state */
  709. deactivate_mm(tsk, mm);
  710. /*
  711. * If we're exiting normally, clear a user-space tid field if
  712. * requested. We leave this alone when dying by signal, to leave
  713. * the value intact in a core dump, and to save the unnecessary
  714. * trouble, say, a killed vfork parent shouldn't touch this mm.
  715. * Userland only wants this done for a sys_exit.
  716. */
  717. if (tsk->clear_child_tid) {
  718. if (!(tsk->flags & PF_SIGNALED) &&
  719. atomic_read(&mm->mm_users) > 1) {
  720. /*
  721. * We don't check the error code - if userspace has
  722. * not set up a proper pointer then tough luck.
  723. */
  724. put_user(0, tsk->clear_child_tid);
  725. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  726. 1, NULL, NULL, 0);
  727. }
  728. tsk->clear_child_tid = NULL;
  729. }
  730. /*
  731. * All done, finally we can wake up parent and return this mm to him.
  732. * Also kthread_stop() uses this completion for synchronization.
  733. */
  734. if (tsk->vfork_done)
  735. complete_vfork_done(tsk);
  736. }
  737. /*
  738. * Allocate a new mm structure and copy contents from the
  739. * mm structure of the passed in task structure.
  740. */
  741. struct mm_struct *dup_mm(struct task_struct *tsk)
  742. {
  743. struct mm_struct *mm, *oldmm = current->mm;
  744. int err;
  745. if (!oldmm)
  746. return NULL;
  747. mm = allocate_mm();
  748. if (!mm)
  749. goto fail_nomem;
  750. memcpy(mm, oldmm, sizeof(*mm));
  751. mm_init_cpumask(mm);
  752. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  753. mm->pmd_huge_pte = NULL;
  754. #endif
  755. if (!mm_init(mm, tsk))
  756. goto fail_nomem;
  757. if (init_new_context(tsk, mm))
  758. goto fail_nocontext;
  759. err = dup_mmap(mm, oldmm);
  760. if (err)
  761. goto free_pt;
  762. mm->hiwater_rss = get_mm_rss(mm);
  763. mm->hiwater_vm = mm->total_vm;
  764. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  765. goto free_pt;
  766. return mm;
  767. free_pt:
  768. /* don't put binfmt in mmput, we haven't got module yet */
  769. mm->binfmt = NULL;
  770. mmput(mm);
  771. fail_nomem:
  772. return NULL;
  773. fail_nocontext:
  774. /*
  775. * If init_new_context() failed, we cannot use mmput() to free the mm
  776. * because it calls destroy_context()
  777. */
  778. mm_free_pgd(mm);
  779. free_mm(mm);
  780. return NULL;
  781. }
  782. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  783. {
  784. struct mm_struct *mm, *oldmm;
  785. int retval;
  786. tsk->min_flt = tsk->maj_flt = 0;
  787. tsk->nvcsw = tsk->nivcsw = 0;
  788. #ifdef CONFIG_DETECT_HUNG_TASK
  789. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  790. #endif
  791. tsk->mm = NULL;
  792. tsk->active_mm = NULL;
  793. /*
  794. * Are we cloning a kernel thread?
  795. *
  796. * We need to steal a active VM for that..
  797. */
  798. oldmm = current->mm;
  799. if (!oldmm)
  800. return 0;
  801. if (clone_flags & CLONE_VM) {
  802. atomic_inc(&oldmm->mm_users);
  803. mm = oldmm;
  804. goto good_mm;
  805. }
  806. retval = -ENOMEM;
  807. mm = dup_mm(tsk);
  808. if (!mm)
  809. goto fail_nomem;
  810. good_mm:
  811. tsk->mm = mm;
  812. tsk->active_mm = mm;
  813. return 0;
  814. fail_nomem:
  815. return retval;
  816. }
  817. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  818. {
  819. struct fs_struct *fs = current->fs;
  820. if (clone_flags & CLONE_FS) {
  821. /* tsk->fs is already what we want */
  822. spin_lock(&fs->lock);
  823. if (fs->in_exec) {
  824. spin_unlock(&fs->lock);
  825. return -EAGAIN;
  826. }
  827. fs->users++;
  828. spin_unlock(&fs->lock);
  829. return 0;
  830. }
  831. tsk->fs = copy_fs_struct(fs);
  832. if (!tsk->fs)
  833. return -ENOMEM;
  834. return 0;
  835. }
  836. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  837. {
  838. struct files_struct *oldf, *newf;
  839. int error = 0;
  840. /*
  841. * A background process may not have any files ...
  842. */
  843. oldf = current->files;
  844. if (!oldf)
  845. goto out;
  846. if (clone_flags & CLONE_FILES) {
  847. atomic_inc(&oldf->count);
  848. goto out;
  849. }
  850. newf = dup_fd(oldf, &error);
  851. if (!newf)
  852. goto out;
  853. tsk->files = newf;
  854. error = 0;
  855. out:
  856. return error;
  857. }
  858. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  859. {
  860. #ifdef CONFIG_BLOCK
  861. struct io_context *ioc = current->io_context;
  862. struct io_context *new_ioc;
  863. if (!ioc)
  864. return 0;
  865. /*
  866. * Share io context with parent, if CLONE_IO is set
  867. */
  868. if (clone_flags & CLONE_IO) {
  869. ioc_task_link(ioc);
  870. tsk->io_context = ioc;
  871. } else if (ioprio_valid(ioc->ioprio)) {
  872. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  873. if (unlikely(!new_ioc))
  874. return -ENOMEM;
  875. new_ioc->ioprio = ioc->ioprio;
  876. put_io_context(new_ioc);
  877. }
  878. #endif
  879. return 0;
  880. }
  881. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  882. {
  883. struct sighand_struct *sig;
  884. if (clone_flags & CLONE_SIGHAND) {
  885. atomic_inc(&current->sighand->count);
  886. return 0;
  887. }
  888. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  889. rcu_assign_pointer(tsk->sighand, sig);
  890. if (!sig)
  891. return -ENOMEM;
  892. atomic_set(&sig->count, 1);
  893. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  894. return 0;
  895. }
  896. void __cleanup_sighand(struct sighand_struct *sighand)
  897. {
  898. if (atomic_dec_and_test(&sighand->count)) {
  899. signalfd_cleanup(sighand);
  900. kmem_cache_free(sighand_cachep, sighand);
  901. }
  902. }
  903. /*
  904. * Initialize POSIX timer handling for a thread group.
  905. */
  906. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  907. {
  908. unsigned long cpu_limit;
  909. /* Thread group counters. */
  910. thread_group_cputime_init(sig);
  911. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  912. if (cpu_limit != RLIM_INFINITY) {
  913. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  914. sig->cputimer.running = 1;
  915. }
  916. /* The timer lists. */
  917. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  918. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  919. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  920. }
  921. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  922. {
  923. struct signal_struct *sig;
  924. if (clone_flags & CLONE_THREAD)
  925. return 0;
  926. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  927. tsk->signal = sig;
  928. if (!sig)
  929. return -ENOMEM;
  930. sig->nr_threads = 1;
  931. atomic_set(&sig->live, 1);
  932. atomic_set(&sig->sigcnt, 1);
  933. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  934. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  935. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  936. init_waitqueue_head(&sig->wait_chldexit);
  937. if (clone_flags & CLONE_NEWPID)
  938. sig->flags |= SIGNAL_UNKILLABLE;
  939. sig->curr_target = tsk;
  940. init_sigpending(&sig->shared_pending);
  941. INIT_LIST_HEAD(&sig->posix_timers);
  942. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  943. sig->real_timer.function = it_real_fn;
  944. task_lock(current->group_leader);
  945. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  946. task_unlock(current->group_leader);
  947. posix_cpu_timers_init_group(sig);
  948. tty_audit_fork(sig);
  949. sched_autogroup_fork(sig);
  950. #ifdef CONFIG_CGROUPS
  951. init_rwsem(&sig->group_rwsem);
  952. #endif
  953. sig->oom_score_adj = current->signal->oom_score_adj;
  954. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  955. #ifdef CONFIG_ANDROID_LMK_ADJ_RBTREE
  956. RB_CLEAR_NODE(&sig->adj_node);
  957. #endif
  958. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  959. current->signal->is_child_subreaper;
  960. mutex_init(&sig->cred_guard_mutex);
  961. return 0;
  962. }
  963. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  964. {
  965. unsigned long new_flags = p->flags;
  966. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  967. new_flags |= PF_FORKNOEXEC;
  968. p->flags = new_flags;
  969. }
  970. static void copy_seccomp(struct task_struct *p)
  971. {
  972. #ifdef CONFIG_SECCOMP
  973. /*
  974. * Must be called with sighand->lock held, which is common to
  975. * all threads in the group. Holding cred_guard_mutex is not
  976. * needed because this new task is not yet running and cannot
  977. * be racing exec.
  978. */
  979. assert_spin_locked(&current->sighand->siglock);
  980. /* Ref-count the new filter user, and assign it. */
  981. get_seccomp_filter(current);
  982. p->seccomp = current->seccomp;
  983. /*
  984. * Explicitly enable no_new_privs here in case it got set
  985. * between the task_struct being duplicated and holding the
  986. * sighand lock. The seccomp state and nnp must be in sync.
  987. */
  988. if (task_no_new_privs(current))
  989. task_set_no_new_privs(p);
  990. /*
  991. * If the parent gained a seccomp mode after copying thread
  992. * flags and between before we held the sighand lock, we have
  993. * to manually enable the seccomp thread flag here.
  994. */
  995. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  996. set_tsk_thread_flag(p, TIF_SECCOMP);
  997. #endif
  998. }
  999. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  1000. {
  1001. current->clear_child_tid = tidptr;
  1002. return task_pid_vnr(current);
  1003. }
  1004. static void rt_mutex_init_task(struct task_struct *p)
  1005. {
  1006. raw_spin_lock_init(&p->pi_lock);
  1007. #ifdef CONFIG_RT_MUTEXES
  1008. p->pi_waiters = RB_ROOT;
  1009. p->pi_waiters_leftmost = NULL;
  1010. p->pi_blocked_on = NULL;
  1011. #endif
  1012. }
  1013. #ifdef CONFIG_MM_OWNER
  1014. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  1015. {
  1016. mm->owner = p;
  1017. }
  1018. #endif /* CONFIG_MM_OWNER */
  1019. /*
  1020. * Initialize POSIX timer handling for a single task.
  1021. */
  1022. static void posix_cpu_timers_init(struct task_struct *tsk)
  1023. {
  1024. tsk->cputime_expires.prof_exp = 0;
  1025. tsk->cputime_expires.virt_exp = 0;
  1026. tsk->cputime_expires.sched_exp = 0;
  1027. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  1028. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  1029. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  1030. }
  1031. /*
  1032. * This creates a new process as a copy of the old one,
  1033. * but does not actually start it yet.
  1034. *
  1035. * It copies the registers, and all the appropriate
  1036. * parts of the process environment (as per the clone
  1037. * flags). The actual kick-off is left to the caller.
  1038. */
  1039. static struct task_struct *copy_process(unsigned long clone_flags,
  1040. unsigned long stack_start,
  1041. struct pt_regs *regs,
  1042. unsigned long stack_size,
  1043. int __user *child_tidptr,
  1044. struct pid *pid,
  1045. int trace,
  1046. int node)
  1047. {
  1048. int retval;
  1049. struct task_struct *p;
  1050. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1051. return ERR_PTR(-EINVAL);
  1052. /*
  1053. * Thread groups must share signals as well, and detached threads
  1054. * can only be started up within the thread group.
  1055. */
  1056. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1057. return ERR_PTR(-EINVAL);
  1058. /*
  1059. * Shared signal handlers imply shared VM. By way of the above,
  1060. * thread groups also imply shared VM. Blocking this case allows
  1061. * for various simplifications in other code.
  1062. */
  1063. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1064. return ERR_PTR(-EINVAL);
  1065. /*
  1066. * Siblings of global init remain as zombies on exit since they are
  1067. * not reaped by their parent (swapper). To solve this and to avoid
  1068. * multi-rooted process trees, prevent global and container-inits
  1069. * from creating siblings.
  1070. */
  1071. if ((clone_flags & CLONE_PARENT) &&
  1072. current->signal->flags & SIGNAL_UNKILLABLE)
  1073. return ERR_PTR(-EINVAL);
  1074. retval = security_task_create(clone_flags);
  1075. if (retval)
  1076. goto fork_out;
  1077. retval = -ENOMEM;
  1078. p = dup_task_struct(current, node);
  1079. if (!p)
  1080. goto fork_out;
  1081. ftrace_graph_init_task(p);
  1082. rt_mutex_init_task(p);
  1083. #ifdef CONFIG_PROVE_LOCKING
  1084. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1085. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1086. #endif
  1087. retval = -EAGAIN;
  1088. if (atomic_read(&p->real_cred->user->processes) >=
  1089. task_rlimit(p, RLIMIT_NPROC)) {
  1090. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  1091. p->real_cred->user != INIT_USER)
  1092. goto bad_fork_free;
  1093. }
  1094. current->flags &= ~PF_NPROC_EXCEEDED;
  1095. retval = copy_creds(p, clone_flags);
  1096. if (retval < 0)
  1097. goto bad_fork_free;
  1098. /*
  1099. * If multiple threads are within copy_process(), then this check
  1100. * triggers too late. This doesn't hurt, the check is only there
  1101. * to stop root fork bombs.
  1102. */
  1103. retval = -EAGAIN;
  1104. if (nr_threads >= max_threads)
  1105. goto bad_fork_cleanup_count;
  1106. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1107. goto bad_fork_cleanup_count;
  1108. p->did_exec = 0;
  1109. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1110. copy_flags(clone_flags, p);
  1111. INIT_LIST_HEAD(&p->children);
  1112. INIT_LIST_HEAD(&p->sibling);
  1113. rcu_copy_process(p);
  1114. p->vfork_done = NULL;
  1115. spin_lock_init(&p->alloc_lock);
  1116. init_sigpending(&p->pending);
  1117. p->utime = p->stime = p->gtime = 0;
  1118. p->utimescaled = p->stimescaled = 0;
  1119. p->cpu_power = 0;
  1120. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  1121. p->prev_utime = p->prev_stime = 0;
  1122. #endif
  1123. #if defined(SPLIT_RSS_COUNTING)
  1124. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1125. #endif
  1126. p->default_timer_slack_ns = current->timer_slack_ns;
  1127. task_io_accounting_init(&p->ioac);
  1128. acct_clear_integrals(p);
  1129. posix_cpu_timers_init(p);
  1130. do_posix_clock_monotonic_gettime(&p->start_time);
  1131. p->real_start_time = p->start_time;
  1132. monotonic_to_bootbased(&p->real_start_time);
  1133. p->io_context = NULL;
  1134. p->audit_context = NULL;
  1135. if (clone_flags & CLONE_THREAD)
  1136. threadgroup_change_begin(current);
  1137. cgroup_fork(p);
  1138. #ifdef CONFIG_NUMA
  1139. p->mempolicy = mpol_dup(p->mempolicy);
  1140. if (IS_ERR(p->mempolicy)) {
  1141. retval = PTR_ERR(p->mempolicy);
  1142. p->mempolicy = NULL;
  1143. goto bad_fork_cleanup_cgroup;
  1144. }
  1145. mpol_fix_fork_child_flag(p);
  1146. #endif
  1147. #ifdef CONFIG_CPUSETS
  1148. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1149. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1150. seqcount_init(&p->mems_allowed_seq);
  1151. #endif
  1152. #ifdef CONFIG_TRACE_IRQFLAGS
  1153. p->irq_events = 0;
  1154. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1155. p->hardirqs_enabled = 1;
  1156. #else
  1157. p->hardirqs_enabled = 0;
  1158. #endif
  1159. p->hardirq_enable_ip = 0;
  1160. p->hardirq_enable_event = 0;
  1161. p->hardirq_disable_ip = _THIS_IP_;
  1162. p->hardirq_disable_event = 0;
  1163. p->softirqs_enabled = 1;
  1164. p->softirq_enable_ip = _THIS_IP_;
  1165. p->softirq_enable_event = 0;
  1166. p->softirq_disable_ip = 0;
  1167. p->softirq_disable_event = 0;
  1168. p->hardirq_context = 0;
  1169. p->softirq_context = 0;
  1170. #endif
  1171. #ifdef CONFIG_LOCKDEP
  1172. p->lockdep_depth = 0; /* no locks held yet */
  1173. p->curr_chain_key = 0;
  1174. p->lockdep_recursion = 0;
  1175. #endif
  1176. #ifdef CONFIG_DEBUG_MUTEXES
  1177. p->blocked_on = NULL; /* not blocked yet */
  1178. #endif
  1179. #ifdef CONFIG_MEMCG
  1180. p->memcg_batch.do_batch = 0;
  1181. p->memcg_batch.memcg = NULL;
  1182. #endif
  1183. /* Perform scheduler related setup. Assign this task to a CPU. */
  1184. sched_fork(p);
  1185. retval = perf_event_init_task(p);
  1186. if (retval)
  1187. goto bad_fork_cleanup_policy;
  1188. retval = audit_alloc(p);
  1189. if (retval)
  1190. goto bad_fork_cleanup_perf;
  1191. /* copy all the process information */
  1192. retval = copy_semundo(clone_flags, p);
  1193. if (retval)
  1194. goto bad_fork_cleanup_audit;
  1195. retval = copy_files(clone_flags, p);
  1196. if (retval)
  1197. goto bad_fork_cleanup_semundo;
  1198. retval = copy_fs(clone_flags, p);
  1199. if (retval)
  1200. goto bad_fork_cleanup_files;
  1201. retval = copy_sighand(clone_flags, p);
  1202. if (retval)
  1203. goto bad_fork_cleanup_fs;
  1204. retval = copy_signal(clone_flags, p);
  1205. if (retval)
  1206. goto bad_fork_cleanup_sighand;
  1207. retval = copy_mm(clone_flags, p);
  1208. if (retval)
  1209. goto bad_fork_cleanup_signal;
  1210. retval = copy_namespaces(clone_flags, p);
  1211. if (retval)
  1212. goto bad_fork_cleanup_mm;
  1213. retval = copy_io(clone_flags, p);
  1214. if (retval)
  1215. goto bad_fork_cleanup_namespaces;
  1216. retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
  1217. if (retval)
  1218. goto bad_fork_cleanup_io;
  1219. if (pid != &init_struct_pid) {
  1220. retval = -ENOMEM;
  1221. pid = alloc_pid(p->nsproxy->pid_ns);
  1222. if (!pid)
  1223. goto bad_fork_cleanup_io;
  1224. }
  1225. p->pid = pid_nr(pid);
  1226. p->tgid = p->pid;
  1227. if (clone_flags & CLONE_THREAD)
  1228. p->tgid = current->tgid;
  1229. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1230. /*
  1231. * Clear TID on mm_release()?
  1232. */
  1233. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1234. #ifdef CONFIG_BLOCK
  1235. p->plug = NULL;
  1236. #endif
  1237. #ifdef CONFIG_FUTEX
  1238. p->robust_list = NULL;
  1239. #ifdef CONFIG_COMPAT
  1240. p->compat_robust_list = NULL;
  1241. #endif
  1242. INIT_LIST_HEAD(&p->pi_state_list);
  1243. p->pi_state_cache = NULL;
  1244. #endif
  1245. /*
  1246. * sigaltstack should be cleared when sharing the same VM
  1247. */
  1248. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1249. p->sas_ss_sp = p->sas_ss_size = 0;
  1250. /*
  1251. * Syscall tracing and stepping should be turned off in the
  1252. * child regardless of CLONE_PTRACE.
  1253. */
  1254. user_disable_single_step(p);
  1255. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1256. #ifdef TIF_SYSCALL_EMU
  1257. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1258. #endif
  1259. clear_all_latency_tracing(p);
  1260. /* ok, now we should be set up.. */
  1261. if (clone_flags & CLONE_THREAD)
  1262. p->exit_signal = -1;
  1263. else if (clone_flags & CLONE_PARENT)
  1264. p->exit_signal = current->group_leader->exit_signal;
  1265. else
  1266. p->exit_signal = (clone_flags & CSIGNAL);
  1267. p->pdeath_signal = 0;
  1268. p->exit_state = 0;
  1269. p->nr_dirtied = 0;
  1270. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1271. p->dirty_paused_when = 0;
  1272. /*
  1273. * Ok, make it visible to the rest of the system.
  1274. * We dont wake it up yet.
  1275. */
  1276. p->group_leader = p;
  1277. INIT_LIST_HEAD(&p->thread_group);
  1278. /* Need tasklist lock for parent etc handling! */
  1279. write_lock_irq(&tasklist_lock);
  1280. /* CLONE_PARENT re-uses the old parent */
  1281. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1282. p->real_parent = current->real_parent;
  1283. p->parent_exec_id = current->parent_exec_id;
  1284. } else {
  1285. p->real_parent = current;
  1286. p->parent_exec_id = current->self_exec_id;
  1287. }
  1288. spin_lock(&current->sighand->siglock);
  1289. /*
  1290. * Copy seccomp details explicitly here, in case they were changed
  1291. * before holding sighand lock.
  1292. */
  1293. copy_seccomp(p);
  1294. /*
  1295. * Process group and session signals need to be delivered to just the
  1296. * parent before the fork or both the parent and the child after the
  1297. * fork. Restart if a signal comes in before we add the new process to
  1298. * it's process group.
  1299. * A fatal signal pending means that current will exit, so the new
  1300. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1301. */
  1302. recalc_sigpending();
  1303. if (signal_pending(current)) {
  1304. spin_unlock(&current->sighand->siglock);
  1305. write_unlock_irq(&tasklist_lock);
  1306. retval = -ERESTARTNOINTR;
  1307. goto bad_fork_free_pid;
  1308. }
  1309. if (likely(p->pid)) {
  1310. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1311. if (thread_group_leader(p)) {
  1312. if (is_child_reaper(pid))
  1313. p->nsproxy->pid_ns->child_reaper = p;
  1314. p->signal->leader_pid = pid;
  1315. p->signal->tty = tty_kref_get(current->signal->tty);
  1316. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1317. attach_pid(p, PIDTYPE_SID, task_session(current));
  1318. list_add_tail(&p->sibling, &p->real_parent->children);
  1319. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1320. add_2_adj_tree(p);
  1321. __this_cpu_inc(process_counts);
  1322. } else {
  1323. current->signal->nr_threads++;
  1324. atomic_inc(&current->signal->live);
  1325. atomic_inc(&current->signal->sigcnt);
  1326. p->group_leader = current->group_leader;
  1327. list_add_tail_rcu(&p->thread_group,
  1328. &p->group_leader->thread_group);
  1329. list_add_tail_rcu(&p->thread_node,
  1330. &p->signal->thread_head);
  1331. }
  1332. attach_pid(p, PIDTYPE_PID, pid);
  1333. nr_threads++;
  1334. }
  1335. total_forks++;
  1336. spin_unlock(&current->sighand->siglock);
  1337. syscall_tracepoint_update(p);
  1338. write_unlock_irq(&tasklist_lock);
  1339. proc_fork_connector(p);
  1340. cgroup_post_fork(p);
  1341. if (clone_flags & CLONE_THREAD)
  1342. threadgroup_change_end(current);
  1343. perf_event_fork(p);
  1344. trace_task_newtask(p, clone_flags);
  1345. return p;
  1346. bad_fork_free_pid:
  1347. if (pid != &init_struct_pid)
  1348. free_pid(pid);
  1349. bad_fork_cleanup_io:
  1350. if (p->io_context)
  1351. exit_io_context(p);
  1352. bad_fork_cleanup_namespaces:
  1353. if (unlikely(clone_flags & CLONE_NEWPID))
  1354. pid_ns_release_proc(p->nsproxy->pid_ns);
  1355. exit_task_namespaces(p);
  1356. bad_fork_cleanup_mm:
  1357. if (p->mm)
  1358. mmput(p->mm);
  1359. bad_fork_cleanup_signal:
  1360. if (!(clone_flags & CLONE_THREAD))
  1361. free_signal_struct(p->signal);
  1362. bad_fork_cleanup_sighand:
  1363. __cleanup_sighand(p->sighand);
  1364. bad_fork_cleanup_fs:
  1365. exit_fs(p); /* blocking */
  1366. bad_fork_cleanup_files:
  1367. exit_files(p); /* blocking */
  1368. bad_fork_cleanup_semundo:
  1369. exit_sem(p);
  1370. bad_fork_cleanup_audit:
  1371. audit_free(p);
  1372. bad_fork_cleanup_perf:
  1373. perf_event_free_task(p);
  1374. bad_fork_cleanup_policy:
  1375. #ifdef CONFIG_NUMA
  1376. mpol_put(p->mempolicy);
  1377. bad_fork_cleanup_cgroup:
  1378. #endif
  1379. if (clone_flags & CLONE_THREAD)
  1380. threadgroup_change_end(current);
  1381. cgroup_exit(p, 0);
  1382. delayacct_tsk_free(p);
  1383. module_put(task_thread_info(p)->exec_domain->module);
  1384. bad_fork_cleanup_count:
  1385. atomic_dec(&p->cred->user->processes);
  1386. exit_creds(p);
  1387. bad_fork_free:
  1388. free_task(p);
  1389. fork_out:
  1390. return ERR_PTR(retval);
  1391. }
  1392. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1393. {
  1394. memset(regs, 0, sizeof(struct pt_regs));
  1395. return regs;
  1396. }
  1397. static inline void init_idle_pids(struct pid_link *links)
  1398. {
  1399. enum pid_type type;
  1400. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1401. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1402. links[type].pid = &init_struct_pid;
  1403. }
  1404. }
  1405. struct task_struct * __cpuinit fork_idle(int cpu)
  1406. {
  1407. struct task_struct *task;
  1408. struct pt_regs regs;
  1409. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1410. &init_struct_pid, 0,
  1411. cpu_to_node(cpu));
  1412. if (!IS_ERR(task)) {
  1413. init_idle_pids(task->pids);
  1414. init_idle(task, cpu);
  1415. }
  1416. return task;
  1417. }
  1418. /*
  1419. * Ok, this is the main fork-routine.
  1420. *
  1421. * It copies the process, and if successful kick-starts
  1422. * it and waits for it to finish using the VM if required.
  1423. */
  1424. long do_fork(unsigned long clone_flags,
  1425. unsigned long stack_start,
  1426. struct pt_regs *regs,
  1427. unsigned long stack_size,
  1428. int __user *parent_tidptr,
  1429. int __user *child_tidptr)
  1430. {
  1431. struct task_struct *p;
  1432. int trace = 0;
  1433. long nr;
  1434. /*
  1435. * Do some preliminary argument and permissions checking before we
  1436. * actually start allocating stuff
  1437. */
  1438. if (clone_flags & CLONE_NEWUSER) {
  1439. if (clone_flags & CLONE_THREAD)
  1440. return -EINVAL;
  1441. /* hopefully this check will go away when userns support is
  1442. * complete
  1443. */
  1444. if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
  1445. !capable(CAP_SETGID))
  1446. return -EPERM;
  1447. }
  1448. /*
  1449. * Determine whether and which event to report to ptracer. When
  1450. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1451. * requested, no event is reported; otherwise, report if the event
  1452. * for the type of forking is enabled.
  1453. */
  1454. if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
  1455. if (clone_flags & CLONE_VFORK)
  1456. trace = PTRACE_EVENT_VFORK;
  1457. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1458. trace = PTRACE_EVENT_CLONE;
  1459. else
  1460. trace = PTRACE_EVENT_FORK;
  1461. if (likely(!ptrace_event_enabled(current, trace)))
  1462. trace = 0;
  1463. }
  1464. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1465. child_tidptr, NULL, trace, NUMA_NO_NODE);
  1466. /*
  1467. * Do this prior waking up the new thread - the thread pointer
  1468. * might get invalid after that point, if the thread exits quickly.
  1469. */
  1470. if (!IS_ERR(p)) {
  1471. struct completion vfork;
  1472. trace_sched_process_fork(current, p);
  1473. nr = task_pid_vnr(p);
  1474. if (clone_flags & CLONE_PARENT_SETTID)
  1475. put_user(nr, parent_tidptr);
  1476. if (clone_flags & CLONE_VFORK) {
  1477. p->vfork_done = &vfork;
  1478. init_completion(&vfork);
  1479. get_task_struct(p);
  1480. }
  1481. wake_up_new_task(p);
  1482. /* forking complete and child started to run, tell ptracer */
  1483. if (unlikely(trace))
  1484. ptrace_event(trace, nr);
  1485. if (clone_flags & CLONE_VFORK) {
  1486. if (!wait_for_vfork_done(p, &vfork))
  1487. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1488. }
  1489. } else {
  1490. nr = PTR_ERR(p);
  1491. }
  1492. return nr;
  1493. }
  1494. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1495. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1496. #endif
  1497. static void sighand_ctor(void *data)
  1498. {
  1499. struct sighand_struct *sighand = data;
  1500. spin_lock_init(&sighand->siglock);
  1501. init_waitqueue_head(&sighand->signalfd_wqh);
  1502. }
  1503. void __init proc_caches_init(void)
  1504. {
  1505. sighand_cachep = kmem_cache_create("sighand_cache",
  1506. sizeof(struct sighand_struct), 0,
  1507. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1508. SLAB_NOTRACK, sighand_ctor);
  1509. signal_cachep = kmem_cache_create("signal_cache",
  1510. sizeof(struct signal_struct), 0,
  1511. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1512. files_cachep = kmem_cache_create("files_cache",
  1513. sizeof(struct files_struct), 0,
  1514. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1515. fs_cachep = kmem_cache_create("fs_cache",
  1516. sizeof(struct fs_struct), 0,
  1517. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1518. /*
  1519. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1520. * whole struct cpumask for the OFFSTACK case. We could change
  1521. * this to *only* allocate as much of it as required by the
  1522. * maximum number of CPU's we can ever have. The cpumask_allocation
  1523. * is at the end of the structure, exactly for that reason.
  1524. */
  1525. mm_cachep = kmem_cache_create("mm_struct",
  1526. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1527. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1528. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1529. mmap_init();
  1530. nsproxy_cache_init();
  1531. }
  1532. /*
  1533. * Check constraints on flags passed to the unshare system call.
  1534. */
  1535. static int check_unshare_flags(unsigned long unshare_flags)
  1536. {
  1537. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1538. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1539. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
  1540. return -EINVAL;
  1541. /*
  1542. * Not implemented, but pretend it works if there is nothing to
  1543. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1544. * needs to unshare vm.
  1545. */
  1546. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1547. /* FIXME: get_task_mm() increments ->mm_users */
  1548. if (atomic_read(&current->mm->mm_users) > 1)
  1549. return -EINVAL;
  1550. }
  1551. return 0;
  1552. }
  1553. /*
  1554. * Unshare the filesystem structure if it is being shared
  1555. */
  1556. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1557. {
  1558. struct fs_struct *fs = current->fs;
  1559. if (!(unshare_flags & CLONE_FS) || !fs)
  1560. return 0;
  1561. /* don't need lock here; in the worst case we'll do useless copy */
  1562. if (fs->users == 1)
  1563. return 0;
  1564. *new_fsp = copy_fs_struct(fs);
  1565. if (!*new_fsp)
  1566. return -ENOMEM;
  1567. return 0;
  1568. }
  1569. /*
  1570. * Unshare file descriptor table if it is being shared
  1571. */
  1572. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1573. {
  1574. struct files_struct *fd = current->files;
  1575. int error = 0;
  1576. if ((unshare_flags & CLONE_FILES) &&
  1577. (fd && atomic_read(&fd->count) > 1)) {
  1578. *new_fdp = dup_fd(fd, &error);
  1579. if (!*new_fdp)
  1580. return error;
  1581. }
  1582. return 0;
  1583. }
  1584. /*
  1585. * unshare allows a process to 'unshare' part of the process
  1586. * context which was originally shared using clone. copy_*
  1587. * functions used by do_fork() cannot be used here directly
  1588. * because they modify an inactive task_struct that is being
  1589. * constructed. Here we are modifying the current, active,
  1590. * task_struct.
  1591. */
  1592. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1593. {
  1594. struct fs_struct *fs, *new_fs = NULL;
  1595. struct files_struct *fd, *new_fd = NULL;
  1596. struct nsproxy *new_nsproxy = NULL;
  1597. int do_sysvsem = 0;
  1598. int err;
  1599. err = check_unshare_flags(unshare_flags);
  1600. if (err)
  1601. goto bad_unshare_out;
  1602. /*
  1603. * If unsharing namespace, must also unshare filesystem information.
  1604. */
  1605. if (unshare_flags & CLONE_NEWNS)
  1606. unshare_flags |= CLONE_FS;
  1607. /*
  1608. * CLONE_NEWIPC must also detach from the undolist: after switching
  1609. * to a new ipc namespace, the semaphore arrays from the old
  1610. * namespace are unreachable.
  1611. */
  1612. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1613. do_sysvsem = 1;
  1614. err = unshare_fs(unshare_flags, &new_fs);
  1615. if (err)
  1616. goto bad_unshare_out;
  1617. err = unshare_fd(unshare_flags, &new_fd);
  1618. if (err)
  1619. goto bad_unshare_cleanup_fs;
  1620. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
  1621. if (err)
  1622. goto bad_unshare_cleanup_fd;
  1623. if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
  1624. if (do_sysvsem) {
  1625. /*
  1626. * CLONE_SYSVSEM is equivalent to sys_exit().
  1627. */
  1628. exit_sem(current);
  1629. }
  1630. if (new_nsproxy) {
  1631. switch_task_namespaces(current, new_nsproxy);
  1632. new_nsproxy = NULL;
  1633. }
  1634. task_lock(current);
  1635. if (new_fs) {
  1636. fs = current->fs;
  1637. spin_lock(&fs->lock);
  1638. current->fs = new_fs;
  1639. if (--fs->users)
  1640. new_fs = NULL;
  1641. else
  1642. new_fs = fs;
  1643. spin_unlock(&fs->lock);
  1644. }
  1645. if (new_fd) {
  1646. fd = current->files;
  1647. current->files = new_fd;
  1648. new_fd = fd;
  1649. }
  1650. task_unlock(current);
  1651. }
  1652. if (new_nsproxy)
  1653. put_nsproxy(new_nsproxy);
  1654. bad_unshare_cleanup_fd:
  1655. if (new_fd)
  1656. put_files_struct(new_fd);
  1657. bad_unshare_cleanup_fs:
  1658. if (new_fs)
  1659. free_fs_struct(new_fs);
  1660. bad_unshare_out:
  1661. return err;
  1662. }
  1663. /*
  1664. * Helper to unshare the files of the current task.
  1665. * We don't want to expose copy_files internals to
  1666. * the exec layer of the kernel.
  1667. */
  1668. int unshare_files(struct files_struct **displaced)
  1669. {
  1670. struct task_struct *task = current;
  1671. struct files_struct *copy = NULL;
  1672. int error;
  1673. error = unshare_fd(CLONE_FILES, &copy);
  1674. if (error || !copy) {
  1675. *displaced = NULL;
  1676. return error;
  1677. }
  1678. *displaced = task->files;
  1679. task_lock(task);
  1680. task->files = copy;
  1681. task_unlock(task);
  1682. return 0;
  1683. }