fsl_rmu.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107
  1. /*
  2. * Freescale MPC85xx/MPC86xx RapidIO RMU support
  3. *
  4. * Copyright 2009 Sysgo AG
  5. * Thomas Moll <thomas.moll@sysgo.com>
  6. * - fixed maintenance access routines, check for aligned access
  7. *
  8. * Copyright 2009 Integrated Device Technology, Inc.
  9. * Alex Bounine <alexandre.bounine@idt.com>
  10. * - Added Port-Write message handling
  11. * - Added Machine Check exception handling
  12. *
  13. * Copyright (C) 2007, 2008, 2010, 2011 Freescale Semiconductor, Inc.
  14. * Zhang Wei <wei.zhang@freescale.com>
  15. * Lian Minghuan-B31939 <Minghuan.Lian@freescale.com>
  16. * Liu Gang <Gang.Liu@freescale.com>
  17. *
  18. * Copyright 2005 MontaVista Software, Inc.
  19. * Matt Porter <mporter@kernel.crashing.org>
  20. *
  21. * This program is free software; you can redistribute it and/or modify it
  22. * under the terms of the GNU General Public License as published by the
  23. * Free Software Foundation; either version 2 of the License, or (at your
  24. * option) any later version.
  25. */
  26. #include <linux/types.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/of_platform.h>
  30. #include <linux/slab.h>
  31. #include "fsl_rio.h"
  32. #define GET_RMM_HANDLE(mport) \
  33. (((struct rio_priv *)(mport->priv))->rmm_handle)
  34. /* RapidIO definition irq, which read from OF-tree */
  35. #define IRQ_RIO_PW(m) (((struct fsl_rio_pw *)(m))->pwirq)
  36. #define IRQ_RIO_BELL(m) (((struct fsl_rio_dbell *)(m))->bellirq)
  37. #define IRQ_RIO_TX(m) (((struct fsl_rmu *)(GET_RMM_HANDLE(m)))->txirq)
  38. #define IRQ_RIO_RX(m) (((struct fsl_rmu *)(GET_RMM_HANDLE(m)))->rxirq)
  39. #define RIO_MIN_TX_RING_SIZE 2
  40. #define RIO_MAX_TX_RING_SIZE 2048
  41. #define RIO_MIN_RX_RING_SIZE 2
  42. #define RIO_MAX_RX_RING_SIZE 2048
  43. #define RIO_IPWMR_SEN 0x00100000
  44. #define RIO_IPWMR_QFIE 0x00000100
  45. #define RIO_IPWMR_EIE 0x00000020
  46. #define RIO_IPWMR_CQ 0x00000002
  47. #define RIO_IPWMR_PWE 0x00000001
  48. #define RIO_IPWSR_QF 0x00100000
  49. #define RIO_IPWSR_TE 0x00000080
  50. #define RIO_IPWSR_QFI 0x00000010
  51. #define RIO_IPWSR_PWD 0x00000008
  52. #define RIO_IPWSR_PWB 0x00000004
  53. #define RIO_EPWISR 0x10010
  54. /* EPWISR Error match value */
  55. #define RIO_EPWISR_PINT1 0x80000000
  56. #define RIO_EPWISR_PINT2 0x40000000
  57. #define RIO_EPWISR_MU 0x00000002
  58. #define RIO_EPWISR_PW 0x00000001
  59. #define IPWSR_CLEAR 0x98
  60. #define OMSR_CLEAR 0x1cb3
  61. #define IMSR_CLEAR 0x491
  62. #define IDSR_CLEAR 0x91
  63. #define ODSR_CLEAR 0x1c00
  64. #define LTLEECSR_ENABLE_ALL 0xFFC000FC
  65. #define RIO_LTLEECSR 0x060c
  66. #define RIO_IM0SR 0x64
  67. #define RIO_IM1SR 0x164
  68. #define RIO_OM0SR 0x4
  69. #define RIO_OM1SR 0x104
  70. #define RIO_DBELL_WIN_SIZE 0x1000
  71. #define RIO_MSG_OMR_MUI 0x00000002
  72. #define RIO_MSG_OSR_TE 0x00000080
  73. #define RIO_MSG_OSR_QOI 0x00000020
  74. #define RIO_MSG_OSR_QFI 0x00000010
  75. #define RIO_MSG_OSR_MUB 0x00000004
  76. #define RIO_MSG_OSR_EOMI 0x00000002
  77. #define RIO_MSG_OSR_QEI 0x00000001
  78. #define RIO_MSG_IMR_MI 0x00000002
  79. #define RIO_MSG_ISR_TE 0x00000080
  80. #define RIO_MSG_ISR_QFI 0x00000010
  81. #define RIO_MSG_ISR_DIQI 0x00000001
  82. #define RIO_MSG_DESC_SIZE 32
  83. #define RIO_MSG_BUFFER_SIZE 4096
  84. #define DOORBELL_DMR_DI 0x00000002
  85. #define DOORBELL_DSR_TE 0x00000080
  86. #define DOORBELL_DSR_QFI 0x00000010
  87. #define DOORBELL_DSR_DIQI 0x00000001
  88. #define DOORBELL_MESSAGE_SIZE 0x08
  89. struct rio_msg_regs {
  90. u32 omr;
  91. u32 osr;
  92. u32 pad1;
  93. u32 odqdpar;
  94. u32 pad2;
  95. u32 osar;
  96. u32 odpr;
  97. u32 odatr;
  98. u32 odcr;
  99. u32 pad3;
  100. u32 odqepar;
  101. u32 pad4[13];
  102. u32 imr;
  103. u32 isr;
  104. u32 pad5;
  105. u32 ifqdpar;
  106. u32 pad6;
  107. u32 ifqepar;
  108. };
  109. struct rio_dbell_regs {
  110. u32 odmr;
  111. u32 odsr;
  112. u32 pad1[4];
  113. u32 oddpr;
  114. u32 oddatr;
  115. u32 pad2[3];
  116. u32 odretcr;
  117. u32 pad3[12];
  118. u32 dmr;
  119. u32 dsr;
  120. u32 pad4;
  121. u32 dqdpar;
  122. u32 pad5;
  123. u32 dqepar;
  124. };
  125. struct rio_pw_regs {
  126. u32 pwmr;
  127. u32 pwsr;
  128. u32 epwqbar;
  129. u32 pwqbar;
  130. };
  131. struct rio_tx_desc {
  132. u32 pad1;
  133. u32 saddr;
  134. u32 dport;
  135. u32 dattr;
  136. u32 pad2;
  137. u32 pad3;
  138. u32 dwcnt;
  139. u32 pad4;
  140. };
  141. struct rio_msg_tx_ring {
  142. void *virt;
  143. dma_addr_t phys;
  144. void *virt_buffer[RIO_MAX_TX_RING_SIZE];
  145. dma_addr_t phys_buffer[RIO_MAX_TX_RING_SIZE];
  146. int tx_slot;
  147. int size;
  148. void *dev_id;
  149. };
  150. struct rio_msg_rx_ring {
  151. void *virt;
  152. dma_addr_t phys;
  153. void *virt_buffer[RIO_MAX_RX_RING_SIZE];
  154. int rx_slot;
  155. int size;
  156. void *dev_id;
  157. };
  158. struct fsl_rmu {
  159. struct rio_msg_regs __iomem *msg_regs;
  160. struct rio_msg_tx_ring msg_tx_ring;
  161. struct rio_msg_rx_ring msg_rx_ring;
  162. int txirq;
  163. int rxirq;
  164. };
  165. struct rio_dbell_msg {
  166. u16 pad1;
  167. u16 tid;
  168. u16 sid;
  169. u16 info;
  170. };
  171. /**
  172. * fsl_rio_tx_handler - MPC85xx outbound message interrupt handler
  173. * @irq: Linux interrupt number
  174. * @dev_instance: Pointer to interrupt-specific data
  175. *
  176. * Handles outbound message interrupts. Executes a register outbound
  177. * mailbox event handler and acks the interrupt occurrence.
  178. */
  179. static irqreturn_t
  180. fsl_rio_tx_handler(int irq, void *dev_instance)
  181. {
  182. int osr;
  183. struct rio_mport *port = (struct rio_mport *)dev_instance;
  184. struct fsl_rmu *rmu = GET_RMM_HANDLE(port);
  185. osr = in_be32(&rmu->msg_regs->osr);
  186. if (osr & RIO_MSG_OSR_TE) {
  187. pr_info("RIO: outbound message transmission error\n");
  188. out_be32(&rmu->msg_regs->osr, RIO_MSG_OSR_TE);
  189. goto out;
  190. }
  191. if (osr & RIO_MSG_OSR_QOI) {
  192. pr_info("RIO: outbound message queue overflow\n");
  193. out_be32(&rmu->msg_regs->osr, RIO_MSG_OSR_QOI);
  194. goto out;
  195. }
  196. if (osr & RIO_MSG_OSR_EOMI) {
  197. u32 dqp = in_be32(&rmu->msg_regs->odqdpar);
  198. int slot = (dqp - rmu->msg_tx_ring.phys) >> 5;
  199. if (port->outb_msg[0].mcback != NULL) {
  200. port->outb_msg[0].mcback(port, rmu->msg_tx_ring.dev_id,
  201. -1,
  202. slot);
  203. }
  204. /* Ack the end-of-message interrupt */
  205. out_be32(&rmu->msg_regs->osr, RIO_MSG_OSR_EOMI);
  206. }
  207. out:
  208. return IRQ_HANDLED;
  209. }
  210. /**
  211. * fsl_rio_rx_handler - MPC85xx inbound message interrupt handler
  212. * @irq: Linux interrupt number
  213. * @dev_instance: Pointer to interrupt-specific data
  214. *
  215. * Handles inbound message interrupts. Executes a registered inbound
  216. * mailbox event handler and acks the interrupt occurrence.
  217. */
  218. static irqreturn_t
  219. fsl_rio_rx_handler(int irq, void *dev_instance)
  220. {
  221. int isr;
  222. struct rio_mport *port = (struct rio_mport *)dev_instance;
  223. struct fsl_rmu *rmu = GET_RMM_HANDLE(port);
  224. isr = in_be32(&rmu->msg_regs->isr);
  225. if (isr & RIO_MSG_ISR_TE) {
  226. pr_info("RIO: inbound message reception error\n");
  227. out_be32((void *)&rmu->msg_regs->isr, RIO_MSG_ISR_TE);
  228. goto out;
  229. }
  230. /* XXX Need to check/dispatch until queue empty */
  231. if (isr & RIO_MSG_ISR_DIQI) {
  232. /*
  233. * Can receive messages for any mailbox/letter to that
  234. * mailbox destination. So, make the callback with an
  235. * unknown/invalid mailbox number argument.
  236. */
  237. if (port->inb_msg[0].mcback != NULL)
  238. port->inb_msg[0].mcback(port, rmu->msg_rx_ring.dev_id,
  239. -1,
  240. -1);
  241. /* Ack the queueing interrupt */
  242. out_be32(&rmu->msg_regs->isr, RIO_MSG_ISR_DIQI);
  243. }
  244. out:
  245. return IRQ_HANDLED;
  246. }
  247. /**
  248. * fsl_rio_dbell_handler - MPC85xx doorbell interrupt handler
  249. * @irq: Linux interrupt number
  250. * @dev_instance: Pointer to interrupt-specific data
  251. *
  252. * Handles doorbell interrupts. Parses a list of registered
  253. * doorbell event handlers and executes a matching event handler.
  254. */
  255. static irqreturn_t
  256. fsl_rio_dbell_handler(int irq, void *dev_instance)
  257. {
  258. int dsr;
  259. struct fsl_rio_dbell *fsl_dbell = (struct fsl_rio_dbell *)dev_instance;
  260. int i;
  261. dsr = in_be32(&fsl_dbell->dbell_regs->dsr);
  262. if (dsr & DOORBELL_DSR_TE) {
  263. pr_info("RIO: doorbell reception error\n");
  264. out_be32(&fsl_dbell->dbell_regs->dsr, DOORBELL_DSR_TE);
  265. goto out;
  266. }
  267. if (dsr & DOORBELL_DSR_QFI) {
  268. pr_info("RIO: doorbell queue full\n");
  269. out_be32(&fsl_dbell->dbell_regs->dsr, DOORBELL_DSR_QFI);
  270. }
  271. /* XXX Need to check/dispatch until queue empty */
  272. if (dsr & DOORBELL_DSR_DIQI) {
  273. struct rio_dbell_msg *dmsg =
  274. fsl_dbell->dbell_ring.virt +
  275. (in_be32(&fsl_dbell->dbell_regs->dqdpar) & 0xfff);
  276. struct rio_dbell *dbell;
  277. int found = 0;
  278. pr_debug
  279. ("RIO: processing doorbell,"
  280. " sid %2.2x tid %2.2x info %4.4x\n",
  281. dmsg->sid, dmsg->tid, dmsg->info);
  282. for (i = 0; i < MAX_PORT_NUM; i++) {
  283. if (fsl_dbell->mport[i]) {
  284. list_for_each_entry(dbell,
  285. &fsl_dbell->mport[i]->dbells, node) {
  286. if ((dbell->res->start
  287. <= dmsg->info)
  288. && (dbell->res->end
  289. >= dmsg->info)) {
  290. found = 1;
  291. break;
  292. }
  293. }
  294. if (found && dbell->dinb) {
  295. dbell->dinb(fsl_dbell->mport[i],
  296. dbell->dev_id, dmsg->sid,
  297. dmsg->tid,
  298. dmsg->info);
  299. break;
  300. }
  301. }
  302. }
  303. if (!found) {
  304. pr_debug
  305. ("RIO: spurious doorbell,"
  306. " sid %2.2x tid %2.2x info %4.4x\n",
  307. dmsg->sid, dmsg->tid,
  308. dmsg->info);
  309. }
  310. setbits32(&fsl_dbell->dbell_regs->dmr, DOORBELL_DMR_DI);
  311. out_be32(&fsl_dbell->dbell_regs->dsr, DOORBELL_DSR_DIQI);
  312. }
  313. out:
  314. return IRQ_HANDLED;
  315. }
  316. void msg_unit_error_handler(void)
  317. {
  318. /*XXX: Error recovery is not implemented, we just clear errors */
  319. out_be32((u32 *)(rio_regs_win + RIO_LTLEDCSR), 0);
  320. out_be32((u32 *)(rmu_regs_win + RIO_IM0SR), IMSR_CLEAR);
  321. out_be32((u32 *)(rmu_regs_win + RIO_IM1SR), IMSR_CLEAR);
  322. out_be32((u32 *)(rmu_regs_win + RIO_OM0SR), OMSR_CLEAR);
  323. out_be32((u32 *)(rmu_regs_win + RIO_OM1SR), OMSR_CLEAR);
  324. out_be32(&dbell->dbell_regs->odsr, ODSR_CLEAR);
  325. out_be32(&dbell->dbell_regs->dsr, IDSR_CLEAR);
  326. out_be32(&pw->pw_regs->pwsr, IPWSR_CLEAR);
  327. }
  328. /**
  329. * fsl_rio_port_write_handler - MPC85xx port write interrupt handler
  330. * @irq: Linux interrupt number
  331. * @dev_instance: Pointer to interrupt-specific data
  332. *
  333. * Handles port write interrupts. Parses a list of registered
  334. * port write event handlers and executes a matching event handler.
  335. */
  336. static irqreturn_t
  337. fsl_rio_port_write_handler(int irq, void *dev_instance)
  338. {
  339. u32 ipwmr, ipwsr;
  340. struct fsl_rio_pw *pw = (struct fsl_rio_pw *)dev_instance;
  341. u32 epwisr, tmp;
  342. epwisr = in_be32(rio_regs_win + RIO_EPWISR);
  343. if (!(epwisr & RIO_EPWISR_PW))
  344. goto pw_done;
  345. ipwmr = in_be32(&pw->pw_regs->pwmr);
  346. ipwsr = in_be32(&pw->pw_regs->pwsr);
  347. #ifdef DEBUG_PW
  348. pr_debug("PW Int->IPWMR: 0x%08x IPWSR: 0x%08x (", ipwmr, ipwsr);
  349. if (ipwsr & RIO_IPWSR_QF)
  350. pr_debug(" QF");
  351. if (ipwsr & RIO_IPWSR_TE)
  352. pr_debug(" TE");
  353. if (ipwsr & RIO_IPWSR_QFI)
  354. pr_debug(" QFI");
  355. if (ipwsr & RIO_IPWSR_PWD)
  356. pr_debug(" PWD");
  357. if (ipwsr & RIO_IPWSR_PWB)
  358. pr_debug(" PWB");
  359. pr_debug(" )\n");
  360. #endif
  361. /* Schedule deferred processing if PW was received */
  362. if (ipwsr & RIO_IPWSR_QFI) {
  363. /* Save PW message (if there is room in FIFO),
  364. * otherwise discard it.
  365. */
  366. if (kfifo_avail(&pw->pw_fifo) >= RIO_PW_MSG_SIZE) {
  367. pw->port_write_msg.msg_count++;
  368. kfifo_in(&pw->pw_fifo, pw->port_write_msg.virt,
  369. RIO_PW_MSG_SIZE);
  370. } else {
  371. pw->port_write_msg.discard_count++;
  372. pr_debug("RIO: ISR Discarded Port-Write Msg(s) (%d)\n",
  373. pw->port_write_msg.discard_count);
  374. }
  375. /* Clear interrupt and issue Clear Queue command. This allows
  376. * another port-write to be received.
  377. */
  378. out_be32(&pw->pw_regs->pwsr, RIO_IPWSR_QFI);
  379. out_be32(&pw->pw_regs->pwmr, ipwmr | RIO_IPWMR_CQ);
  380. schedule_work(&pw->pw_work);
  381. }
  382. if ((ipwmr & RIO_IPWMR_EIE) && (ipwsr & RIO_IPWSR_TE)) {
  383. pw->port_write_msg.err_count++;
  384. pr_debug("RIO: Port-Write Transaction Err (%d)\n",
  385. pw->port_write_msg.err_count);
  386. /* Clear Transaction Error: port-write controller should be
  387. * disabled when clearing this error
  388. */
  389. out_be32(&pw->pw_regs->pwmr, ipwmr & ~RIO_IPWMR_PWE);
  390. out_be32(&pw->pw_regs->pwsr, RIO_IPWSR_TE);
  391. out_be32(&pw->pw_regs->pwmr, ipwmr);
  392. }
  393. if (ipwsr & RIO_IPWSR_PWD) {
  394. pw->port_write_msg.discard_count++;
  395. pr_debug("RIO: Port Discarded Port-Write Msg(s) (%d)\n",
  396. pw->port_write_msg.discard_count);
  397. out_be32(&pw->pw_regs->pwsr, RIO_IPWSR_PWD);
  398. }
  399. pw_done:
  400. if (epwisr & RIO_EPWISR_PINT1) {
  401. tmp = in_be32(rio_regs_win + RIO_LTLEDCSR);
  402. pr_debug("RIO_LTLEDCSR = 0x%x\n", tmp);
  403. fsl_rio_port_error_handler(0);
  404. }
  405. if (epwisr & RIO_EPWISR_PINT2) {
  406. tmp = in_be32(rio_regs_win + RIO_LTLEDCSR);
  407. pr_debug("RIO_LTLEDCSR = 0x%x\n", tmp);
  408. fsl_rio_port_error_handler(1);
  409. }
  410. if (epwisr & RIO_EPWISR_MU) {
  411. tmp = in_be32(rio_regs_win + RIO_LTLEDCSR);
  412. pr_debug("RIO_LTLEDCSR = 0x%x\n", tmp);
  413. msg_unit_error_handler();
  414. }
  415. return IRQ_HANDLED;
  416. }
  417. static void fsl_pw_dpc(struct work_struct *work)
  418. {
  419. struct fsl_rio_pw *pw = container_of(work, struct fsl_rio_pw, pw_work);
  420. u32 msg_buffer[RIO_PW_MSG_SIZE/sizeof(u32)];
  421. /*
  422. * Process port-write messages
  423. */
  424. while (kfifo_out_spinlocked(&pw->pw_fifo, (unsigned char *)msg_buffer,
  425. RIO_PW_MSG_SIZE, &pw->pw_fifo_lock)) {
  426. /* Process one message */
  427. #ifdef DEBUG_PW
  428. {
  429. u32 i;
  430. pr_debug("%s : Port-Write Message:", __func__);
  431. for (i = 0; i < RIO_PW_MSG_SIZE/sizeof(u32); i++) {
  432. if ((i%4) == 0)
  433. pr_debug("\n0x%02x: 0x%08x", i*4,
  434. msg_buffer[i]);
  435. else
  436. pr_debug(" 0x%08x", msg_buffer[i]);
  437. }
  438. pr_debug("\n");
  439. }
  440. #endif
  441. /* Pass the port-write message to RIO core for processing */
  442. rio_inb_pwrite_handler((union rio_pw_msg *)msg_buffer);
  443. }
  444. }
  445. /**
  446. * fsl_rio_pw_enable - enable/disable port-write interface init
  447. * @mport: Master port implementing the port write unit
  448. * @enable: 1=enable; 0=disable port-write message handling
  449. */
  450. int fsl_rio_pw_enable(struct rio_mport *mport, int enable)
  451. {
  452. u32 rval;
  453. rval = in_be32(&pw->pw_regs->pwmr);
  454. if (enable)
  455. rval |= RIO_IPWMR_PWE;
  456. else
  457. rval &= ~RIO_IPWMR_PWE;
  458. out_be32(&pw->pw_regs->pwmr, rval);
  459. return 0;
  460. }
  461. /**
  462. * fsl_rio_port_write_init - MPC85xx port write interface init
  463. * @mport: Master port implementing the port write unit
  464. *
  465. * Initializes port write unit hardware and DMA buffer
  466. * ring. Called from fsl_rio_setup(). Returns %0 on success
  467. * or %-ENOMEM on failure.
  468. */
  469. int fsl_rio_port_write_init(struct fsl_rio_pw *pw)
  470. {
  471. int rc = 0;
  472. /* Following configurations require a disabled port write controller */
  473. out_be32(&pw->pw_regs->pwmr,
  474. in_be32(&pw->pw_regs->pwmr) & ~RIO_IPWMR_PWE);
  475. /* Initialize port write */
  476. pw->port_write_msg.virt = dma_alloc_coherent(pw->dev,
  477. RIO_PW_MSG_SIZE,
  478. &pw->port_write_msg.phys, GFP_KERNEL);
  479. if (!pw->port_write_msg.virt) {
  480. pr_err("RIO: unable allocate port write queue\n");
  481. return -ENOMEM;
  482. }
  483. pw->port_write_msg.err_count = 0;
  484. pw->port_write_msg.discard_count = 0;
  485. /* Point dequeue/enqueue pointers at first entry */
  486. out_be32(&pw->pw_regs->epwqbar, 0);
  487. out_be32(&pw->pw_regs->pwqbar, (u32) pw->port_write_msg.phys);
  488. pr_debug("EIPWQBAR: 0x%08x IPWQBAR: 0x%08x\n",
  489. in_be32(&pw->pw_regs->epwqbar),
  490. in_be32(&pw->pw_regs->pwqbar));
  491. /* Clear interrupt status IPWSR */
  492. out_be32(&pw->pw_regs->pwsr,
  493. (RIO_IPWSR_TE | RIO_IPWSR_QFI | RIO_IPWSR_PWD));
  494. /* Configure port write contoller for snooping enable all reporting,
  495. clear queue full */
  496. out_be32(&pw->pw_regs->pwmr,
  497. RIO_IPWMR_SEN | RIO_IPWMR_QFIE | RIO_IPWMR_EIE | RIO_IPWMR_CQ);
  498. /* Hook up port-write handler */
  499. rc = request_irq(IRQ_RIO_PW(pw), fsl_rio_port_write_handler,
  500. IRQF_SHARED, "port-write", (void *)pw);
  501. if (rc < 0) {
  502. pr_err("MPC85xx RIO: unable to request inbound doorbell irq");
  503. goto err_out;
  504. }
  505. /* Enable Error Interrupt */
  506. out_be32((u32 *)(rio_regs_win + RIO_LTLEECSR), LTLEECSR_ENABLE_ALL);
  507. INIT_WORK(&pw->pw_work, fsl_pw_dpc);
  508. spin_lock_init(&pw->pw_fifo_lock);
  509. if (kfifo_alloc(&pw->pw_fifo, RIO_PW_MSG_SIZE * 32, GFP_KERNEL)) {
  510. pr_err("FIFO allocation failed\n");
  511. rc = -ENOMEM;
  512. goto err_out_irq;
  513. }
  514. pr_debug("IPWMR: 0x%08x IPWSR: 0x%08x\n",
  515. in_be32(&pw->pw_regs->pwmr),
  516. in_be32(&pw->pw_regs->pwsr));
  517. return rc;
  518. err_out_irq:
  519. free_irq(IRQ_RIO_PW(pw), (void *)pw);
  520. err_out:
  521. dma_free_coherent(pw->dev, RIO_PW_MSG_SIZE,
  522. pw->port_write_msg.virt,
  523. pw->port_write_msg.phys);
  524. return rc;
  525. }
  526. /**
  527. * fsl_rio_doorbell_send - Send a MPC85xx doorbell message
  528. * @mport: RapidIO master port info
  529. * @index: ID of RapidIO interface
  530. * @destid: Destination ID of target device
  531. * @data: 16-bit info field of RapidIO doorbell message
  532. *
  533. * Sends a MPC85xx doorbell message. Returns %0 on success or
  534. * %-EINVAL on failure.
  535. */
  536. int fsl_rio_doorbell_send(struct rio_mport *mport,
  537. int index, u16 destid, u16 data)
  538. {
  539. pr_debug("fsl_doorbell_send: index %d destid %4.4x data %4.4x\n",
  540. index, destid, data);
  541. /* In the serial version silicons, such as MPC8548, MPC8641,
  542. * below operations is must be.
  543. */
  544. out_be32(&dbell->dbell_regs->odmr, 0x00000000);
  545. out_be32(&dbell->dbell_regs->odretcr, 0x00000004);
  546. out_be32(&dbell->dbell_regs->oddpr, destid << 16);
  547. out_be32(&dbell->dbell_regs->oddatr, (index << 20) | data);
  548. out_be32(&dbell->dbell_regs->odmr, 0x00000001);
  549. return 0;
  550. }
  551. /**
  552. * fsl_add_outb_message - Add message to the MPC85xx outbound message queue
  553. * @mport: Master port with outbound message queue
  554. * @rdev: Target of outbound message
  555. * @mbox: Outbound mailbox
  556. * @buffer: Message to add to outbound queue
  557. * @len: Length of message
  558. *
  559. * Adds the @buffer message to the MPC85xx outbound message queue. Returns
  560. * %0 on success or %-EINVAL on failure.
  561. */
  562. int
  563. fsl_add_outb_message(struct rio_mport *mport, struct rio_dev *rdev, int mbox,
  564. void *buffer, size_t len)
  565. {
  566. struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
  567. u32 omr;
  568. struct rio_tx_desc *desc = (struct rio_tx_desc *)rmu->msg_tx_ring.virt
  569. + rmu->msg_tx_ring.tx_slot;
  570. int ret = 0;
  571. pr_debug("RIO: fsl_add_outb_message(): destid %4.4x mbox %d buffer " \
  572. "%p len %8.8zx\n", rdev->destid, mbox, buffer, len);
  573. if ((len < 8) || (len > RIO_MAX_MSG_SIZE)) {
  574. ret = -EINVAL;
  575. goto out;
  576. }
  577. /* Copy and clear rest of buffer */
  578. memcpy(rmu->msg_tx_ring.virt_buffer[rmu->msg_tx_ring.tx_slot], buffer,
  579. len);
  580. if (len < (RIO_MAX_MSG_SIZE - 4))
  581. memset(rmu->msg_tx_ring.virt_buffer[rmu->msg_tx_ring.tx_slot]
  582. + len, 0, RIO_MAX_MSG_SIZE - len);
  583. /* Set mbox field for message, and set destid */
  584. desc->dport = (rdev->destid << 16) | (mbox & 0x3);
  585. /* Enable EOMI interrupt and priority */
  586. desc->dattr = 0x28000000 | ((mport->index) << 20);
  587. /* Set transfer size aligned to next power of 2 (in double words) */
  588. desc->dwcnt = is_power_of_2(len) ? len : 1 << get_bitmask_order(len);
  589. /* Set snooping and source buffer address */
  590. desc->saddr = 0x00000004
  591. | rmu->msg_tx_ring.phys_buffer[rmu->msg_tx_ring.tx_slot];
  592. /* Increment enqueue pointer */
  593. omr = in_be32(&rmu->msg_regs->omr);
  594. out_be32(&rmu->msg_regs->omr, omr | RIO_MSG_OMR_MUI);
  595. /* Go to next descriptor */
  596. if (++rmu->msg_tx_ring.tx_slot == rmu->msg_tx_ring.size)
  597. rmu->msg_tx_ring.tx_slot = 0;
  598. out:
  599. return ret;
  600. }
  601. /**
  602. * fsl_open_outb_mbox - Initialize MPC85xx outbound mailbox
  603. * @mport: Master port implementing the outbound message unit
  604. * @dev_id: Device specific pointer to pass on event
  605. * @mbox: Mailbox to open
  606. * @entries: Number of entries in the outbound mailbox ring
  607. *
  608. * Initializes buffer ring, request the outbound message interrupt,
  609. * and enables the outbound message unit. Returns %0 on success and
  610. * %-EINVAL or %-ENOMEM on failure.
  611. */
  612. int
  613. fsl_open_outb_mbox(struct rio_mport *mport, void *dev_id, int mbox, int entries)
  614. {
  615. int i, j, rc = 0;
  616. struct rio_priv *priv = mport->priv;
  617. struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
  618. if ((entries < RIO_MIN_TX_RING_SIZE) ||
  619. (entries > RIO_MAX_TX_RING_SIZE) || (!is_power_of_2(entries))) {
  620. rc = -EINVAL;
  621. goto out;
  622. }
  623. /* Initialize shadow copy ring */
  624. rmu->msg_tx_ring.dev_id = dev_id;
  625. rmu->msg_tx_ring.size = entries;
  626. for (i = 0; i < rmu->msg_tx_ring.size; i++) {
  627. rmu->msg_tx_ring.virt_buffer[i] =
  628. dma_alloc_coherent(priv->dev, RIO_MSG_BUFFER_SIZE,
  629. &rmu->msg_tx_ring.phys_buffer[i], GFP_KERNEL);
  630. if (!rmu->msg_tx_ring.virt_buffer[i]) {
  631. rc = -ENOMEM;
  632. for (j = 0; j < rmu->msg_tx_ring.size; j++)
  633. if (rmu->msg_tx_ring.virt_buffer[j])
  634. dma_free_coherent(priv->dev,
  635. RIO_MSG_BUFFER_SIZE,
  636. rmu->msg_tx_ring.
  637. virt_buffer[j],
  638. rmu->msg_tx_ring.
  639. phys_buffer[j]);
  640. goto out;
  641. }
  642. }
  643. /* Initialize outbound message descriptor ring */
  644. rmu->msg_tx_ring.virt = dma_alloc_coherent(priv->dev,
  645. rmu->msg_tx_ring.size * RIO_MSG_DESC_SIZE,
  646. &rmu->msg_tx_ring.phys, GFP_KERNEL);
  647. if (!rmu->msg_tx_ring.virt) {
  648. rc = -ENOMEM;
  649. goto out_dma;
  650. }
  651. memset(rmu->msg_tx_ring.virt, 0,
  652. rmu->msg_tx_ring.size * RIO_MSG_DESC_SIZE);
  653. rmu->msg_tx_ring.tx_slot = 0;
  654. /* Point dequeue/enqueue pointers at first entry in ring */
  655. out_be32(&rmu->msg_regs->odqdpar, rmu->msg_tx_ring.phys);
  656. out_be32(&rmu->msg_regs->odqepar, rmu->msg_tx_ring.phys);
  657. /* Configure for snooping */
  658. out_be32(&rmu->msg_regs->osar, 0x00000004);
  659. /* Clear interrupt status */
  660. out_be32(&rmu->msg_regs->osr, 0x000000b3);
  661. /* Hook up outbound message handler */
  662. rc = request_irq(IRQ_RIO_TX(mport), fsl_rio_tx_handler, 0,
  663. "msg_tx", (void *)mport);
  664. if (rc < 0)
  665. goto out_irq;
  666. /*
  667. * Configure outbound message unit
  668. * Snooping
  669. * Interrupts (all enabled, except QEIE)
  670. * Chaining mode
  671. * Disable
  672. */
  673. out_be32(&rmu->msg_regs->omr, 0x00100220);
  674. /* Set number of entries */
  675. out_be32(&rmu->msg_regs->omr,
  676. in_be32(&rmu->msg_regs->omr) |
  677. ((get_bitmask_order(entries) - 2) << 12));
  678. /* Now enable the unit */
  679. out_be32(&rmu->msg_regs->omr, in_be32(&rmu->msg_regs->omr) | 0x1);
  680. out:
  681. return rc;
  682. out_irq:
  683. dma_free_coherent(priv->dev,
  684. rmu->msg_tx_ring.size * RIO_MSG_DESC_SIZE,
  685. rmu->msg_tx_ring.virt, rmu->msg_tx_ring.phys);
  686. out_dma:
  687. for (i = 0; i < rmu->msg_tx_ring.size; i++)
  688. dma_free_coherent(priv->dev, RIO_MSG_BUFFER_SIZE,
  689. rmu->msg_tx_ring.virt_buffer[i],
  690. rmu->msg_tx_ring.phys_buffer[i]);
  691. return rc;
  692. }
  693. /**
  694. * fsl_close_outb_mbox - Shut down MPC85xx outbound mailbox
  695. * @mport: Master port implementing the outbound message unit
  696. * @mbox: Mailbox to close
  697. *
  698. * Disables the outbound message unit, free all buffers, and
  699. * frees the outbound message interrupt.
  700. */
  701. void fsl_close_outb_mbox(struct rio_mport *mport, int mbox)
  702. {
  703. struct rio_priv *priv = mport->priv;
  704. struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
  705. /* Disable inbound message unit */
  706. out_be32(&rmu->msg_regs->omr, 0);
  707. /* Free ring */
  708. dma_free_coherent(priv->dev,
  709. rmu->msg_tx_ring.size * RIO_MSG_DESC_SIZE,
  710. rmu->msg_tx_ring.virt, rmu->msg_tx_ring.phys);
  711. /* Free interrupt */
  712. free_irq(IRQ_RIO_TX(mport), (void *)mport);
  713. }
  714. /**
  715. * fsl_open_inb_mbox - Initialize MPC85xx inbound mailbox
  716. * @mport: Master port implementing the inbound message unit
  717. * @dev_id: Device specific pointer to pass on event
  718. * @mbox: Mailbox to open
  719. * @entries: Number of entries in the inbound mailbox ring
  720. *
  721. * Initializes buffer ring, request the inbound message interrupt,
  722. * and enables the inbound message unit. Returns %0 on success
  723. * and %-EINVAL or %-ENOMEM on failure.
  724. */
  725. int
  726. fsl_open_inb_mbox(struct rio_mport *mport, void *dev_id, int mbox, int entries)
  727. {
  728. int i, rc = 0;
  729. struct rio_priv *priv = mport->priv;
  730. struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
  731. if ((entries < RIO_MIN_RX_RING_SIZE) ||
  732. (entries > RIO_MAX_RX_RING_SIZE) || (!is_power_of_2(entries))) {
  733. rc = -EINVAL;
  734. goto out;
  735. }
  736. /* Initialize client buffer ring */
  737. rmu->msg_rx_ring.dev_id = dev_id;
  738. rmu->msg_rx_ring.size = entries;
  739. rmu->msg_rx_ring.rx_slot = 0;
  740. for (i = 0; i < rmu->msg_rx_ring.size; i++)
  741. rmu->msg_rx_ring.virt_buffer[i] = NULL;
  742. /* Initialize inbound message ring */
  743. rmu->msg_rx_ring.virt = dma_alloc_coherent(priv->dev,
  744. rmu->msg_rx_ring.size * RIO_MAX_MSG_SIZE,
  745. &rmu->msg_rx_ring.phys, GFP_KERNEL);
  746. if (!rmu->msg_rx_ring.virt) {
  747. rc = -ENOMEM;
  748. goto out;
  749. }
  750. /* Point dequeue/enqueue pointers at first entry in ring */
  751. out_be32(&rmu->msg_regs->ifqdpar, (u32) rmu->msg_rx_ring.phys);
  752. out_be32(&rmu->msg_regs->ifqepar, (u32) rmu->msg_rx_ring.phys);
  753. /* Clear interrupt status */
  754. out_be32(&rmu->msg_regs->isr, 0x00000091);
  755. /* Hook up inbound message handler */
  756. rc = request_irq(IRQ_RIO_RX(mport), fsl_rio_rx_handler, 0,
  757. "msg_rx", (void *)mport);
  758. if (rc < 0) {
  759. dma_free_coherent(priv->dev, RIO_MSG_BUFFER_SIZE,
  760. rmu->msg_tx_ring.virt_buffer[i],
  761. rmu->msg_tx_ring.phys_buffer[i]);
  762. goto out;
  763. }
  764. /*
  765. * Configure inbound message unit:
  766. * Snooping
  767. * 4KB max message size
  768. * Unmask all interrupt sources
  769. * Disable
  770. */
  771. out_be32(&rmu->msg_regs->imr, 0x001b0060);
  772. /* Set number of queue entries */
  773. setbits32(&rmu->msg_regs->imr, (get_bitmask_order(entries) - 2) << 12);
  774. /* Now enable the unit */
  775. setbits32(&rmu->msg_regs->imr, 0x1);
  776. out:
  777. return rc;
  778. }
  779. /**
  780. * fsl_close_inb_mbox - Shut down MPC85xx inbound mailbox
  781. * @mport: Master port implementing the inbound message unit
  782. * @mbox: Mailbox to close
  783. *
  784. * Disables the inbound message unit, free all buffers, and
  785. * frees the inbound message interrupt.
  786. */
  787. void fsl_close_inb_mbox(struct rio_mport *mport, int mbox)
  788. {
  789. struct rio_priv *priv = mport->priv;
  790. struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
  791. /* Disable inbound message unit */
  792. out_be32(&rmu->msg_regs->imr, 0);
  793. /* Free ring */
  794. dma_free_coherent(priv->dev, rmu->msg_rx_ring.size * RIO_MAX_MSG_SIZE,
  795. rmu->msg_rx_ring.virt, rmu->msg_rx_ring.phys);
  796. /* Free interrupt */
  797. free_irq(IRQ_RIO_RX(mport), (void *)mport);
  798. }
  799. /**
  800. * fsl_add_inb_buffer - Add buffer to the MPC85xx inbound message queue
  801. * @mport: Master port implementing the inbound message unit
  802. * @mbox: Inbound mailbox number
  803. * @buf: Buffer to add to inbound queue
  804. *
  805. * Adds the @buf buffer to the MPC85xx inbound message queue. Returns
  806. * %0 on success or %-EINVAL on failure.
  807. */
  808. int fsl_add_inb_buffer(struct rio_mport *mport, int mbox, void *buf)
  809. {
  810. int rc = 0;
  811. struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
  812. pr_debug("RIO: fsl_add_inb_buffer(), msg_rx_ring.rx_slot %d\n",
  813. rmu->msg_rx_ring.rx_slot);
  814. if (rmu->msg_rx_ring.virt_buffer[rmu->msg_rx_ring.rx_slot]) {
  815. printk(KERN_ERR
  816. "RIO: error adding inbound buffer %d, buffer exists\n",
  817. rmu->msg_rx_ring.rx_slot);
  818. rc = -EINVAL;
  819. goto out;
  820. }
  821. rmu->msg_rx_ring.virt_buffer[rmu->msg_rx_ring.rx_slot] = buf;
  822. if (++rmu->msg_rx_ring.rx_slot == rmu->msg_rx_ring.size)
  823. rmu->msg_rx_ring.rx_slot = 0;
  824. out:
  825. return rc;
  826. }
  827. /**
  828. * fsl_get_inb_message - Fetch inbound message from the MPC85xx message unit
  829. * @mport: Master port implementing the inbound message unit
  830. * @mbox: Inbound mailbox number
  831. *
  832. * Gets the next available inbound message from the inbound message queue.
  833. * A pointer to the message is returned on success or NULL on failure.
  834. */
  835. void *fsl_get_inb_message(struct rio_mport *mport, int mbox)
  836. {
  837. struct fsl_rmu *rmu = GET_RMM_HANDLE(mport);
  838. u32 phys_buf;
  839. void *virt_buf;
  840. void *buf = NULL;
  841. int buf_idx;
  842. phys_buf = in_be32(&rmu->msg_regs->ifqdpar);
  843. /* If no more messages, then bail out */
  844. if (phys_buf == in_be32(&rmu->msg_regs->ifqepar))
  845. goto out2;
  846. virt_buf = rmu->msg_rx_ring.virt + (phys_buf
  847. - rmu->msg_rx_ring.phys);
  848. buf_idx = (phys_buf - rmu->msg_rx_ring.phys) / RIO_MAX_MSG_SIZE;
  849. buf = rmu->msg_rx_ring.virt_buffer[buf_idx];
  850. if (!buf) {
  851. printk(KERN_ERR
  852. "RIO: inbound message copy failed, no buffers\n");
  853. goto out1;
  854. }
  855. /* Copy max message size, caller is expected to allocate that big */
  856. memcpy(buf, virt_buf, RIO_MAX_MSG_SIZE);
  857. /* Clear the available buffer */
  858. rmu->msg_rx_ring.virt_buffer[buf_idx] = NULL;
  859. out1:
  860. setbits32(&rmu->msg_regs->imr, RIO_MSG_IMR_MI);
  861. out2:
  862. return buf;
  863. }
  864. /**
  865. * fsl_rio_doorbell_init - MPC85xx doorbell interface init
  866. * @mport: Master port implementing the inbound doorbell unit
  867. *
  868. * Initializes doorbell unit hardware and inbound DMA buffer
  869. * ring. Called from fsl_rio_setup(). Returns %0 on success
  870. * or %-ENOMEM on failure.
  871. */
  872. int fsl_rio_doorbell_init(struct fsl_rio_dbell *dbell)
  873. {
  874. int rc = 0;
  875. /* Initialize inbound doorbells */
  876. dbell->dbell_ring.virt = dma_alloc_coherent(dbell->dev, 512 *
  877. DOORBELL_MESSAGE_SIZE, &dbell->dbell_ring.phys, GFP_KERNEL);
  878. if (!dbell->dbell_ring.virt) {
  879. printk(KERN_ERR "RIO: unable allocate inbound doorbell ring\n");
  880. rc = -ENOMEM;
  881. goto out;
  882. }
  883. /* Point dequeue/enqueue pointers at first entry in ring */
  884. out_be32(&dbell->dbell_regs->dqdpar, (u32) dbell->dbell_ring.phys);
  885. out_be32(&dbell->dbell_regs->dqepar, (u32) dbell->dbell_ring.phys);
  886. /* Clear interrupt status */
  887. out_be32(&dbell->dbell_regs->dsr, 0x00000091);
  888. /* Hook up doorbell handler */
  889. rc = request_irq(IRQ_RIO_BELL(dbell), fsl_rio_dbell_handler, 0,
  890. "dbell_rx", (void *)dbell);
  891. if (rc < 0) {
  892. dma_free_coherent(dbell->dev, 512 * DOORBELL_MESSAGE_SIZE,
  893. dbell->dbell_ring.virt, dbell->dbell_ring.phys);
  894. printk(KERN_ERR
  895. "MPC85xx RIO: unable to request inbound doorbell irq");
  896. goto out;
  897. }
  898. /* Configure doorbells for snooping, 512 entries, and enable */
  899. out_be32(&dbell->dbell_regs->dmr, 0x00108161);
  900. out:
  901. return rc;
  902. }
  903. int fsl_rio_setup_rmu(struct rio_mport *mport, struct device_node *node)
  904. {
  905. struct rio_priv *priv;
  906. struct fsl_rmu *rmu;
  907. u64 msg_start;
  908. const u32 *msg_addr;
  909. int mlen;
  910. int aw;
  911. if (!mport || !mport->priv)
  912. return -EINVAL;
  913. priv = mport->priv;
  914. if (!node) {
  915. dev_warn(priv->dev, "Can't get %s property 'fsl,rmu'\n",
  916. priv->dev->of_node->full_name);
  917. return -EINVAL;
  918. }
  919. rmu = kzalloc(sizeof(struct fsl_rmu), GFP_KERNEL);
  920. if (!rmu)
  921. return -ENOMEM;
  922. aw = of_n_addr_cells(node);
  923. msg_addr = of_get_property(node, "reg", &mlen);
  924. if (!msg_addr) {
  925. pr_err("%s: unable to find 'reg' property of message-unit\n",
  926. node->full_name);
  927. kfree(rmu);
  928. return -ENOMEM;
  929. }
  930. msg_start = of_read_number(msg_addr, aw);
  931. rmu->msg_regs = (struct rio_msg_regs *)
  932. (rmu_regs_win + (u32)msg_start);
  933. rmu->txirq = irq_of_parse_and_map(node, 0);
  934. rmu->rxirq = irq_of_parse_and_map(node, 1);
  935. printk(KERN_INFO "%s: txirq: %d, rxirq %d\n",
  936. node->full_name, rmu->txirq, rmu->rxirq);
  937. priv->rmm_handle = rmu;
  938. rio_init_dbell_res(&mport->riores[RIO_DOORBELL_RESOURCE], 0, 0xffff);
  939. rio_init_mbox_res(&mport->riores[RIO_INB_MBOX_RESOURCE], 0, 0);
  940. rio_init_mbox_res(&mport->riores[RIO_OUTB_MBOX_RESOURCE], 0, 0);
  941. return 0;
  942. }