fci_ringbuffer.c 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. /*****************************************************************************
  2. Copyright(c) 2010 FCI Inc. All Rights Reserved
  3. File name : fci_ringbuffer.c
  4. Description : fci ringbuffer
  5. History :
  6. ----------------------------------------------------------------------
  7. 2010/11/25 aslan.cho initial
  8. *******************************************************************************/
  9. #include <linux/errno.h>
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/sched.h>
  13. #include <linux/string.h>
  14. #include <linux/uaccess.h>
  15. #include "fci_ringbuffer.h"
  16. #define PKT_READY 0
  17. #define PKT_DISPOSED 1
  18. void fci_ringbuffer_init(struct fci_ringbuffer *rbuf, void *data, size_t len)
  19. {
  20. rbuf->pread = rbuf->pwrite = 0;
  21. rbuf->data = data;
  22. rbuf->size = len;
  23. rbuf->error = 0;
  24. init_waitqueue_head(&rbuf->queue);
  25. spin_lock_init(&(rbuf->lock));
  26. }
  27. int fci_ringbuffer_empty(struct fci_ringbuffer *rbuf)
  28. {
  29. return (rbuf->pread == rbuf->pwrite);
  30. }
  31. ssize_t fci_ringbuffer_free(struct fci_ringbuffer *rbuf)
  32. {
  33. ssize_t free;
  34. free = rbuf->pread - rbuf->pwrite;
  35. if (free <= 0)
  36. free += rbuf->size;
  37. return free-1;
  38. }
  39. ssize_t fci_ringbuffer_avail(struct fci_ringbuffer *rbuf)
  40. {
  41. ssize_t avail;
  42. avail = rbuf->pwrite - rbuf->pread;
  43. if (avail < 0)
  44. avail += rbuf->size;
  45. return avail;
  46. }
  47. void fci_ringbuffer_flush(struct fci_ringbuffer *rbuf)
  48. {
  49. rbuf->pread = rbuf->pwrite;
  50. rbuf->error = 0;
  51. }
  52. void fci_ringbuffer_reset(struct fci_ringbuffer *rbuf)
  53. {
  54. rbuf->pread = rbuf->pwrite = 0;
  55. rbuf->error = 0;
  56. }
  57. void fci_ringbuffer_flush_spinlock_wakeup(struct fci_ringbuffer *rbuf)
  58. {
  59. unsigned long flags;
  60. spin_lock_irqsave(&rbuf->lock, flags);
  61. fci_ringbuffer_flush(rbuf);
  62. spin_unlock_irqrestore(&rbuf->lock, flags);
  63. wake_up(&rbuf->queue);
  64. }
  65. ssize_t fci_ringbuffer_read_user(struct fci_ringbuffer *rbuf
  66. , u8 __user *buf, size_t len)
  67. {
  68. size_t todo = len;
  69. size_t split;
  70. split = (rbuf->pread + len > rbuf->size) ? rbuf->size - rbuf->pread : 0;
  71. if (split > 0) {
  72. if (copy_to_user(buf, rbuf->data+rbuf->pread, split))
  73. return -EFAULT;
  74. buf += split;
  75. todo -= split;
  76. rbuf->pread = 0;
  77. }
  78. if (copy_to_user(buf, rbuf->data+rbuf->pread, todo))
  79. return -EFAULT;
  80. rbuf->pread = (rbuf->pread + todo) % rbuf->size;
  81. return len;
  82. }
  83. void fci_ringbuffer_read(struct fci_ringbuffer *rbuf, u8 *buf, size_t len)
  84. {
  85. size_t todo = len;
  86. size_t split;
  87. split = (rbuf->pread + len > rbuf->size) ? rbuf->size - rbuf->pread : 0;
  88. if (split > 0) {
  89. memcpy(buf, rbuf->data+rbuf->pread, split);
  90. buf += split;
  91. todo -= split;
  92. rbuf->pread = 0;
  93. }
  94. memcpy(buf, rbuf->data+rbuf->pread, todo);
  95. rbuf->pread = (rbuf->pread + todo) % rbuf->size;
  96. }
  97. ssize_t fci_ringbuffer_write(struct fci_ringbuffer *rbuf
  98. , const u8 *buf, size_t len)
  99. {
  100. size_t todo = len;
  101. size_t split;
  102. split = (rbuf->pwrite + len > rbuf->size)
  103. ? rbuf->size - rbuf->pwrite : 0;
  104. if (split > 0) {
  105. memcpy(rbuf->data+rbuf->pwrite, buf, split);
  106. buf += split;
  107. todo -= split;
  108. rbuf->pwrite = 0;
  109. }
  110. memcpy(rbuf->data+rbuf->pwrite, buf, todo);
  111. rbuf->pwrite = (rbuf->pwrite + todo) % rbuf->size;
  112. return len;
  113. }
  114. ssize_t fci_ringbuffer_pkt_write(struct fci_ringbuffer *rbuf
  115. , u8 *buf, size_t len)
  116. {
  117. int status;
  118. ssize_t oldpwrite = rbuf->pwrite;
  119. FCI_RINGBUFFER_WRITE_BYTE(rbuf, len >> 8);
  120. FCI_RINGBUFFER_WRITE_BYTE(rbuf, len & 0xff);
  121. FCI_RINGBUFFER_WRITE_BYTE(rbuf, PKT_READY);
  122. status = fci_ringbuffer_write(rbuf, buf, len);
  123. if (status < 0)
  124. rbuf->pwrite = oldpwrite;
  125. return status;
  126. }
  127. ssize_t fci_ringbuffer_pkt_read_user(struct fci_ringbuffer *rbuf, size_t idx,
  128. int offset, u8 __user *buf, size_t len)
  129. {
  130. size_t todo;
  131. size_t split;
  132. size_t pktlen;
  133. pktlen = rbuf->data[idx] << 8;
  134. pktlen |= rbuf->data[(idx + 1) % rbuf->size];
  135. if (offset > pktlen)
  136. return -EINVAL;
  137. if ((offset + len) > pktlen)
  138. len = pktlen - offset;
  139. idx = (idx + FCI_RINGBUFFER_PKTHDRSIZE + offset) % rbuf->size;
  140. todo = len;
  141. split = ((idx + len) > rbuf->size) ? rbuf->size - idx : 0;
  142. if (split > 0) {
  143. if (copy_to_user(buf, rbuf->data+idx, split))
  144. return -EFAULT;
  145. buf += split;
  146. todo -= split;
  147. idx = 0;
  148. }
  149. if (copy_to_user(buf, rbuf->data+idx, todo))
  150. return -EFAULT;
  151. return len;
  152. }
  153. ssize_t fci_ringbuffer_pkt_read(struct fci_ringbuffer *rbuf, size_t idx,
  154. int offset, u8 *buf, size_t len)
  155. {
  156. size_t todo;
  157. size_t split;
  158. size_t pktlen;
  159. pktlen = rbuf->data[idx] << 8;
  160. pktlen |= rbuf->data[(idx + 1) % rbuf->size];
  161. if (offset > pktlen)
  162. return -EINVAL;
  163. if ((offset + len) > pktlen)
  164. len = pktlen - offset;
  165. idx = (idx + FCI_RINGBUFFER_PKTHDRSIZE + offset) % rbuf->size;
  166. todo = len;
  167. split = ((idx + len) > rbuf->size) ? rbuf->size - idx : 0;
  168. if (split > 0) {
  169. memcpy(buf, rbuf->data+idx, split);
  170. buf += split;
  171. todo -= split;
  172. idx = 0;
  173. }
  174. memcpy(buf, rbuf->data+idx, todo);
  175. return len;
  176. }
  177. void fci_ringbuffer_pkt_dispose(struct fci_ringbuffer *rbuf, size_t idx)
  178. {
  179. size_t pktlen;
  180. rbuf->data[(idx + 2) % rbuf->size] = PKT_DISPOSED;
  181. while (fci_ringbuffer_avail(rbuf) > FCI_RINGBUFFER_PKTHDRSIZE) {
  182. if (FCI_RINGBUFFER_PEEK(rbuf, 2) == PKT_DISPOSED) {
  183. pktlen = FCI_RINGBUFFER_PEEK(rbuf, 0) << 8;
  184. pktlen |= FCI_RINGBUFFER_PEEK(rbuf, 1);
  185. FCI_RINGBUFFER_SKIP(rbuf
  186. , pktlen + FCI_RINGBUFFER_PKTHDRSIZE);
  187. } else
  188. break;
  189. }
  190. }
  191. ssize_t fci_ringbuffer_pkt_next(struct fci_ringbuffer *rbuf
  192. , size_t idx, size_t *pktlen)
  193. {
  194. int consumed;
  195. int curpktlen;
  196. int curpktstatus;
  197. if (idx == -1)
  198. idx = rbuf->pread;
  199. else {
  200. curpktlen = rbuf->data[idx] << 8;
  201. curpktlen |= rbuf->data[(idx + 1) % rbuf->size];
  202. idx = (idx + curpktlen + FCI_RINGBUFFER_PKTHDRSIZE)
  203. % rbuf->size;
  204. }
  205. consumed = (idx - rbuf->pread) % rbuf->size;
  206. while ((fci_ringbuffer_avail(rbuf) - consumed)
  207. > FCI_RINGBUFFER_PKTHDRSIZE) {
  208. curpktlen = rbuf->data[idx] << 8;
  209. curpktlen |= rbuf->data[(idx + 1) % rbuf->size];
  210. curpktstatus = rbuf->data[(idx + 2) % rbuf->size];
  211. if (curpktstatus == PKT_READY) {
  212. *pktlen = curpktlen;
  213. return idx;
  214. }
  215. consumed += curpktlen + FCI_RINGBUFFER_PKTHDRSIZE;
  216. idx = (idx + curpktlen + FCI_RINGBUFFER_PKTHDRSIZE)
  217. % rbuf->size;
  218. }
  219. return -1;
  220. }