af9013.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528
  1. /*
  2. * Afatech AF9013 demodulator driver
  3. *
  4. * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
  6. *
  7. * Thanks to Afatech who kindly provided information.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22. *
  23. */
  24. #include "af9013_priv.h"
  25. int af9013_debug;
  26. module_param_named(debug, af9013_debug, int, 0644);
  27. MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
  28. struct af9013_state {
  29. struct i2c_adapter *i2c;
  30. struct dvb_frontend fe;
  31. struct af9013_config config;
  32. /* tuner/demod RF and IF AGC limits used for signal strength calc */
  33. u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
  34. u16 signal_strength;
  35. u32 ber;
  36. u32 ucblocks;
  37. u16 snr;
  38. u32 bandwidth_hz;
  39. fe_status_t fe_status;
  40. unsigned long set_frontend_jiffies;
  41. unsigned long read_status_jiffies;
  42. bool first_tune;
  43. bool i2c_gate_state;
  44. unsigned int statistics_step:3;
  45. struct delayed_work statistics_work;
  46. };
  47. /* write multiple registers */
  48. static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
  49. const u8 *val, int len)
  50. {
  51. int ret;
  52. u8 buf[3+len];
  53. struct i2c_msg msg[1] = {
  54. {
  55. .addr = priv->config.i2c_addr,
  56. .flags = 0,
  57. .len = sizeof(buf),
  58. .buf = buf,
  59. }
  60. };
  61. buf[0] = (reg >> 8) & 0xff;
  62. buf[1] = (reg >> 0) & 0xff;
  63. buf[2] = mbox;
  64. memcpy(&buf[3], val, len);
  65. ret = i2c_transfer(priv->i2c, msg, 1);
  66. if (ret == 1) {
  67. ret = 0;
  68. } else {
  69. warn("i2c wr failed=%d reg=%04x len=%d", ret, reg, len);
  70. ret = -EREMOTEIO;
  71. }
  72. return ret;
  73. }
  74. /* read multiple registers */
  75. static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
  76. u8 *val, int len)
  77. {
  78. int ret;
  79. u8 buf[3];
  80. struct i2c_msg msg[2] = {
  81. {
  82. .addr = priv->config.i2c_addr,
  83. .flags = 0,
  84. .len = 3,
  85. .buf = buf,
  86. }, {
  87. .addr = priv->config.i2c_addr,
  88. .flags = I2C_M_RD,
  89. .len = len,
  90. .buf = val,
  91. }
  92. };
  93. buf[0] = (reg >> 8) & 0xff;
  94. buf[1] = (reg >> 0) & 0xff;
  95. buf[2] = mbox;
  96. ret = i2c_transfer(priv->i2c, msg, 2);
  97. if (ret == 2) {
  98. ret = 0;
  99. } else {
  100. warn("i2c rd failed=%d reg=%04x len=%d", ret, reg, len);
  101. ret = -EREMOTEIO;
  102. }
  103. return ret;
  104. }
  105. /* write multiple registers */
  106. static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
  107. int len)
  108. {
  109. int ret, i;
  110. u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
  111. if ((priv->config.ts_mode == AF9013_TS_USB) &&
  112. ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
  113. mbox |= ((len - 1) << 2);
  114. ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
  115. } else {
  116. for (i = 0; i < len; i++) {
  117. ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
  118. if (ret)
  119. goto err;
  120. }
  121. }
  122. err:
  123. return 0;
  124. }
  125. /* read multiple registers */
  126. static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
  127. {
  128. int ret, i;
  129. u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
  130. if ((priv->config.ts_mode == AF9013_TS_USB) &&
  131. ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
  132. mbox |= ((len - 1) << 2);
  133. ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
  134. } else {
  135. for (i = 0; i < len; i++) {
  136. ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
  137. if (ret)
  138. goto err;
  139. }
  140. }
  141. err:
  142. return 0;
  143. }
  144. /* write single register */
  145. static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
  146. {
  147. return af9013_wr_regs(priv, reg, &val, 1);
  148. }
  149. /* read single register */
  150. static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
  151. {
  152. return af9013_rd_regs(priv, reg, val, 1);
  153. }
  154. static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
  155. u8 len)
  156. {
  157. u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
  158. return af9013_wr_regs_i2c(state, mbox, reg, val, len);
  159. }
  160. static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
  161. int len, u8 val)
  162. {
  163. int ret;
  164. u8 tmp, mask;
  165. /* no need for read if whole reg is written */
  166. if (len != 8) {
  167. ret = af9013_rd_reg(state, reg, &tmp);
  168. if (ret)
  169. return ret;
  170. mask = (0xff >> (8 - len)) << pos;
  171. val <<= pos;
  172. tmp &= ~mask;
  173. val |= tmp;
  174. }
  175. return af9013_wr_reg(state, reg, val);
  176. }
  177. static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
  178. int len, u8 *val)
  179. {
  180. int ret;
  181. u8 tmp;
  182. ret = af9013_rd_reg(state, reg, &tmp);
  183. if (ret)
  184. return ret;
  185. *val = (tmp >> pos);
  186. *val &= (0xff >> (8 - len));
  187. return 0;
  188. }
  189. static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
  190. {
  191. int ret;
  192. u8 pos;
  193. u16 addr;
  194. dbg("%s: gpio=%d gpioval=%02x", __func__, gpio, gpioval);
  195. /*
  196. * GPIO0 & GPIO1 0xd735
  197. * GPIO2 & GPIO3 0xd736
  198. */
  199. switch (gpio) {
  200. case 0:
  201. case 1:
  202. addr = 0xd735;
  203. break;
  204. case 2:
  205. case 3:
  206. addr = 0xd736;
  207. break;
  208. default:
  209. err("invalid gpio:%d\n", gpio);
  210. ret = -EINVAL;
  211. goto err;
  212. };
  213. switch (gpio) {
  214. case 0:
  215. case 2:
  216. pos = 0;
  217. break;
  218. case 1:
  219. case 3:
  220. default:
  221. pos = 4;
  222. break;
  223. };
  224. ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
  225. if (ret)
  226. goto err;
  227. return ret;
  228. err:
  229. dbg("%s: failed=%d", __func__, ret);
  230. return ret;
  231. }
  232. static u32 af913_div(u32 a, u32 b, u32 x)
  233. {
  234. u32 r = 0, c = 0, i;
  235. dbg("%s: a=%d b=%d x=%d", __func__, a, b, x);
  236. if (a > b) {
  237. c = a / b;
  238. a = a - c * b;
  239. }
  240. for (i = 0; i < x; i++) {
  241. if (a >= b) {
  242. r += 1;
  243. a -= b;
  244. }
  245. a <<= 1;
  246. r <<= 1;
  247. }
  248. r = (c << (u32)x) + r;
  249. dbg("%s: a=%d b=%d x=%d r=%x", __func__, a, b, x, r);
  250. return r;
  251. }
  252. static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
  253. {
  254. int ret, i;
  255. u8 tmp;
  256. dbg("%s: onoff=%d", __func__, onoff);
  257. /* enable reset */
  258. ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
  259. if (ret)
  260. goto err;
  261. /* start reset mechanism */
  262. ret = af9013_wr_reg(state, 0xaeff, 1);
  263. if (ret)
  264. goto err;
  265. /* wait reset performs */
  266. for (i = 0; i < 150; i++) {
  267. ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
  268. if (ret)
  269. goto err;
  270. if (tmp)
  271. break; /* reset done */
  272. usleep_range(5000, 25000);
  273. }
  274. if (!tmp)
  275. return -ETIMEDOUT;
  276. if (onoff) {
  277. /* clear reset */
  278. ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
  279. if (ret)
  280. goto err;
  281. /* disable reset */
  282. ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
  283. /* power on */
  284. ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
  285. } else {
  286. /* power off */
  287. ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
  288. }
  289. return ret;
  290. err:
  291. dbg("%s: failed=%d", __func__, ret);
  292. return ret;
  293. }
  294. static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
  295. {
  296. struct af9013_state *state = fe->demodulator_priv;
  297. int ret;
  298. dbg("%s", __func__);
  299. /* reset and start BER counter */
  300. ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
  301. if (ret)
  302. goto err;
  303. return ret;
  304. err:
  305. dbg("%s: failed=%d", __func__, ret);
  306. return ret;
  307. }
  308. static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
  309. {
  310. struct af9013_state *state = fe->demodulator_priv;
  311. int ret;
  312. u8 buf[5];
  313. dbg("%s", __func__);
  314. /* check if error bit count is ready */
  315. ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
  316. if (ret)
  317. goto err;
  318. if (!buf[0]) {
  319. dbg("%s: not ready", __func__);
  320. return 0;
  321. }
  322. ret = af9013_rd_regs(state, 0xd387, buf, 5);
  323. if (ret)
  324. goto err;
  325. state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  326. state->ucblocks += (buf[4] << 8) | buf[3];
  327. return ret;
  328. err:
  329. dbg("%s: failed=%d", __func__, ret);
  330. return ret;
  331. }
  332. static int af9013_statistics_snr_start(struct dvb_frontend *fe)
  333. {
  334. struct af9013_state *state = fe->demodulator_priv;
  335. int ret;
  336. dbg("%s", __func__);
  337. /* start SNR meas */
  338. ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
  339. if (ret)
  340. goto err;
  341. return ret;
  342. err:
  343. dbg("%s: failed=%d", __func__, ret);
  344. return ret;
  345. }
  346. static int af9013_statistics_snr_result(struct dvb_frontend *fe)
  347. {
  348. struct af9013_state *state = fe->demodulator_priv;
  349. int ret, i, len;
  350. u8 buf[3], tmp;
  351. u32 snr_val;
  352. const struct af9013_snr *uninitialized_var(snr_lut);
  353. dbg("%s", __func__);
  354. /* check if SNR ready */
  355. ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
  356. if (ret)
  357. goto err;
  358. if (!tmp) {
  359. dbg("%s: not ready", __func__);
  360. return 0;
  361. }
  362. /* read value */
  363. ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
  364. if (ret)
  365. goto err;
  366. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  367. /* read current modulation */
  368. ret = af9013_rd_reg(state, 0xd3c1, &tmp);
  369. if (ret)
  370. goto err;
  371. switch ((tmp >> 6) & 3) {
  372. case 0:
  373. len = ARRAY_SIZE(qpsk_snr_lut);
  374. snr_lut = qpsk_snr_lut;
  375. break;
  376. case 1:
  377. len = ARRAY_SIZE(qam16_snr_lut);
  378. snr_lut = qam16_snr_lut;
  379. break;
  380. case 2:
  381. len = ARRAY_SIZE(qam64_snr_lut);
  382. snr_lut = qam64_snr_lut;
  383. break;
  384. default:
  385. goto err;
  386. break;
  387. }
  388. for (i = 0; i < len; i++) {
  389. tmp = snr_lut[i].snr;
  390. if (snr_val < snr_lut[i].val)
  391. break;
  392. }
  393. state->snr = tmp * 10; /* dB/10 */
  394. return ret;
  395. err:
  396. dbg("%s: failed=%d", __func__, ret);
  397. return ret;
  398. }
  399. static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
  400. {
  401. struct af9013_state *state = fe->demodulator_priv;
  402. int ret = 0;
  403. u8 buf[2], rf_gain, if_gain;
  404. int signal_strength;
  405. dbg("%s", __func__);
  406. if (!state->signal_strength_en)
  407. return 0;
  408. ret = af9013_rd_regs(state, 0xd07c, buf, 2);
  409. if (ret)
  410. goto err;
  411. rf_gain = buf[0];
  412. if_gain = buf[1];
  413. signal_strength = (0xffff / \
  414. (9 * (state->rf_50 + state->if_50) - \
  415. 11 * (state->rf_80 + state->if_80))) * \
  416. (10 * (rf_gain + if_gain) - \
  417. 11 * (state->rf_80 + state->if_80));
  418. if (signal_strength < 0)
  419. signal_strength = 0;
  420. else if (signal_strength > 0xffff)
  421. signal_strength = 0xffff;
  422. state->signal_strength = signal_strength;
  423. return ret;
  424. err:
  425. dbg("%s: failed=%d", __func__, ret);
  426. return ret;
  427. }
  428. static void af9013_statistics_work(struct work_struct *work)
  429. {
  430. int ret;
  431. struct af9013_state *state = container_of(work,
  432. struct af9013_state, statistics_work.work);
  433. unsigned int next_msec;
  434. /* update only signal strength when demod is not locked */
  435. if (!(state->fe_status & FE_HAS_LOCK)) {
  436. state->statistics_step = 0;
  437. state->ber = 0;
  438. state->snr = 0;
  439. }
  440. switch (state->statistics_step) {
  441. default:
  442. state->statistics_step = 0;
  443. case 0:
  444. ret = af9013_statistics_signal_strength(&state->fe);
  445. state->statistics_step++;
  446. next_msec = 300;
  447. break;
  448. case 1:
  449. ret = af9013_statistics_snr_start(&state->fe);
  450. state->statistics_step++;
  451. next_msec = 200;
  452. break;
  453. case 2:
  454. ret = af9013_statistics_ber_unc_start(&state->fe);
  455. state->statistics_step++;
  456. next_msec = 1000;
  457. break;
  458. case 3:
  459. ret = af9013_statistics_snr_result(&state->fe);
  460. state->statistics_step++;
  461. next_msec = 400;
  462. break;
  463. case 4:
  464. ret = af9013_statistics_ber_unc_result(&state->fe);
  465. state->statistics_step++;
  466. next_msec = 100;
  467. break;
  468. }
  469. schedule_delayed_work(&state->statistics_work,
  470. msecs_to_jiffies(next_msec));
  471. return;
  472. }
  473. static int af9013_get_tune_settings(struct dvb_frontend *fe,
  474. struct dvb_frontend_tune_settings *fesettings)
  475. {
  476. fesettings->min_delay_ms = 800;
  477. fesettings->step_size = 0;
  478. fesettings->max_drift = 0;
  479. return 0;
  480. }
  481. static int af9013_set_frontend(struct dvb_frontend *fe)
  482. {
  483. struct af9013_state *state = fe->demodulator_priv;
  484. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  485. int ret, i, sampling_freq;
  486. bool auto_mode, spec_inv;
  487. u8 buf[6];
  488. u32 if_frequency, freq_cw;
  489. dbg("%s: frequency=%d bandwidth_hz=%d", __func__,
  490. c->frequency, c->bandwidth_hz);
  491. /* program tuner */
  492. if (fe->ops.tuner_ops.set_params)
  493. fe->ops.tuner_ops.set_params(fe);
  494. /* program CFOE coefficients */
  495. if (c->bandwidth_hz != state->bandwidth_hz) {
  496. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  497. if (coeff_lut[i].clock == state->config.clock &&
  498. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  499. break;
  500. }
  501. }
  502. ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
  503. sizeof(coeff_lut[i].val));
  504. }
  505. /* program frequency control */
  506. if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
  507. /* get used IF frequency */
  508. if (fe->ops.tuner_ops.get_if_frequency)
  509. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  510. else
  511. if_frequency = state->config.if_frequency;
  512. sampling_freq = if_frequency;
  513. while (sampling_freq > (state->config.clock / 2))
  514. sampling_freq -= state->config.clock;
  515. if (sampling_freq < 0) {
  516. sampling_freq *= -1;
  517. spec_inv = state->config.spec_inv;
  518. } else {
  519. spec_inv = !state->config.spec_inv;
  520. }
  521. freq_cw = af913_div(sampling_freq, state->config.clock, 23);
  522. if (spec_inv)
  523. freq_cw = 0x800000 - freq_cw;
  524. buf[0] = (freq_cw >> 0) & 0xff;
  525. buf[1] = (freq_cw >> 8) & 0xff;
  526. buf[2] = (freq_cw >> 16) & 0x7f;
  527. freq_cw = 0x800000 - freq_cw;
  528. buf[3] = (freq_cw >> 0) & 0xff;
  529. buf[4] = (freq_cw >> 8) & 0xff;
  530. buf[5] = (freq_cw >> 16) & 0x7f;
  531. ret = af9013_wr_regs(state, 0xd140, buf, 3);
  532. if (ret)
  533. goto err;
  534. ret = af9013_wr_regs(state, 0x9be7, buf, 6);
  535. if (ret)
  536. goto err;
  537. }
  538. /* clear TPS lock flag */
  539. ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
  540. if (ret)
  541. goto err;
  542. /* clear MPEG2 lock flag */
  543. ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
  544. if (ret)
  545. goto err;
  546. /* empty channel function */
  547. ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
  548. if (ret)
  549. goto err;
  550. /* empty DVB-T channel function */
  551. ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
  552. if (ret)
  553. goto err;
  554. /* transmission parameters */
  555. auto_mode = false;
  556. memset(buf, 0, 3);
  557. switch (c->transmission_mode) {
  558. case TRANSMISSION_MODE_AUTO:
  559. auto_mode = 1;
  560. break;
  561. case TRANSMISSION_MODE_2K:
  562. break;
  563. case TRANSMISSION_MODE_8K:
  564. buf[0] |= (1 << 0);
  565. break;
  566. default:
  567. dbg("%s: invalid transmission_mode", __func__);
  568. auto_mode = 1;
  569. }
  570. switch (c->guard_interval) {
  571. case GUARD_INTERVAL_AUTO:
  572. auto_mode = 1;
  573. break;
  574. case GUARD_INTERVAL_1_32:
  575. break;
  576. case GUARD_INTERVAL_1_16:
  577. buf[0] |= (1 << 2);
  578. break;
  579. case GUARD_INTERVAL_1_8:
  580. buf[0] |= (2 << 2);
  581. break;
  582. case GUARD_INTERVAL_1_4:
  583. buf[0] |= (3 << 2);
  584. break;
  585. default:
  586. dbg("%s: invalid guard_interval", __func__);
  587. auto_mode = 1;
  588. }
  589. switch (c->hierarchy) {
  590. case HIERARCHY_AUTO:
  591. auto_mode = 1;
  592. break;
  593. case HIERARCHY_NONE:
  594. break;
  595. case HIERARCHY_1:
  596. buf[0] |= (1 << 4);
  597. break;
  598. case HIERARCHY_2:
  599. buf[0] |= (2 << 4);
  600. break;
  601. case HIERARCHY_4:
  602. buf[0] |= (3 << 4);
  603. break;
  604. default:
  605. dbg("%s: invalid hierarchy", __func__);
  606. auto_mode = 1;
  607. };
  608. switch (c->modulation) {
  609. case QAM_AUTO:
  610. auto_mode = 1;
  611. break;
  612. case QPSK:
  613. break;
  614. case QAM_16:
  615. buf[1] |= (1 << 6);
  616. break;
  617. case QAM_64:
  618. buf[1] |= (2 << 6);
  619. break;
  620. default:
  621. dbg("%s: invalid modulation", __func__);
  622. auto_mode = 1;
  623. }
  624. /* Use HP. How and which case we can switch to LP? */
  625. buf[1] |= (1 << 4);
  626. switch (c->code_rate_HP) {
  627. case FEC_AUTO:
  628. auto_mode = 1;
  629. break;
  630. case FEC_1_2:
  631. break;
  632. case FEC_2_3:
  633. buf[2] |= (1 << 0);
  634. break;
  635. case FEC_3_4:
  636. buf[2] |= (2 << 0);
  637. break;
  638. case FEC_5_6:
  639. buf[2] |= (3 << 0);
  640. break;
  641. case FEC_7_8:
  642. buf[2] |= (4 << 0);
  643. break;
  644. default:
  645. dbg("%s: invalid code_rate_HP", __func__);
  646. auto_mode = 1;
  647. }
  648. switch (c->code_rate_LP) {
  649. case FEC_AUTO:
  650. auto_mode = 1;
  651. break;
  652. case FEC_1_2:
  653. break;
  654. case FEC_2_3:
  655. buf[2] |= (1 << 3);
  656. break;
  657. case FEC_3_4:
  658. buf[2] |= (2 << 3);
  659. break;
  660. case FEC_5_6:
  661. buf[2] |= (3 << 3);
  662. break;
  663. case FEC_7_8:
  664. buf[2] |= (4 << 3);
  665. break;
  666. case FEC_NONE:
  667. break;
  668. default:
  669. dbg("%s: invalid code_rate_LP", __func__);
  670. auto_mode = 1;
  671. }
  672. switch (c->bandwidth_hz) {
  673. case 6000000:
  674. break;
  675. case 7000000:
  676. buf[1] |= (1 << 2);
  677. break;
  678. case 8000000:
  679. buf[1] |= (2 << 2);
  680. break;
  681. default:
  682. dbg("%s: invalid bandwidth_hz", __func__);
  683. ret = -EINVAL;
  684. goto err;
  685. }
  686. ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
  687. if (ret)
  688. goto err;
  689. if (auto_mode) {
  690. /* clear easy mode flag */
  691. ret = af9013_wr_reg(state, 0xaefd, 0);
  692. if (ret)
  693. goto err;
  694. dbg("%s: auto params", __func__);
  695. } else {
  696. /* set easy mode flag */
  697. ret = af9013_wr_reg(state, 0xaefd, 1);
  698. if (ret)
  699. goto err;
  700. ret = af9013_wr_reg(state, 0xaefe, 0);
  701. if (ret)
  702. goto err;
  703. dbg("%s: manual params", __func__);
  704. }
  705. /* tune */
  706. ret = af9013_wr_reg(state, 0xffff, 0);
  707. if (ret)
  708. goto err;
  709. state->bandwidth_hz = c->bandwidth_hz;
  710. state->set_frontend_jiffies = jiffies;
  711. state->first_tune = false;
  712. return ret;
  713. err:
  714. dbg("%s: failed=%d", __func__, ret);
  715. return ret;
  716. }
  717. static int af9013_get_frontend(struct dvb_frontend *fe)
  718. {
  719. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  720. struct af9013_state *state = fe->demodulator_priv;
  721. int ret;
  722. u8 buf[3];
  723. dbg("%s", __func__);
  724. ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
  725. if (ret)
  726. goto err;
  727. switch ((buf[1] >> 6) & 3) {
  728. case 0:
  729. c->modulation = QPSK;
  730. break;
  731. case 1:
  732. c->modulation = QAM_16;
  733. break;
  734. case 2:
  735. c->modulation = QAM_64;
  736. break;
  737. }
  738. switch ((buf[0] >> 0) & 3) {
  739. case 0:
  740. c->transmission_mode = TRANSMISSION_MODE_2K;
  741. break;
  742. case 1:
  743. c->transmission_mode = TRANSMISSION_MODE_8K;
  744. }
  745. switch ((buf[0] >> 2) & 3) {
  746. case 0:
  747. c->guard_interval = GUARD_INTERVAL_1_32;
  748. break;
  749. case 1:
  750. c->guard_interval = GUARD_INTERVAL_1_16;
  751. break;
  752. case 2:
  753. c->guard_interval = GUARD_INTERVAL_1_8;
  754. break;
  755. case 3:
  756. c->guard_interval = GUARD_INTERVAL_1_4;
  757. break;
  758. }
  759. switch ((buf[0] >> 4) & 7) {
  760. case 0:
  761. c->hierarchy = HIERARCHY_NONE;
  762. break;
  763. case 1:
  764. c->hierarchy = HIERARCHY_1;
  765. break;
  766. case 2:
  767. c->hierarchy = HIERARCHY_2;
  768. break;
  769. case 3:
  770. c->hierarchy = HIERARCHY_4;
  771. break;
  772. }
  773. switch ((buf[2] >> 0) & 7) {
  774. case 0:
  775. c->code_rate_HP = FEC_1_2;
  776. break;
  777. case 1:
  778. c->code_rate_HP = FEC_2_3;
  779. break;
  780. case 2:
  781. c->code_rate_HP = FEC_3_4;
  782. break;
  783. case 3:
  784. c->code_rate_HP = FEC_5_6;
  785. break;
  786. case 4:
  787. c->code_rate_HP = FEC_7_8;
  788. break;
  789. }
  790. switch ((buf[2] >> 3) & 7) {
  791. case 0:
  792. c->code_rate_LP = FEC_1_2;
  793. break;
  794. case 1:
  795. c->code_rate_LP = FEC_2_3;
  796. break;
  797. case 2:
  798. c->code_rate_LP = FEC_3_4;
  799. break;
  800. case 3:
  801. c->code_rate_LP = FEC_5_6;
  802. break;
  803. case 4:
  804. c->code_rate_LP = FEC_7_8;
  805. break;
  806. }
  807. switch ((buf[1] >> 2) & 3) {
  808. case 0:
  809. c->bandwidth_hz = 6000000;
  810. break;
  811. case 1:
  812. c->bandwidth_hz = 7000000;
  813. break;
  814. case 2:
  815. c->bandwidth_hz = 8000000;
  816. break;
  817. }
  818. return ret;
  819. err:
  820. dbg("%s: failed=%d", __func__, ret);
  821. return ret;
  822. }
  823. static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
  824. {
  825. struct af9013_state *state = fe->demodulator_priv;
  826. int ret;
  827. u8 tmp;
  828. /*
  829. * Return status from the cache if it is younger than 2000ms with the
  830. * exception of last tune is done during 4000ms.
  831. */
  832. if (time_is_after_jiffies(
  833. state->read_status_jiffies + msecs_to_jiffies(2000)) &&
  834. time_is_before_jiffies(
  835. state->set_frontend_jiffies + msecs_to_jiffies(4000))
  836. ) {
  837. *status = state->fe_status;
  838. return 0;
  839. } else {
  840. *status = 0;
  841. }
  842. /* MPEG2 lock */
  843. ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
  844. if (ret)
  845. goto err;
  846. if (tmp)
  847. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
  848. FE_HAS_SYNC | FE_HAS_LOCK;
  849. if (!*status) {
  850. /* TPS lock */
  851. ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
  852. if (ret)
  853. goto err;
  854. if (tmp)
  855. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  856. FE_HAS_VITERBI;
  857. }
  858. state->fe_status = *status;
  859. state->read_status_jiffies = jiffies;
  860. return ret;
  861. err:
  862. dbg("%s: failed=%d", __func__, ret);
  863. return ret;
  864. }
  865. static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
  866. {
  867. struct af9013_state *state = fe->demodulator_priv;
  868. *snr = state->snr;
  869. return 0;
  870. }
  871. static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  872. {
  873. struct af9013_state *state = fe->demodulator_priv;
  874. *strength = state->signal_strength;
  875. return 0;
  876. }
  877. static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
  878. {
  879. struct af9013_state *state = fe->demodulator_priv;
  880. *ber = state->ber;
  881. return 0;
  882. }
  883. static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  884. {
  885. struct af9013_state *state = fe->demodulator_priv;
  886. *ucblocks = state->ucblocks;
  887. return 0;
  888. }
  889. static int af9013_init(struct dvb_frontend *fe)
  890. {
  891. struct af9013_state *state = fe->demodulator_priv;
  892. int ret, i, len;
  893. u8 buf[3], tmp;
  894. u32 adc_cw;
  895. const struct af9013_reg_bit *init;
  896. dbg("%s", __func__);
  897. /* power on */
  898. ret = af9013_power_ctrl(state, 1);
  899. if (ret)
  900. goto err;
  901. /* enable ADC */
  902. ret = af9013_wr_reg(state, 0xd73a, 0xa4);
  903. if (ret)
  904. goto err;
  905. /* write API version to firmware */
  906. ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
  907. if (ret)
  908. goto err;
  909. /* program ADC control */
  910. switch (state->config.clock) {
  911. case 28800000: /* 28.800 MHz */
  912. tmp = 0;
  913. break;
  914. case 20480000: /* 20.480 MHz */
  915. tmp = 1;
  916. break;
  917. case 28000000: /* 28.000 MHz */
  918. tmp = 2;
  919. break;
  920. case 25000000: /* 25.000 MHz */
  921. tmp = 3;
  922. break;
  923. default:
  924. err("invalid clock");
  925. return -EINVAL;
  926. }
  927. adc_cw = af913_div(state->config.clock, 1000000ul, 19);
  928. buf[0] = (adc_cw >> 0) & 0xff;
  929. buf[1] = (adc_cw >> 8) & 0xff;
  930. buf[2] = (adc_cw >> 16) & 0xff;
  931. ret = af9013_wr_regs(state, 0xd180, buf, 3);
  932. if (ret)
  933. goto err;
  934. ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
  935. if (ret)
  936. goto err;
  937. /* set I2C master clock */
  938. ret = af9013_wr_reg(state, 0xd416, 0x14);
  939. if (ret)
  940. goto err;
  941. /* set 16 embx */
  942. ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
  943. if (ret)
  944. goto err;
  945. /* set no trigger */
  946. ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
  947. if (ret)
  948. goto err;
  949. /* set read-update bit for constellation */
  950. ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
  951. if (ret)
  952. goto err;
  953. /* settings for mp2if */
  954. if (state->config.ts_mode == AF9013_TS_USB) {
  955. /* AF9015 split PSB to 1.5k + 0.5k */
  956. ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
  957. if (ret)
  958. goto err;
  959. } else {
  960. /* AF9013 change the output bit to data7 */
  961. ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
  962. if (ret)
  963. goto err;
  964. /* AF9013 set mpeg to full speed */
  965. ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
  966. if (ret)
  967. goto err;
  968. }
  969. ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
  970. if (ret)
  971. goto err;
  972. /* load OFSM settings */
  973. dbg("%s: load ofsm settings", __func__);
  974. len = ARRAY_SIZE(ofsm_init);
  975. init = ofsm_init;
  976. for (i = 0; i < len; i++) {
  977. ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
  978. init[i].len, init[i].val);
  979. if (ret)
  980. goto err;
  981. }
  982. /* load tuner specific settings */
  983. dbg("%s: load tuner specific settings", __func__);
  984. switch (state->config.tuner) {
  985. case AF9013_TUNER_MXL5003D:
  986. len = ARRAY_SIZE(tuner_init_mxl5003d);
  987. init = tuner_init_mxl5003d;
  988. break;
  989. case AF9013_TUNER_MXL5005D:
  990. case AF9013_TUNER_MXL5005R:
  991. case AF9013_TUNER_MXL5007T:
  992. len = ARRAY_SIZE(tuner_init_mxl5005);
  993. init = tuner_init_mxl5005;
  994. break;
  995. case AF9013_TUNER_ENV77H11D5:
  996. len = ARRAY_SIZE(tuner_init_env77h11d5);
  997. init = tuner_init_env77h11d5;
  998. break;
  999. case AF9013_TUNER_MT2060:
  1000. len = ARRAY_SIZE(tuner_init_mt2060);
  1001. init = tuner_init_mt2060;
  1002. break;
  1003. case AF9013_TUNER_MC44S803:
  1004. len = ARRAY_SIZE(tuner_init_mc44s803);
  1005. init = tuner_init_mc44s803;
  1006. break;
  1007. case AF9013_TUNER_QT1010:
  1008. case AF9013_TUNER_QT1010A:
  1009. len = ARRAY_SIZE(tuner_init_qt1010);
  1010. init = tuner_init_qt1010;
  1011. break;
  1012. case AF9013_TUNER_MT2060_2:
  1013. len = ARRAY_SIZE(tuner_init_mt2060_2);
  1014. init = tuner_init_mt2060_2;
  1015. break;
  1016. case AF9013_TUNER_TDA18271:
  1017. case AF9013_TUNER_TDA18218:
  1018. len = ARRAY_SIZE(tuner_init_tda18271);
  1019. init = tuner_init_tda18271;
  1020. break;
  1021. case AF9013_TUNER_UNKNOWN:
  1022. default:
  1023. len = ARRAY_SIZE(tuner_init_unknown);
  1024. init = tuner_init_unknown;
  1025. break;
  1026. }
  1027. for (i = 0; i < len; i++) {
  1028. ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
  1029. init[i].len, init[i].val);
  1030. if (ret)
  1031. goto err;
  1032. }
  1033. /* TS mode */
  1034. ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
  1035. if (ret)
  1036. goto err;
  1037. /* enable lock led */
  1038. ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
  1039. if (ret)
  1040. goto err;
  1041. /* check if we support signal strength */
  1042. if (!state->signal_strength_en) {
  1043. ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
  1044. &state->signal_strength_en);
  1045. if (ret)
  1046. goto err;
  1047. }
  1048. /* read values needed for signal strength calculation */
  1049. if (state->signal_strength_en && !state->rf_50) {
  1050. ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
  1051. if (ret)
  1052. goto err;
  1053. ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
  1054. if (ret)
  1055. goto err;
  1056. ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
  1057. if (ret)
  1058. goto err;
  1059. ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
  1060. if (ret)
  1061. goto err;
  1062. }
  1063. /* SNR */
  1064. ret = af9013_wr_reg(state, 0xd2e2, 1);
  1065. if (ret)
  1066. goto err;
  1067. /* BER / UCB */
  1068. buf[0] = (10000 >> 0) & 0xff;
  1069. buf[1] = (10000 >> 8) & 0xff;
  1070. ret = af9013_wr_regs(state, 0xd385, buf, 2);
  1071. if (ret)
  1072. goto err;
  1073. /* enable FEC monitor */
  1074. ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
  1075. if (ret)
  1076. goto err;
  1077. state->first_tune = true;
  1078. schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
  1079. return ret;
  1080. err:
  1081. dbg("%s: failed=%d", __func__, ret);
  1082. return ret;
  1083. }
  1084. static int af9013_sleep(struct dvb_frontend *fe)
  1085. {
  1086. struct af9013_state *state = fe->demodulator_priv;
  1087. int ret;
  1088. dbg("%s", __func__);
  1089. /* stop statistics polling */
  1090. cancel_delayed_work_sync(&state->statistics_work);
  1091. /* disable lock led */
  1092. ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
  1093. if (ret)
  1094. goto err;
  1095. /* power off */
  1096. ret = af9013_power_ctrl(state, 0);
  1097. if (ret)
  1098. goto err;
  1099. return ret;
  1100. err:
  1101. dbg("%s: failed=%d", __func__, ret);
  1102. return ret;
  1103. }
  1104. static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  1105. {
  1106. int ret;
  1107. struct af9013_state *state = fe->demodulator_priv;
  1108. dbg("%s: enable=%d", __func__, enable);
  1109. /* gate already open or close */
  1110. if (state->i2c_gate_state == enable)
  1111. return 0;
  1112. if (state->config.ts_mode == AF9013_TS_USB)
  1113. ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
  1114. else
  1115. ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
  1116. if (ret)
  1117. goto err;
  1118. state->i2c_gate_state = enable;
  1119. return ret;
  1120. err:
  1121. dbg("%s: failed=%d", __func__, ret);
  1122. return ret;
  1123. }
  1124. static void af9013_release(struct dvb_frontend *fe)
  1125. {
  1126. struct af9013_state *state = fe->demodulator_priv;
  1127. kfree(state);
  1128. }
  1129. static struct dvb_frontend_ops af9013_ops;
  1130. static int af9013_download_firmware(struct af9013_state *state)
  1131. {
  1132. int i, len, remaining, ret;
  1133. const struct firmware *fw;
  1134. u16 checksum = 0;
  1135. u8 val;
  1136. u8 fw_params[4];
  1137. u8 *fw_file = AF9013_DEFAULT_FIRMWARE;
  1138. msleep(100);
  1139. /* check whether firmware is already running */
  1140. ret = af9013_rd_reg(state, 0x98be, &val);
  1141. if (ret)
  1142. goto err;
  1143. else
  1144. dbg("%s: firmware status=%02x", __func__, val);
  1145. if (val == 0x0c) /* fw is running, no need for download */
  1146. goto exit;
  1147. info("found a '%s' in cold state, will try to load a firmware",
  1148. af9013_ops.info.name);
  1149. /* request the firmware, this will block and timeout */
  1150. ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
  1151. if (ret) {
  1152. err("did not find the firmware file. (%s) "
  1153. "Please see linux/Documentation/dvb/ for more details" \
  1154. " on firmware-problems. (%d)",
  1155. fw_file, ret);
  1156. goto err;
  1157. }
  1158. info("downloading firmware from file '%s'", fw_file);
  1159. /* calc checksum */
  1160. for (i = 0; i < fw->size; i++)
  1161. checksum += fw->data[i];
  1162. fw_params[0] = checksum >> 8;
  1163. fw_params[1] = checksum & 0xff;
  1164. fw_params[2] = fw->size >> 8;
  1165. fw_params[3] = fw->size & 0xff;
  1166. /* write fw checksum & size */
  1167. ret = af9013_write_ofsm_regs(state, 0x50fc,
  1168. fw_params, sizeof(fw_params));
  1169. if (ret)
  1170. goto err_release;
  1171. #define FW_ADDR 0x5100 /* firmware start address */
  1172. #define LEN_MAX 16 /* max packet size */
  1173. for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
  1174. len = remaining;
  1175. if (len > LEN_MAX)
  1176. len = LEN_MAX;
  1177. ret = af9013_write_ofsm_regs(state,
  1178. FW_ADDR + fw->size - remaining,
  1179. (u8 *) &fw->data[fw->size - remaining], len);
  1180. if (ret) {
  1181. err("firmware download failed:%d", ret);
  1182. goto err_release;
  1183. }
  1184. }
  1185. /* request boot firmware */
  1186. ret = af9013_wr_reg(state, 0xe205, 1);
  1187. if (ret)
  1188. goto err_release;
  1189. for (i = 0; i < 15; i++) {
  1190. msleep(100);
  1191. /* check firmware status */
  1192. ret = af9013_rd_reg(state, 0x98be, &val);
  1193. if (ret)
  1194. goto err_release;
  1195. dbg("%s: firmware status=%02x", __func__, val);
  1196. if (val == 0x0c || val == 0x04) /* success or fail */
  1197. break;
  1198. }
  1199. if (val == 0x04) {
  1200. err("firmware did not run");
  1201. ret = -ENODEV;
  1202. } else if (val != 0x0c) {
  1203. err("firmware boot timeout");
  1204. ret = -ENODEV;
  1205. }
  1206. err_release:
  1207. release_firmware(fw);
  1208. err:
  1209. exit:
  1210. if (!ret)
  1211. info("found a '%s' in warm state.", af9013_ops.info.name);
  1212. return ret;
  1213. }
  1214. struct dvb_frontend *af9013_attach(const struct af9013_config *config,
  1215. struct i2c_adapter *i2c)
  1216. {
  1217. int ret;
  1218. struct af9013_state *state = NULL;
  1219. u8 buf[4], i;
  1220. /* allocate memory for the internal state */
  1221. state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
  1222. if (state == NULL)
  1223. goto err;
  1224. /* setup the state */
  1225. state->i2c = i2c;
  1226. memcpy(&state->config, config, sizeof(struct af9013_config));
  1227. /* download firmware */
  1228. if (state->config.ts_mode != AF9013_TS_USB) {
  1229. ret = af9013_download_firmware(state);
  1230. if (ret)
  1231. goto err;
  1232. }
  1233. /* firmware version */
  1234. ret = af9013_rd_regs(state, 0x5103, buf, 4);
  1235. if (ret)
  1236. goto err;
  1237. info("firmware version %d.%d.%d.%d", buf[0], buf[1], buf[2], buf[3]);
  1238. /* set GPIOs */
  1239. for (i = 0; i < sizeof(state->config.gpio); i++) {
  1240. ret = af9013_set_gpio(state, i, state->config.gpio[i]);
  1241. if (ret)
  1242. goto err;
  1243. }
  1244. /* create dvb_frontend */
  1245. memcpy(&state->fe.ops, &af9013_ops,
  1246. sizeof(struct dvb_frontend_ops));
  1247. state->fe.demodulator_priv = state;
  1248. INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
  1249. return &state->fe;
  1250. err:
  1251. kfree(state);
  1252. return NULL;
  1253. }
  1254. EXPORT_SYMBOL(af9013_attach);
  1255. static struct dvb_frontend_ops af9013_ops = {
  1256. .delsys = { SYS_DVBT },
  1257. .info = {
  1258. .name = "Afatech AF9013",
  1259. .frequency_min = 174000000,
  1260. .frequency_max = 862000000,
  1261. .frequency_stepsize = 250000,
  1262. .frequency_tolerance = 0,
  1263. .caps = FE_CAN_FEC_1_2 |
  1264. FE_CAN_FEC_2_3 |
  1265. FE_CAN_FEC_3_4 |
  1266. FE_CAN_FEC_5_6 |
  1267. FE_CAN_FEC_7_8 |
  1268. FE_CAN_FEC_AUTO |
  1269. FE_CAN_QPSK |
  1270. FE_CAN_QAM_16 |
  1271. FE_CAN_QAM_64 |
  1272. FE_CAN_QAM_AUTO |
  1273. FE_CAN_TRANSMISSION_MODE_AUTO |
  1274. FE_CAN_GUARD_INTERVAL_AUTO |
  1275. FE_CAN_HIERARCHY_AUTO |
  1276. FE_CAN_RECOVER |
  1277. FE_CAN_MUTE_TS
  1278. },
  1279. .release = af9013_release,
  1280. .init = af9013_init,
  1281. .sleep = af9013_sleep,
  1282. .get_tune_settings = af9013_get_tune_settings,
  1283. .set_frontend = af9013_set_frontend,
  1284. .get_frontend = af9013_get_frontend,
  1285. .read_status = af9013_read_status,
  1286. .read_snr = af9013_read_snr,
  1287. .read_signal_strength = af9013_read_signal_strength,
  1288. .read_ber = af9013_read_ber,
  1289. .read_ucblocks = af9013_read_ucblocks,
  1290. .i2c_gate_ctrl = af9013_i2c_gate_ctrl,
  1291. };
  1292. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  1293. MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
  1294. MODULE_LICENSE("GPL");