aio.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/errno.h>
  14. #include <linux/time.h>
  15. #include <linux/aio_abi.h>
  16. #include <linux/export.h>
  17. #include <linux/syscalls.h>
  18. #include <linux/backing-dev.h>
  19. #include <linux/uio.h>
  20. #define DEBUG 0
  21. #include <linux/sched.h>
  22. #include <linux/fs.h>
  23. #include <linux/file.h>
  24. #include <linux/mm.h>
  25. #include <linux/mman.h>
  26. #include <linux/mmu_context.h>
  27. #include <linux/slab.h>
  28. #include <linux/timer.h>
  29. #include <linux/aio.h>
  30. #include <linux/highmem.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/security.h>
  33. #include <linux/eventfd.h>
  34. #include <linux/blkdev.h>
  35. #include <linux/compat.h>
  36. #include <linux/personality.h>
  37. #include <asm/kmap_types.h>
  38. #include <asm/uaccess.h>
  39. #if DEBUG > 1
  40. #define dprintk printk
  41. #else
  42. #define dprintk(x...) do { ; } while (0)
  43. #endif
  44. /*------ sysctl variables----*/
  45. static DEFINE_SPINLOCK(aio_nr_lock);
  46. unsigned long aio_nr; /* current system wide number of aio requests */
  47. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  48. /*----end sysctl variables---*/
  49. static struct kmem_cache *kiocb_cachep;
  50. static struct kmem_cache *kioctx_cachep;
  51. static struct workqueue_struct *aio_wq;
  52. /* Used for rare fput completion. */
  53. static void aio_fput_routine(struct work_struct *);
  54. static DECLARE_WORK(fput_work, aio_fput_routine);
  55. static DEFINE_SPINLOCK(fput_lock);
  56. static LIST_HEAD(fput_head);
  57. static void aio_kick_handler(struct work_struct *);
  58. static void aio_queue_work(struct kioctx *);
  59. /* aio_setup
  60. * Creates the slab caches used by the aio routines, panic on
  61. * failure as this is done early during the boot sequence.
  62. */
  63. static int __init aio_setup(void)
  64. {
  65. kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  66. kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  67. aio_wq = alloc_workqueue("aio", 0, 1); /* used to limit concurrency */
  68. BUG_ON(!aio_wq);
  69. pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
  70. return 0;
  71. }
  72. __initcall(aio_setup);
  73. static void aio_free_ring(struct kioctx *ctx)
  74. {
  75. struct aio_ring_info *info = &ctx->ring_info;
  76. long i;
  77. for (i=0; i<info->nr_pages; i++)
  78. put_page(info->ring_pages[i]);
  79. if (info->mmap_size) {
  80. BUG_ON(ctx->mm != current->mm);
  81. vm_munmap(info->mmap_base, info->mmap_size);
  82. }
  83. if (info->ring_pages && info->ring_pages != info->internal_pages)
  84. kfree(info->ring_pages);
  85. info->ring_pages = NULL;
  86. info->nr = 0;
  87. }
  88. static int aio_setup_ring(struct kioctx *ctx)
  89. {
  90. struct aio_ring *ring;
  91. struct aio_ring_info *info = &ctx->ring_info;
  92. unsigned nr_events = ctx->max_reqs;
  93. unsigned long size;
  94. int nr_pages;
  95. if (current->personality & READ_IMPLIES_EXEC)
  96. return -EPERM;
  97. /* Compensate for the ring buffer's head/tail overlap entry */
  98. nr_events += 2; /* 1 is required, 2 for good luck */
  99. size = sizeof(struct aio_ring);
  100. size += sizeof(struct io_event) * nr_events;
  101. nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
  102. if (nr_pages < 0)
  103. return -EINVAL;
  104. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
  105. info->nr = 0;
  106. info->ring_pages = info->internal_pages;
  107. if (nr_pages > AIO_RING_PAGES) {
  108. info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
  109. if (!info->ring_pages)
  110. return -ENOMEM;
  111. }
  112. info->mmap_size = nr_pages * PAGE_SIZE;
  113. dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
  114. down_write(&ctx->mm->mmap_sem);
  115. info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
  116. PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
  117. 0);
  118. if (IS_ERR((void *)info->mmap_base)) {
  119. up_write(&ctx->mm->mmap_sem);
  120. info->mmap_size = 0;
  121. aio_free_ring(ctx);
  122. return -EAGAIN;
  123. }
  124. dprintk("mmap address: 0x%08lx\n", info->mmap_base);
  125. info->nr_pages = get_user_pages(current, ctx->mm,
  126. info->mmap_base, nr_pages,
  127. 1, 0, info->ring_pages, NULL);
  128. up_write(&ctx->mm->mmap_sem);
  129. if (unlikely(info->nr_pages != nr_pages)) {
  130. aio_free_ring(ctx);
  131. return -EAGAIN;
  132. }
  133. ctx->user_id = info->mmap_base;
  134. info->nr = nr_events; /* trusted copy */
  135. ring = kmap_atomic(info->ring_pages[0]);
  136. ring->nr = nr_events; /* user copy */
  137. ring->id = ctx->user_id;
  138. ring->head = ring->tail = 0;
  139. ring->magic = AIO_RING_MAGIC;
  140. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  141. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  142. ring->header_length = sizeof(struct aio_ring);
  143. kunmap_atomic(ring);
  144. return 0;
  145. }
  146. /* aio_ring_event: returns a pointer to the event at the given index from
  147. * kmap_atomic(). Release the pointer with put_aio_ring_event();
  148. */
  149. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  150. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  151. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  152. #define aio_ring_event(info, nr) ({ \
  153. unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
  154. struct io_event *__event; \
  155. __event = kmap_atomic( \
  156. (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE]); \
  157. __event += pos % AIO_EVENTS_PER_PAGE; \
  158. __event; \
  159. })
  160. #define put_aio_ring_event(event) do { \
  161. struct io_event *__event = (event); \
  162. (void)__event; \
  163. kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK)); \
  164. } while(0)
  165. static void ctx_rcu_free(struct rcu_head *head)
  166. {
  167. struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
  168. kmem_cache_free(kioctx_cachep, ctx);
  169. }
  170. /* __put_ioctx
  171. * Called when the last user of an aio context has gone away,
  172. * and the struct needs to be freed.
  173. */
  174. static void __put_ioctx(struct kioctx *ctx)
  175. {
  176. unsigned nr_events = ctx->max_reqs;
  177. BUG_ON(ctx->reqs_active);
  178. cancel_delayed_work_sync(&ctx->wq);
  179. aio_free_ring(ctx);
  180. mmdrop(ctx->mm);
  181. ctx->mm = NULL;
  182. if (nr_events) {
  183. spin_lock(&aio_nr_lock);
  184. BUG_ON(aio_nr - nr_events > aio_nr);
  185. aio_nr -= nr_events;
  186. spin_unlock(&aio_nr_lock);
  187. }
  188. pr_debug("__put_ioctx: freeing %p\n", ctx);
  189. call_rcu(&ctx->rcu_head, ctx_rcu_free);
  190. }
  191. static inline int try_get_ioctx(struct kioctx *kioctx)
  192. {
  193. return atomic_inc_not_zero(&kioctx->users);
  194. }
  195. static inline void put_ioctx(struct kioctx *kioctx)
  196. {
  197. BUG_ON(atomic_read(&kioctx->users) <= 0);
  198. if (unlikely(atomic_dec_and_test(&kioctx->users)))
  199. __put_ioctx(kioctx);
  200. }
  201. /* ioctx_alloc
  202. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  203. */
  204. static struct kioctx *ioctx_alloc(unsigned nr_events)
  205. {
  206. struct mm_struct *mm;
  207. struct kioctx *ctx;
  208. int err = -ENOMEM;
  209. /* Prevent overflows */
  210. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  211. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  212. pr_debug("ENOMEM: nr_events too high\n");
  213. return ERR_PTR(-EINVAL);
  214. }
  215. if (!nr_events || (unsigned long)nr_events > aio_max_nr)
  216. return ERR_PTR(-EAGAIN);
  217. ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
  218. if (!ctx)
  219. return ERR_PTR(-ENOMEM);
  220. ctx->max_reqs = nr_events;
  221. mm = ctx->mm = current->mm;
  222. atomic_inc(&mm->mm_count);
  223. atomic_set(&ctx->users, 2);
  224. spin_lock_init(&ctx->ctx_lock);
  225. spin_lock_init(&ctx->ring_info.ring_lock);
  226. init_waitqueue_head(&ctx->wait);
  227. INIT_LIST_HEAD(&ctx->active_reqs);
  228. INIT_LIST_HEAD(&ctx->run_list);
  229. INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
  230. if (aio_setup_ring(ctx) < 0)
  231. goto out_freectx;
  232. /* limit the number of system wide aios */
  233. spin_lock(&aio_nr_lock);
  234. if (aio_nr + nr_events > aio_max_nr ||
  235. aio_nr + nr_events < aio_nr) {
  236. spin_unlock(&aio_nr_lock);
  237. goto out_cleanup;
  238. }
  239. aio_nr += ctx->max_reqs;
  240. spin_unlock(&aio_nr_lock);
  241. /* now link into global list. */
  242. spin_lock(&mm->ioctx_lock);
  243. hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
  244. spin_unlock(&mm->ioctx_lock);
  245. dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  246. ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
  247. return ctx;
  248. out_cleanup:
  249. err = -EAGAIN;
  250. aio_free_ring(ctx);
  251. out_freectx:
  252. mmdrop(mm);
  253. kmem_cache_free(kioctx_cachep, ctx);
  254. dprintk("aio: error allocating ioctx %d\n", err);
  255. return ERR_PTR(err);
  256. }
  257. /* kill_ctx
  258. * Cancels all outstanding aio requests on an aio context. Used
  259. * when the processes owning a context have all exited to encourage
  260. * the rapid destruction of the kioctx.
  261. */
  262. static void kill_ctx(struct kioctx *ctx)
  263. {
  264. int (*cancel)(struct kiocb *, struct io_event *);
  265. struct task_struct *tsk = current;
  266. DECLARE_WAITQUEUE(wait, tsk);
  267. struct io_event res;
  268. spin_lock_irq(&ctx->ctx_lock);
  269. ctx->dead = 1;
  270. while (!list_empty(&ctx->active_reqs)) {
  271. struct list_head *pos = ctx->active_reqs.next;
  272. struct kiocb *iocb = list_kiocb(pos);
  273. list_del_init(&iocb->ki_list);
  274. cancel = iocb->ki_cancel;
  275. kiocbSetCancelled(iocb);
  276. if (cancel) {
  277. iocb->ki_users++;
  278. spin_unlock_irq(&ctx->ctx_lock);
  279. cancel(iocb, &res);
  280. spin_lock_irq(&ctx->ctx_lock);
  281. }
  282. }
  283. if (!ctx->reqs_active)
  284. goto out;
  285. add_wait_queue(&ctx->wait, &wait);
  286. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  287. while (ctx->reqs_active) {
  288. spin_unlock_irq(&ctx->ctx_lock);
  289. io_schedule();
  290. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  291. spin_lock_irq(&ctx->ctx_lock);
  292. }
  293. __set_task_state(tsk, TASK_RUNNING);
  294. remove_wait_queue(&ctx->wait, &wait);
  295. out:
  296. spin_unlock_irq(&ctx->ctx_lock);
  297. }
  298. /* wait_on_sync_kiocb:
  299. * Waits on the given sync kiocb to complete.
  300. */
  301. ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
  302. {
  303. while (iocb->ki_users) {
  304. set_current_state(TASK_UNINTERRUPTIBLE);
  305. if (!iocb->ki_users)
  306. break;
  307. io_schedule();
  308. }
  309. __set_current_state(TASK_RUNNING);
  310. return iocb->ki_user_data;
  311. }
  312. EXPORT_SYMBOL(wait_on_sync_kiocb);
  313. /* exit_aio: called when the last user of mm goes away. At this point,
  314. * there is no way for any new requests to be submited or any of the
  315. * io_* syscalls to be called on the context. However, there may be
  316. * outstanding requests which hold references to the context; as they
  317. * go away, they will call put_ioctx and release any pinned memory
  318. * associated with the request (held via struct page * references).
  319. */
  320. void exit_aio(struct mm_struct *mm)
  321. {
  322. struct kioctx *ctx;
  323. while (!hlist_empty(&mm->ioctx_list)) {
  324. ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
  325. hlist_del_rcu(&ctx->list);
  326. kill_ctx(ctx);
  327. if (1 != atomic_read(&ctx->users))
  328. printk(KERN_DEBUG
  329. "exit_aio:ioctx still alive: %d %d %d\n",
  330. atomic_read(&ctx->users), ctx->dead,
  331. ctx->reqs_active);
  332. /*
  333. * We don't need to bother with munmap() here -
  334. * exit_mmap(mm) is coming and it'll unmap everything.
  335. * Since aio_free_ring() uses non-zero ->mmap_size
  336. * as indicator that it needs to unmap the area,
  337. * just set it to 0; aio_free_ring() is the only
  338. * place that uses ->mmap_size, so it's safe.
  339. * That way we get all munmap done to current->mm -
  340. * all other callers have ctx->mm == current->mm.
  341. */
  342. ctx->ring_info.mmap_size = 0;
  343. put_ioctx(ctx);
  344. }
  345. }
  346. /* aio_get_req
  347. * Allocate a slot for an aio request. Increments the users count
  348. * of the kioctx so that the kioctx stays around until all requests are
  349. * complete. Returns NULL if no requests are free.
  350. *
  351. * Returns with kiocb->users set to 2. The io submit code path holds
  352. * an extra reference while submitting the i/o.
  353. * This prevents races between the aio code path referencing the
  354. * req (after submitting it) and aio_complete() freeing the req.
  355. */
  356. static struct kiocb *__aio_get_req(struct kioctx *ctx)
  357. {
  358. struct kiocb *req = NULL;
  359. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
  360. if (unlikely(!req))
  361. return NULL;
  362. req->ki_flags = 0;
  363. req->ki_users = 2;
  364. req->ki_key = 0;
  365. req->ki_ctx = ctx;
  366. req->ki_cancel = NULL;
  367. req->ki_retry = NULL;
  368. req->ki_dtor = NULL;
  369. req->private = NULL;
  370. req->ki_iovec = NULL;
  371. INIT_LIST_HEAD(&req->ki_run_list);
  372. req->ki_eventfd = NULL;
  373. return req;
  374. }
  375. /*
  376. * struct kiocb's are allocated in batches to reduce the number of
  377. * times the ctx lock is acquired and released.
  378. */
  379. #define KIOCB_BATCH_SIZE 32L
  380. struct kiocb_batch {
  381. struct list_head head;
  382. long count; /* number of requests left to allocate */
  383. };
  384. static void kiocb_batch_init(struct kiocb_batch *batch, long total)
  385. {
  386. INIT_LIST_HEAD(&batch->head);
  387. batch->count = total;
  388. }
  389. static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch)
  390. {
  391. struct kiocb *req, *n;
  392. if (list_empty(&batch->head))
  393. return;
  394. spin_lock_irq(&ctx->ctx_lock);
  395. list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
  396. list_del(&req->ki_batch);
  397. list_del(&req->ki_list);
  398. kmem_cache_free(kiocb_cachep, req);
  399. ctx->reqs_active--;
  400. }
  401. if (unlikely(!ctx->reqs_active && ctx->dead))
  402. wake_up_all(&ctx->wait);
  403. spin_unlock_irq(&ctx->ctx_lock);
  404. }
  405. /*
  406. * Allocate a batch of kiocbs. This avoids taking and dropping the
  407. * context lock a lot during setup.
  408. */
  409. static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch)
  410. {
  411. unsigned short allocated, to_alloc;
  412. long avail;
  413. bool called_fput = false;
  414. struct kiocb *req, *n;
  415. struct aio_ring *ring;
  416. to_alloc = min(batch->count, KIOCB_BATCH_SIZE);
  417. for (allocated = 0; allocated < to_alloc; allocated++) {
  418. req = __aio_get_req(ctx);
  419. if (!req)
  420. /* allocation failed, go with what we've got */
  421. break;
  422. list_add(&req->ki_batch, &batch->head);
  423. }
  424. if (allocated == 0)
  425. goto out;
  426. retry:
  427. spin_lock_irq(&ctx->ctx_lock);
  428. ring = kmap_atomic(ctx->ring_info.ring_pages[0]);
  429. avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active;
  430. BUG_ON(avail < 0);
  431. if (avail == 0 && !called_fput) {
  432. /*
  433. * Handle a potential starvation case. It is possible that
  434. * we hold the last reference on a struct file, causing us
  435. * to delay the final fput to non-irq context. In this case,
  436. * ctx->reqs_active is artificially high. Calling the fput
  437. * routine here may free up a slot in the event completion
  438. * ring, allowing this allocation to succeed.
  439. */
  440. kunmap_atomic(ring);
  441. spin_unlock_irq(&ctx->ctx_lock);
  442. aio_fput_routine(NULL);
  443. called_fput = true;
  444. goto retry;
  445. }
  446. if (avail < allocated) {
  447. /* Trim back the number of requests. */
  448. list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
  449. list_del(&req->ki_batch);
  450. kmem_cache_free(kiocb_cachep, req);
  451. if (--allocated <= avail)
  452. break;
  453. }
  454. }
  455. batch->count -= allocated;
  456. list_for_each_entry(req, &batch->head, ki_batch) {
  457. list_add(&req->ki_list, &ctx->active_reqs);
  458. ctx->reqs_active++;
  459. }
  460. kunmap_atomic(ring);
  461. spin_unlock_irq(&ctx->ctx_lock);
  462. out:
  463. return allocated;
  464. }
  465. static inline struct kiocb *aio_get_req(struct kioctx *ctx,
  466. struct kiocb_batch *batch)
  467. {
  468. struct kiocb *req;
  469. if (list_empty(&batch->head))
  470. if (kiocb_batch_refill(ctx, batch) == 0)
  471. return NULL;
  472. req = list_first_entry(&batch->head, struct kiocb, ki_batch);
  473. list_del(&req->ki_batch);
  474. return req;
  475. }
  476. static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
  477. {
  478. assert_spin_locked(&ctx->ctx_lock);
  479. if (req->ki_eventfd != NULL)
  480. eventfd_ctx_put(req->ki_eventfd);
  481. if (req->ki_dtor)
  482. req->ki_dtor(req);
  483. if (req->ki_iovec != &req->ki_inline_vec)
  484. kfree(req->ki_iovec);
  485. kmem_cache_free(kiocb_cachep, req);
  486. ctx->reqs_active--;
  487. if (unlikely(!ctx->reqs_active && ctx->dead))
  488. wake_up_all(&ctx->wait);
  489. }
  490. static void aio_fput_routine(struct work_struct *data)
  491. {
  492. spin_lock_irq(&fput_lock);
  493. while (likely(!list_empty(&fput_head))) {
  494. struct kiocb *req = list_kiocb(fput_head.next);
  495. struct kioctx *ctx = req->ki_ctx;
  496. list_del(&req->ki_list);
  497. spin_unlock_irq(&fput_lock);
  498. /* Complete the fput(s) */
  499. if (req->ki_filp != NULL)
  500. fput(req->ki_filp);
  501. /* Link the iocb into the context's free list */
  502. rcu_read_lock();
  503. spin_lock_irq(&ctx->ctx_lock);
  504. really_put_req(ctx, req);
  505. /*
  506. * at that point ctx might've been killed, but actual
  507. * freeing is RCU'd
  508. */
  509. spin_unlock_irq(&ctx->ctx_lock);
  510. rcu_read_unlock();
  511. spin_lock_irq(&fput_lock);
  512. }
  513. spin_unlock_irq(&fput_lock);
  514. }
  515. /* __aio_put_req
  516. * Returns true if this put was the last user of the request.
  517. */
  518. static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
  519. {
  520. dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
  521. req, atomic_long_read(&req->ki_filp->f_count));
  522. assert_spin_locked(&ctx->ctx_lock);
  523. req->ki_users--;
  524. BUG_ON(req->ki_users < 0);
  525. if (likely(req->ki_users))
  526. return 0;
  527. list_del(&req->ki_list); /* remove from active_reqs */
  528. req->ki_cancel = NULL;
  529. req->ki_retry = NULL;
  530. /*
  531. * Try to optimize the aio and eventfd file* puts, by avoiding to
  532. * schedule work in case it is not final fput() time. In normal cases,
  533. * we would not be holding the last reference to the file*, so
  534. * this function will be executed w/out any aio kthread wakeup.
  535. */
  536. if (unlikely(!fput_atomic(req->ki_filp))) {
  537. spin_lock(&fput_lock);
  538. list_add(&req->ki_list, &fput_head);
  539. spin_unlock(&fput_lock);
  540. schedule_work(&fput_work);
  541. } else {
  542. req->ki_filp = NULL;
  543. really_put_req(ctx, req);
  544. }
  545. return 1;
  546. }
  547. /* aio_put_req
  548. * Returns true if this put was the last user of the kiocb,
  549. * false if the request is still in use.
  550. */
  551. int aio_put_req(struct kiocb *req)
  552. {
  553. struct kioctx *ctx = req->ki_ctx;
  554. int ret;
  555. spin_lock_irq(&ctx->ctx_lock);
  556. ret = __aio_put_req(ctx, req);
  557. spin_unlock_irq(&ctx->ctx_lock);
  558. return ret;
  559. }
  560. EXPORT_SYMBOL(aio_put_req);
  561. static struct kioctx *lookup_ioctx(unsigned long ctx_id)
  562. {
  563. struct mm_struct *mm = current->mm;
  564. struct kioctx *ctx, *ret = NULL;
  565. struct hlist_node *n;
  566. rcu_read_lock();
  567. hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
  568. /*
  569. * RCU protects us against accessing freed memory but
  570. * we have to be careful not to get a reference when the
  571. * reference count already dropped to 0 (ctx->dead test
  572. * is unreliable because of races).
  573. */
  574. if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
  575. ret = ctx;
  576. break;
  577. }
  578. }
  579. rcu_read_unlock();
  580. return ret;
  581. }
  582. /*
  583. * Queue up a kiocb to be retried. Assumes that the kiocb
  584. * has already been marked as kicked, and places it on
  585. * the retry run list for the corresponding ioctx, if it
  586. * isn't already queued. Returns 1 if it actually queued
  587. * the kiocb (to tell the caller to activate the work
  588. * queue to process it), or 0, if it found that it was
  589. * already queued.
  590. */
  591. static inline int __queue_kicked_iocb(struct kiocb *iocb)
  592. {
  593. struct kioctx *ctx = iocb->ki_ctx;
  594. assert_spin_locked(&ctx->ctx_lock);
  595. if (list_empty(&iocb->ki_run_list)) {
  596. list_add_tail(&iocb->ki_run_list,
  597. &ctx->run_list);
  598. return 1;
  599. }
  600. return 0;
  601. }
  602. /* aio_run_iocb
  603. * This is the core aio execution routine. It is
  604. * invoked both for initial i/o submission and
  605. * subsequent retries via the aio_kick_handler.
  606. * Expects to be invoked with iocb->ki_ctx->lock
  607. * already held. The lock is released and reacquired
  608. * as needed during processing.
  609. *
  610. * Calls the iocb retry method (already setup for the
  611. * iocb on initial submission) for operation specific
  612. * handling, but takes care of most of common retry
  613. * execution details for a given iocb. The retry method
  614. * needs to be non-blocking as far as possible, to avoid
  615. * holding up other iocbs waiting to be serviced by the
  616. * retry kernel thread.
  617. *
  618. * The trickier parts in this code have to do with
  619. * ensuring that only one retry instance is in progress
  620. * for a given iocb at any time. Providing that guarantee
  621. * simplifies the coding of individual aio operations as
  622. * it avoids various potential races.
  623. */
  624. static ssize_t aio_run_iocb(struct kiocb *iocb)
  625. {
  626. struct kioctx *ctx = iocb->ki_ctx;
  627. ssize_t (*retry)(struct kiocb *);
  628. ssize_t ret;
  629. if (!(retry = iocb->ki_retry)) {
  630. printk("aio_run_iocb: iocb->ki_retry = NULL\n");
  631. return 0;
  632. }
  633. /*
  634. * We don't want the next retry iteration for this
  635. * operation to start until this one has returned and
  636. * updated the iocb state. However, wait_queue functions
  637. * can trigger a kick_iocb from interrupt context in the
  638. * meantime, indicating that data is available for the next
  639. * iteration. We want to remember that and enable the
  640. * next retry iteration _after_ we are through with
  641. * this one.
  642. *
  643. * So, in order to be able to register a "kick", but
  644. * prevent it from being queued now, we clear the kick
  645. * flag, but make the kick code *think* that the iocb is
  646. * still on the run list until we are actually done.
  647. * When we are done with this iteration, we check if
  648. * the iocb was kicked in the meantime and if so, queue
  649. * it up afresh.
  650. */
  651. kiocbClearKicked(iocb);
  652. /*
  653. * This is so that aio_complete knows it doesn't need to
  654. * pull the iocb off the run list (We can't just call
  655. * INIT_LIST_HEAD because we don't want a kick_iocb to
  656. * queue this on the run list yet)
  657. */
  658. iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
  659. spin_unlock_irq(&ctx->ctx_lock);
  660. /* Quit retrying if the i/o has been cancelled */
  661. if (kiocbIsCancelled(iocb)) {
  662. ret = -EINTR;
  663. aio_complete(iocb, ret, 0);
  664. /* must not access the iocb after this */
  665. goto out;
  666. }
  667. /*
  668. * Now we are all set to call the retry method in async
  669. * context.
  670. */
  671. ret = retry(iocb);
  672. if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
  673. /*
  674. * There's no easy way to restart the syscall since other AIO's
  675. * may be already running. Just fail this IO with EINTR.
  676. */
  677. if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
  678. ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
  679. ret = -EINTR;
  680. aio_complete(iocb, ret, 0);
  681. }
  682. out:
  683. spin_lock_irq(&ctx->ctx_lock);
  684. if (-EIOCBRETRY == ret) {
  685. /*
  686. * OK, now that we are done with this iteration
  687. * and know that there is more left to go,
  688. * this is where we let go so that a subsequent
  689. * "kick" can start the next iteration
  690. */
  691. /* will make __queue_kicked_iocb succeed from here on */
  692. INIT_LIST_HEAD(&iocb->ki_run_list);
  693. /* we must queue the next iteration ourselves, if it
  694. * has already been kicked */
  695. if (kiocbIsKicked(iocb)) {
  696. __queue_kicked_iocb(iocb);
  697. /*
  698. * __queue_kicked_iocb will always return 1 here, because
  699. * iocb->ki_run_list is empty at this point so it should
  700. * be safe to unconditionally queue the context into the
  701. * work queue.
  702. */
  703. aio_queue_work(ctx);
  704. }
  705. }
  706. return ret;
  707. }
  708. /*
  709. * __aio_run_iocbs:
  710. * Process all pending retries queued on the ioctx
  711. * run list.
  712. * Assumes it is operating within the aio issuer's mm
  713. * context.
  714. */
  715. static int __aio_run_iocbs(struct kioctx *ctx)
  716. {
  717. struct kiocb *iocb;
  718. struct list_head run_list;
  719. assert_spin_locked(&ctx->ctx_lock);
  720. list_replace_init(&ctx->run_list, &run_list);
  721. while (!list_empty(&run_list)) {
  722. iocb = list_entry(run_list.next, struct kiocb,
  723. ki_run_list);
  724. list_del(&iocb->ki_run_list);
  725. /*
  726. * Hold an extra reference while retrying i/o.
  727. */
  728. iocb->ki_users++; /* grab extra reference */
  729. aio_run_iocb(iocb);
  730. __aio_put_req(ctx, iocb);
  731. }
  732. if (!list_empty(&ctx->run_list))
  733. return 1;
  734. return 0;
  735. }
  736. static void aio_queue_work(struct kioctx * ctx)
  737. {
  738. unsigned long timeout;
  739. /*
  740. * if someone is waiting, get the work started right
  741. * away, otherwise, use a longer delay
  742. */
  743. smp_mb();
  744. if (waitqueue_active(&ctx->wait))
  745. timeout = 1;
  746. else
  747. timeout = HZ/10;
  748. queue_delayed_work(aio_wq, &ctx->wq, timeout);
  749. }
  750. /*
  751. * aio_run_all_iocbs:
  752. * Process all pending retries queued on the ioctx
  753. * run list, and keep running them until the list
  754. * stays empty.
  755. * Assumes it is operating within the aio issuer's mm context.
  756. */
  757. static inline void aio_run_all_iocbs(struct kioctx *ctx)
  758. {
  759. spin_lock_irq(&ctx->ctx_lock);
  760. while (__aio_run_iocbs(ctx))
  761. ;
  762. spin_unlock_irq(&ctx->ctx_lock);
  763. }
  764. /*
  765. * aio_kick_handler:
  766. * Work queue handler triggered to process pending
  767. * retries on an ioctx. Takes on the aio issuer's
  768. * mm context before running the iocbs, so that
  769. * copy_xxx_user operates on the issuer's address
  770. * space.
  771. * Run on aiod's context.
  772. */
  773. static void aio_kick_handler(struct work_struct *work)
  774. {
  775. struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
  776. mm_segment_t oldfs = get_fs();
  777. struct mm_struct *mm;
  778. int requeue;
  779. set_fs(USER_DS);
  780. use_mm(ctx->mm);
  781. spin_lock_irq(&ctx->ctx_lock);
  782. requeue =__aio_run_iocbs(ctx);
  783. mm = ctx->mm;
  784. spin_unlock_irq(&ctx->ctx_lock);
  785. unuse_mm(mm);
  786. set_fs(oldfs);
  787. /*
  788. * we're in a worker thread already; no point using non-zero delay
  789. */
  790. if (requeue)
  791. queue_delayed_work(aio_wq, &ctx->wq, 0);
  792. }
  793. /*
  794. * Called by kick_iocb to queue the kiocb for retry
  795. * and if required activate the aio work queue to process
  796. * it
  797. */
  798. static void try_queue_kicked_iocb(struct kiocb *iocb)
  799. {
  800. struct kioctx *ctx = iocb->ki_ctx;
  801. unsigned long flags;
  802. int run = 0;
  803. spin_lock_irqsave(&ctx->ctx_lock, flags);
  804. /* set this inside the lock so that we can't race with aio_run_iocb()
  805. * testing it and putting the iocb on the run list under the lock */
  806. if (!kiocbTryKick(iocb))
  807. run = __queue_kicked_iocb(iocb);
  808. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  809. if (run)
  810. aio_queue_work(ctx);
  811. }
  812. /*
  813. * kick_iocb:
  814. * Called typically from a wait queue callback context
  815. * to trigger a retry of the iocb.
  816. * The retry is usually executed by aio workqueue
  817. * threads (See aio_kick_handler).
  818. */
  819. void kick_iocb(struct kiocb *iocb)
  820. {
  821. /* sync iocbs are easy: they can only ever be executing from a
  822. * single context. */
  823. if (is_sync_kiocb(iocb)) {
  824. kiocbSetKicked(iocb);
  825. wake_up_process(iocb->ki_obj.tsk);
  826. return;
  827. }
  828. try_queue_kicked_iocb(iocb);
  829. }
  830. EXPORT_SYMBOL(kick_iocb);
  831. /* aio_complete
  832. * Called when the io request on the given iocb is complete.
  833. * Returns true if this is the last user of the request. The
  834. * only other user of the request can be the cancellation code.
  835. */
  836. int aio_complete(struct kiocb *iocb, long res, long res2)
  837. {
  838. struct kioctx *ctx = iocb->ki_ctx;
  839. struct aio_ring_info *info;
  840. struct aio_ring *ring;
  841. struct io_event *event;
  842. unsigned long flags;
  843. unsigned long tail;
  844. int ret;
  845. /*
  846. * Special case handling for sync iocbs:
  847. * - events go directly into the iocb for fast handling
  848. * - the sync task with the iocb in its stack holds the single iocb
  849. * ref, no other paths have a way to get another ref
  850. * - the sync task helpfully left a reference to itself in the iocb
  851. */
  852. if (is_sync_kiocb(iocb)) {
  853. BUG_ON(iocb->ki_users != 1);
  854. iocb->ki_user_data = res;
  855. iocb->ki_users = 0;
  856. wake_up_process(iocb->ki_obj.tsk);
  857. return 1;
  858. }
  859. info = &ctx->ring_info;
  860. /* add a completion event to the ring buffer.
  861. * must be done holding ctx->ctx_lock to prevent
  862. * other code from messing with the tail
  863. * pointer since we might be called from irq
  864. * context.
  865. */
  866. spin_lock_irqsave(&ctx->ctx_lock, flags);
  867. if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
  868. list_del_init(&iocb->ki_run_list);
  869. /*
  870. * cancelled requests don't get events, userland was given one
  871. * when the event got cancelled.
  872. */
  873. if (kiocbIsCancelled(iocb))
  874. goto put_rq;
  875. ring = kmap_atomic(info->ring_pages[0]);
  876. tail = info->tail;
  877. event = aio_ring_event(info, tail);
  878. if (++tail >= info->nr)
  879. tail = 0;
  880. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  881. event->data = iocb->ki_user_data;
  882. event->res = res;
  883. event->res2 = res2;
  884. dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
  885. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  886. res, res2);
  887. /* after flagging the request as done, we
  888. * must never even look at it again
  889. */
  890. smp_wmb(); /* make event visible before updating tail */
  891. info->tail = tail;
  892. ring->tail = tail;
  893. put_aio_ring_event(event);
  894. kunmap_atomic(ring);
  895. pr_debug("added to ring %p at [%lu]\n", iocb, tail);
  896. /*
  897. * Check if the user asked us to deliver the result through an
  898. * eventfd. The eventfd_signal() function is safe to be called
  899. * from IRQ context.
  900. */
  901. if (iocb->ki_eventfd != NULL)
  902. eventfd_signal(iocb->ki_eventfd, 1);
  903. put_rq:
  904. /* everything turned out well, dispose of the aiocb. */
  905. ret = __aio_put_req(ctx, iocb);
  906. /*
  907. * We have to order our ring_info tail store above and test
  908. * of the wait list below outside the wait lock. This is
  909. * like in wake_up_bit() where clearing a bit has to be
  910. * ordered with the unlocked test.
  911. */
  912. smp_mb();
  913. if (waitqueue_active(&ctx->wait))
  914. wake_up(&ctx->wait);
  915. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  916. return ret;
  917. }
  918. EXPORT_SYMBOL(aio_complete);
  919. /* aio_read_evt
  920. * Pull an event off of the ioctx's event ring. Returns the number of
  921. * events fetched (0 or 1 ;-)
  922. * FIXME: make this use cmpxchg.
  923. * TODO: make the ringbuffer user mmap()able (requires FIXME).
  924. */
  925. static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
  926. {
  927. struct aio_ring_info *info = &ioctx->ring_info;
  928. struct aio_ring *ring;
  929. unsigned long head;
  930. int ret = 0;
  931. ring = kmap_atomic(info->ring_pages[0]);
  932. dprintk("in aio_read_evt h%lu t%lu m%lu\n",
  933. (unsigned long)ring->head, (unsigned long)ring->tail,
  934. (unsigned long)ring->nr);
  935. if (ring->head == ring->tail)
  936. goto out;
  937. spin_lock(&info->ring_lock);
  938. head = ring->head % info->nr;
  939. if (head != ring->tail) {
  940. struct io_event *evp = aio_ring_event(info, head);
  941. *ent = *evp;
  942. head = (head + 1) % info->nr;
  943. smp_mb(); /* finish reading the event before updatng the head */
  944. ring->head = head;
  945. ret = 1;
  946. put_aio_ring_event(evp);
  947. }
  948. spin_unlock(&info->ring_lock);
  949. out:
  950. dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
  951. (unsigned long)ring->head, (unsigned long)ring->tail);
  952. kunmap_atomic(ring);
  953. return ret;
  954. }
  955. struct aio_timeout {
  956. struct timer_list timer;
  957. int timed_out;
  958. struct task_struct *p;
  959. };
  960. static void timeout_func(unsigned long data)
  961. {
  962. struct aio_timeout *to = (struct aio_timeout *)data;
  963. to->timed_out = 1;
  964. wake_up_process(to->p);
  965. }
  966. static inline void init_timeout(struct aio_timeout *to)
  967. {
  968. setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
  969. to->timed_out = 0;
  970. to->p = current;
  971. }
  972. static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
  973. const struct timespec *ts)
  974. {
  975. to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
  976. if (time_after(to->timer.expires, jiffies))
  977. add_timer(&to->timer);
  978. else
  979. to->timed_out = 1;
  980. }
  981. static inline void clear_timeout(struct aio_timeout *to)
  982. {
  983. del_singleshot_timer_sync(&to->timer);
  984. }
  985. static int read_events(struct kioctx *ctx,
  986. long min_nr, long nr,
  987. struct io_event __user *event,
  988. struct timespec __user *timeout)
  989. {
  990. long start_jiffies = jiffies;
  991. struct task_struct *tsk = current;
  992. DECLARE_WAITQUEUE(wait, tsk);
  993. int ret;
  994. int i = 0;
  995. struct io_event ent;
  996. struct aio_timeout to;
  997. int retry = 0;
  998. /* needed to zero any padding within an entry (there shouldn't be
  999. * any, but C is fun!
  1000. */
  1001. memset(&ent, 0, sizeof(ent));
  1002. retry:
  1003. ret = 0;
  1004. while (likely(i < nr)) {
  1005. ret = aio_read_evt(ctx, &ent);
  1006. if (unlikely(ret <= 0))
  1007. break;
  1008. dprintk("read event: %Lx %Lx %Lx %Lx\n",
  1009. ent.data, ent.obj, ent.res, ent.res2);
  1010. /* Could we split the check in two? */
  1011. ret = -EFAULT;
  1012. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  1013. dprintk("aio: lost an event due to EFAULT.\n");
  1014. break;
  1015. }
  1016. ret = 0;
  1017. /* Good, event copied to userland, update counts. */
  1018. event ++;
  1019. i ++;
  1020. }
  1021. if (min_nr <= i)
  1022. return i;
  1023. if (ret)
  1024. return ret;
  1025. /* End fast path */
  1026. /* racey check, but it gets redone */
  1027. if (!retry && unlikely(!list_empty(&ctx->run_list))) {
  1028. retry = 1;
  1029. aio_run_all_iocbs(ctx);
  1030. goto retry;
  1031. }
  1032. init_timeout(&to);
  1033. if (timeout) {
  1034. struct timespec ts;
  1035. ret = -EFAULT;
  1036. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  1037. goto out;
  1038. set_timeout(start_jiffies, &to, &ts);
  1039. }
  1040. while (likely(i < nr)) {
  1041. add_wait_queue_exclusive(&ctx->wait, &wait);
  1042. do {
  1043. set_task_state(tsk, TASK_INTERRUPTIBLE);
  1044. ret = aio_read_evt(ctx, &ent);
  1045. if (ret)
  1046. break;
  1047. if (min_nr <= i)
  1048. break;
  1049. if (unlikely(ctx->dead)) {
  1050. ret = -EINVAL;
  1051. break;
  1052. }
  1053. if (to.timed_out) /* Only check after read evt */
  1054. break;
  1055. /* Try to only show up in io wait if there are ops
  1056. * in flight */
  1057. if (ctx->reqs_active)
  1058. io_schedule();
  1059. else
  1060. schedule();
  1061. if (signal_pending(tsk)) {
  1062. ret = -EINTR;
  1063. break;
  1064. }
  1065. /*ret = aio_read_evt(ctx, &ent);*/
  1066. } while (1) ;
  1067. set_task_state(tsk, TASK_RUNNING);
  1068. remove_wait_queue(&ctx->wait, &wait);
  1069. if (unlikely(ret <= 0))
  1070. break;
  1071. ret = -EFAULT;
  1072. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  1073. dprintk("aio: lost an event due to EFAULT.\n");
  1074. break;
  1075. }
  1076. /* Good, event copied to userland, update counts. */
  1077. event ++;
  1078. i ++;
  1079. }
  1080. if (timeout)
  1081. clear_timeout(&to);
  1082. out:
  1083. destroy_timer_on_stack(&to.timer);
  1084. return i ? i : ret;
  1085. }
  1086. /* Take an ioctx and remove it from the list of ioctx's. Protects
  1087. * against races with itself via ->dead.
  1088. */
  1089. static void io_destroy(struct kioctx *ioctx)
  1090. {
  1091. struct mm_struct *mm = current->mm;
  1092. int was_dead;
  1093. /* delete the entry from the list is someone else hasn't already */
  1094. spin_lock(&mm->ioctx_lock);
  1095. was_dead = ioctx->dead;
  1096. ioctx->dead = 1;
  1097. hlist_del_rcu(&ioctx->list);
  1098. spin_unlock(&mm->ioctx_lock);
  1099. dprintk("aio_release(%p)\n", ioctx);
  1100. if (likely(!was_dead))
  1101. put_ioctx(ioctx); /* twice for the list */
  1102. kill_ctx(ioctx);
  1103. /*
  1104. * Wake up any waiters. The setting of ctx->dead must be seen
  1105. * by other CPUs at this point. Right now, we rely on the
  1106. * locking done by the above calls to ensure this consistency.
  1107. */
  1108. wake_up_all(&ioctx->wait);
  1109. }
  1110. /* sys_io_setup:
  1111. * Create an aio_context capable of receiving at least nr_events.
  1112. * ctxp must not point to an aio_context that already exists, and
  1113. * must be initialized to 0 prior to the call. On successful
  1114. * creation of the aio_context, *ctxp is filled in with the resulting
  1115. * handle. May fail with -EINVAL if *ctxp is not initialized,
  1116. * if the specified nr_events exceeds internal limits. May fail
  1117. * with -EAGAIN if the specified nr_events exceeds the user's limit
  1118. * of available events. May fail with -ENOMEM if insufficient kernel
  1119. * resources are available. May fail with -EFAULT if an invalid
  1120. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  1121. * implemented.
  1122. */
  1123. SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
  1124. {
  1125. struct kioctx *ioctx = NULL;
  1126. unsigned long ctx;
  1127. long ret;
  1128. ret = get_user(ctx, ctxp);
  1129. if (unlikely(ret))
  1130. goto out;
  1131. ret = -EINVAL;
  1132. if (unlikely(ctx || nr_events == 0)) {
  1133. pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
  1134. ctx, nr_events);
  1135. goto out;
  1136. }
  1137. ioctx = ioctx_alloc(nr_events);
  1138. ret = PTR_ERR(ioctx);
  1139. if (!IS_ERR(ioctx)) {
  1140. ret = put_user(ioctx->user_id, ctxp);
  1141. if (ret)
  1142. io_destroy(ioctx);
  1143. put_ioctx(ioctx);
  1144. }
  1145. out:
  1146. return ret;
  1147. }
  1148. /* sys_io_destroy:
  1149. * Destroy the aio_context specified. May cancel any outstanding
  1150. * AIOs and block on completion. Will fail with -ENOSYS if not
  1151. * implemented. May fail with -EINVAL if the context pointed to
  1152. * is invalid.
  1153. */
  1154. SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
  1155. {
  1156. struct kioctx *ioctx = lookup_ioctx(ctx);
  1157. if (likely(NULL != ioctx)) {
  1158. io_destroy(ioctx);
  1159. put_ioctx(ioctx);
  1160. return 0;
  1161. }
  1162. pr_debug("EINVAL: io_destroy: invalid context id\n");
  1163. return -EINVAL;
  1164. }
  1165. static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
  1166. {
  1167. struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
  1168. BUG_ON(ret <= 0);
  1169. while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
  1170. ssize_t this = min((ssize_t)iov->iov_len, ret);
  1171. iov->iov_base += this;
  1172. iov->iov_len -= this;
  1173. iocb->ki_left -= this;
  1174. ret -= this;
  1175. if (iov->iov_len == 0) {
  1176. iocb->ki_cur_seg++;
  1177. iov++;
  1178. }
  1179. }
  1180. /* the caller should not have done more io than what fit in
  1181. * the remaining iovecs */
  1182. BUG_ON(ret > 0 && iocb->ki_left == 0);
  1183. }
  1184. static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
  1185. {
  1186. struct file *file = iocb->ki_filp;
  1187. struct address_space *mapping = file->f_mapping;
  1188. struct inode *inode = mapping->host;
  1189. ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
  1190. unsigned long, loff_t);
  1191. ssize_t ret = 0;
  1192. unsigned short opcode;
  1193. if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
  1194. (iocb->ki_opcode == IOCB_CMD_PREAD)) {
  1195. rw_op = file->f_op->aio_read;
  1196. opcode = IOCB_CMD_PREADV;
  1197. } else {
  1198. rw_op = file->f_op->aio_write;
  1199. opcode = IOCB_CMD_PWRITEV;
  1200. }
  1201. /* This matches the pread()/pwrite() logic */
  1202. if (iocb->ki_pos < 0)
  1203. return -EINVAL;
  1204. do {
  1205. ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
  1206. iocb->ki_nr_segs - iocb->ki_cur_seg,
  1207. iocb->ki_pos);
  1208. if (ret > 0)
  1209. aio_advance_iovec(iocb, ret);
  1210. /* retry all partial writes. retry partial reads as long as its a
  1211. * regular file. */
  1212. } while (ret > 0 && iocb->ki_left > 0 &&
  1213. (opcode == IOCB_CMD_PWRITEV ||
  1214. (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
  1215. /* This means we must have transferred all that we could */
  1216. /* No need to retry anymore */
  1217. if ((ret == 0) || (iocb->ki_left == 0))
  1218. ret = iocb->ki_nbytes - iocb->ki_left;
  1219. /* If we managed to write some out we return that, rather than
  1220. * the eventual error. */
  1221. if (opcode == IOCB_CMD_PWRITEV
  1222. && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
  1223. && iocb->ki_nbytes - iocb->ki_left)
  1224. ret = iocb->ki_nbytes - iocb->ki_left;
  1225. return ret;
  1226. }
  1227. static ssize_t aio_fdsync(struct kiocb *iocb)
  1228. {
  1229. struct file *file = iocb->ki_filp;
  1230. ssize_t ret = -EINVAL;
  1231. if (file->f_op->aio_fsync)
  1232. ret = file->f_op->aio_fsync(iocb, 1);
  1233. return ret;
  1234. }
  1235. static ssize_t aio_fsync(struct kiocb *iocb)
  1236. {
  1237. struct file *file = iocb->ki_filp;
  1238. ssize_t ret = -EINVAL;
  1239. if (file->f_op->aio_fsync)
  1240. ret = file->f_op->aio_fsync(iocb, 0);
  1241. return ret;
  1242. }
  1243. static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
  1244. {
  1245. ssize_t ret;
  1246. #ifdef CONFIG_COMPAT
  1247. if (compat)
  1248. ret = compat_rw_copy_check_uvector(type,
  1249. (struct compat_iovec __user *)kiocb->ki_buf,
  1250. kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
  1251. &kiocb->ki_iovec);
  1252. else
  1253. #endif
  1254. ret = rw_copy_check_uvector(type,
  1255. (struct iovec __user *)kiocb->ki_buf,
  1256. kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
  1257. &kiocb->ki_iovec);
  1258. if (ret < 0)
  1259. goto out;
  1260. ret = rw_verify_area(type, kiocb->ki_filp, &kiocb->ki_pos, ret);
  1261. if (ret < 0)
  1262. goto out;
  1263. kiocb->ki_nr_segs = kiocb->ki_nbytes;
  1264. kiocb->ki_cur_seg = 0;
  1265. /* ki_nbytes/left now reflect bytes instead of segs */
  1266. kiocb->ki_nbytes = ret;
  1267. kiocb->ki_left = ret;
  1268. ret = 0;
  1269. out:
  1270. return ret;
  1271. }
  1272. static ssize_t aio_setup_single_vector(int type, struct file * file, struct kiocb *kiocb)
  1273. {
  1274. int bytes;
  1275. bytes = rw_verify_area(type, file, &kiocb->ki_pos, kiocb->ki_left);
  1276. if (bytes < 0)
  1277. return bytes;
  1278. kiocb->ki_iovec = &kiocb->ki_inline_vec;
  1279. kiocb->ki_iovec->iov_base = kiocb->ki_buf;
  1280. kiocb->ki_iovec->iov_len = bytes;
  1281. kiocb->ki_nr_segs = 1;
  1282. kiocb->ki_cur_seg = 0;
  1283. return 0;
  1284. }
  1285. /*
  1286. * aio_setup_iocb:
  1287. * Performs the initial checks and aio retry method
  1288. * setup for the kiocb at the time of io submission.
  1289. */
  1290. static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
  1291. {
  1292. struct file *file = kiocb->ki_filp;
  1293. ssize_t ret = 0;
  1294. switch (kiocb->ki_opcode) {
  1295. case IOCB_CMD_PREAD:
  1296. ret = -EBADF;
  1297. if (unlikely(!(file->f_mode & FMODE_READ)))
  1298. break;
  1299. ret = -EFAULT;
  1300. if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
  1301. kiocb->ki_left)))
  1302. break;
  1303. ret = aio_setup_single_vector(READ, file, kiocb);
  1304. if (ret)
  1305. break;
  1306. ret = -EINVAL;
  1307. if (file->f_op->aio_read)
  1308. kiocb->ki_retry = aio_rw_vect_retry;
  1309. break;
  1310. case IOCB_CMD_PWRITE:
  1311. ret = -EBADF;
  1312. if (unlikely(!(file->f_mode & FMODE_WRITE)))
  1313. break;
  1314. ret = -EFAULT;
  1315. if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
  1316. kiocb->ki_left)))
  1317. break;
  1318. ret = aio_setup_single_vector(WRITE, file, kiocb);
  1319. if (ret)
  1320. break;
  1321. ret = -EINVAL;
  1322. if (file->f_op->aio_write)
  1323. kiocb->ki_retry = aio_rw_vect_retry;
  1324. break;
  1325. case IOCB_CMD_PREADV:
  1326. ret = -EBADF;
  1327. if (unlikely(!(file->f_mode & FMODE_READ)))
  1328. break;
  1329. ret = aio_setup_vectored_rw(READ, kiocb, compat);
  1330. if (ret)
  1331. break;
  1332. ret = -EINVAL;
  1333. if (file->f_op->aio_read)
  1334. kiocb->ki_retry = aio_rw_vect_retry;
  1335. break;
  1336. case IOCB_CMD_PWRITEV:
  1337. ret = -EBADF;
  1338. if (unlikely(!(file->f_mode & FMODE_WRITE)))
  1339. break;
  1340. ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
  1341. if (ret)
  1342. break;
  1343. ret = -EINVAL;
  1344. if (file->f_op->aio_write)
  1345. kiocb->ki_retry = aio_rw_vect_retry;
  1346. break;
  1347. case IOCB_CMD_FDSYNC:
  1348. ret = -EINVAL;
  1349. if (file->f_op->aio_fsync)
  1350. kiocb->ki_retry = aio_fdsync;
  1351. break;
  1352. case IOCB_CMD_FSYNC:
  1353. ret = -EINVAL;
  1354. if (file->f_op->aio_fsync)
  1355. kiocb->ki_retry = aio_fsync;
  1356. break;
  1357. default:
  1358. dprintk("EINVAL: io_submit: no operation provided\n");
  1359. ret = -EINVAL;
  1360. }
  1361. if (!kiocb->ki_retry)
  1362. return ret;
  1363. return 0;
  1364. }
  1365. static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1366. struct iocb *iocb, struct kiocb_batch *batch,
  1367. bool compat)
  1368. {
  1369. struct kiocb *req;
  1370. struct file *file;
  1371. ssize_t ret;
  1372. /* enforce forwards compatibility on users */
  1373. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
  1374. pr_debug("EINVAL: io_submit: reserve field set\n");
  1375. return -EINVAL;
  1376. }
  1377. /* prevent overflows */
  1378. if (unlikely(
  1379. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1380. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1381. ((ssize_t)iocb->aio_nbytes < 0)
  1382. )) {
  1383. pr_debug("EINVAL: io_submit: overflow check\n");
  1384. return -EINVAL;
  1385. }
  1386. file = fget(iocb->aio_fildes);
  1387. if (unlikely(!file))
  1388. return -EBADF;
  1389. req = aio_get_req(ctx, batch); /* returns with 2 references to req */
  1390. if (unlikely(!req)) {
  1391. fput(file);
  1392. return -EAGAIN;
  1393. }
  1394. req->ki_filp = file;
  1395. if (iocb->aio_flags & IOCB_FLAG_RESFD) {
  1396. /*
  1397. * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
  1398. * instance of the file* now. The file descriptor must be
  1399. * an eventfd() fd, and will be signaled for each completed
  1400. * event using the eventfd_signal() function.
  1401. */
  1402. req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
  1403. if (IS_ERR(req->ki_eventfd)) {
  1404. ret = PTR_ERR(req->ki_eventfd);
  1405. req->ki_eventfd = NULL;
  1406. goto out_put_req;
  1407. }
  1408. }
  1409. ret = put_user(req->ki_key, &user_iocb->aio_key);
  1410. if (unlikely(ret)) {
  1411. dprintk("EFAULT: aio_key\n");
  1412. goto out_put_req;
  1413. }
  1414. req->ki_obj.user = user_iocb;
  1415. req->ki_user_data = iocb->aio_data;
  1416. req->ki_pos = iocb->aio_offset;
  1417. req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
  1418. req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
  1419. req->ki_opcode = iocb->aio_lio_opcode;
  1420. ret = aio_setup_iocb(req, compat);
  1421. if (ret)
  1422. goto out_put_req;
  1423. spin_lock_irq(&ctx->ctx_lock);
  1424. /*
  1425. * We could have raced with io_destroy() and are currently holding a
  1426. * reference to ctx which should be destroyed. We cannot submit IO
  1427. * since ctx gets freed as soon as io_submit() puts its reference. The
  1428. * check here is reliable: io_destroy() sets ctx->dead before waiting
  1429. * for outstanding IO and the barrier between these two is realized by
  1430. * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we
  1431. * increment ctx->reqs_active before checking for ctx->dead and the
  1432. * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
  1433. * don't see ctx->dead set here, io_destroy() waits for our IO to
  1434. * finish.
  1435. */
  1436. if (ctx->dead) {
  1437. spin_unlock_irq(&ctx->ctx_lock);
  1438. ret = -EINVAL;
  1439. goto out_put_req;
  1440. }
  1441. aio_run_iocb(req);
  1442. if (!list_empty(&ctx->run_list)) {
  1443. /* drain the run list */
  1444. while (__aio_run_iocbs(ctx))
  1445. ;
  1446. }
  1447. spin_unlock_irq(&ctx->ctx_lock);
  1448. aio_put_req(req); /* drop extra ref to req */
  1449. return 0;
  1450. out_put_req:
  1451. aio_put_req(req); /* drop extra ref to req */
  1452. aio_put_req(req); /* drop i/o ref to req */
  1453. return ret;
  1454. }
  1455. long do_io_submit(aio_context_t ctx_id, long nr,
  1456. struct iocb __user *__user *iocbpp, bool compat)
  1457. {
  1458. struct kioctx *ctx;
  1459. long ret = 0;
  1460. int i = 0;
  1461. struct kiocb_batch batch;
  1462. if (unlikely(nr < 0))
  1463. return -EINVAL;
  1464. if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
  1465. nr = LONG_MAX/sizeof(*iocbpp);
  1466. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1467. return -EFAULT;
  1468. ctx = lookup_ioctx(ctx_id);
  1469. if (unlikely(!ctx)) {
  1470. pr_debug("EINVAL: io_submit: invalid context id\n");
  1471. return -EINVAL;
  1472. }
  1473. kiocb_batch_init(&batch, nr);
  1474. /*
  1475. * AKPM: should this return a partial result if some of the IOs were
  1476. * successfully submitted?
  1477. */
  1478. for (i=0; i<nr; i++) {
  1479. struct iocb __user *user_iocb;
  1480. struct iocb tmp;
  1481. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1482. ret = -EFAULT;
  1483. break;
  1484. }
  1485. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1486. ret = -EFAULT;
  1487. break;
  1488. }
  1489. ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat);
  1490. if (ret)
  1491. break;
  1492. }
  1493. kiocb_batch_free(ctx, &batch);
  1494. put_ioctx(ctx);
  1495. return i ? i : ret;
  1496. }
  1497. /* sys_io_submit:
  1498. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1499. * the number of iocbs queued. May return -EINVAL if the aio_context
  1500. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1501. * *iocbpp[0] is not properly initialized, if the operation specified
  1502. * is invalid for the file descriptor in the iocb. May fail with
  1503. * -EFAULT if any of the data structures point to invalid data. May
  1504. * fail with -EBADF if the file descriptor specified in the first
  1505. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1506. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1507. * fail with -ENOSYS if not implemented.
  1508. */
  1509. SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
  1510. struct iocb __user * __user *, iocbpp)
  1511. {
  1512. return do_io_submit(ctx_id, nr, iocbpp, 0);
  1513. }
  1514. /* lookup_kiocb
  1515. * Finds a given iocb for cancellation.
  1516. */
  1517. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1518. u32 key)
  1519. {
  1520. struct list_head *pos;
  1521. assert_spin_locked(&ctx->ctx_lock);
  1522. /* TODO: use a hash or array, this sucks. */
  1523. list_for_each(pos, &ctx->active_reqs) {
  1524. struct kiocb *kiocb = list_kiocb(pos);
  1525. if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
  1526. return kiocb;
  1527. }
  1528. return NULL;
  1529. }
  1530. /* sys_io_cancel:
  1531. * Attempts to cancel an iocb previously passed to io_submit. If
  1532. * the operation is successfully cancelled, the resulting event is
  1533. * copied into the memory pointed to by result without being placed
  1534. * into the completion queue and 0 is returned. May fail with
  1535. * -EFAULT if any of the data structures pointed to are invalid.
  1536. * May fail with -EINVAL if aio_context specified by ctx_id is
  1537. * invalid. May fail with -EAGAIN if the iocb specified was not
  1538. * cancelled. Will fail with -ENOSYS if not implemented.
  1539. */
  1540. SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
  1541. struct io_event __user *, result)
  1542. {
  1543. int (*cancel)(struct kiocb *iocb, struct io_event *res);
  1544. struct kioctx *ctx;
  1545. struct kiocb *kiocb;
  1546. u32 key;
  1547. int ret;
  1548. ret = get_user(key, &iocb->aio_key);
  1549. if (unlikely(ret))
  1550. return -EFAULT;
  1551. ctx = lookup_ioctx(ctx_id);
  1552. if (unlikely(!ctx))
  1553. return -EINVAL;
  1554. spin_lock_irq(&ctx->ctx_lock);
  1555. ret = -EAGAIN;
  1556. kiocb = lookup_kiocb(ctx, iocb, key);
  1557. if (kiocb && kiocb->ki_cancel) {
  1558. cancel = kiocb->ki_cancel;
  1559. kiocb->ki_users ++;
  1560. kiocbSetCancelled(kiocb);
  1561. } else
  1562. cancel = NULL;
  1563. spin_unlock_irq(&ctx->ctx_lock);
  1564. if (NULL != cancel) {
  1565. struct io_event tmp;
  1566. pr_debug("calling cancel\n");
  1567. memset(&tmp, 0, sizeof(tmp));
  1568. tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
  1569. tmp.data = kiocb->ki_user_data;
  1570. ret = cancel(kiocb, &tmp);
  1571. if (!ret) {
  1572. /* Cancellation succeeded -- copy the result
  1573. * into the user's buffer.
  1574. */
  1575. if (copy_to_user(result, &tmp, sizeof(tmp)))
  1576. ret = -EFAULT;
  1577. }
  1578. } else
  1579. ret = -EINVAL;
  1580. put_ioctx(ctx);
  1581. return ret;
  1582. }
  1583. /* io_getevents:
  1584. * Attempts to read at least min_nr events and up to nr events from
  1585. * the completion queue for the aio_context specified by ctx_id. If
  1586. * it succeeds, the number of read events is returned. May fail with
  1587. * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
  1588. * out of range, if timeout is out of range. May fail with -EFAULT
  1589. * if any of the memory specified is invalid. May return 0 or
  1590. * < min_nr if the timeout specified by timeout has elapsed
  1591. * before sufficient events are available, where timeout == NULL
  1592. * specifies an infinite timeout. Note that the timeout pointed to by
  1593. * timeout is relative and will be updated if not NULL and the
  1594. * operation blocks. Will fail with -ENOSYS if not implemented.
  1595. */
  1596. SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
  1597. long, min_nr,
  1598. long, nr,
  1599. struct io_event __user *, events,
  1600. struct timespec __user *, timeout)
  1601. {
  1602. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1603. long ret = -EINVAL;
  1604. if (likely(ioctx)) {
  1605. if (likely(min_nr <= nr && min_nr >= 0))
  1606. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1607. put_ioctx(ioctx);
  1608. }
  1609. asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
  1610. return ret;
  1611. }