crash_dump.c 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. /*
  2. * Routines for doing kexec-based kdump.
  3. *
  4. * Copyright (C) 2005, IBM Corp.
  5. *
  6. * Created by: Michael Ellerman
  7. *
  8. * This source code is licensed under the GNU General Public License,
  9. * Version 2. See the file COPYING for more details.
  10. */
  11. #undef DEBUG
  12. #include <linux/crash_dump.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/memblock.h>
  15. #include <asm/code-patching.h>
  16. #include <asm/kdump.h>
  17. #include <asm/prom.h>
  18. #include <asm/firmware.h>
  19. #include <asm/uaccess.h>
  20. #include <asm/rtas.h>
  21. #ifdef DEBUG
  22. #include <asm/udbg.h>
  23. #define DBG(fmt...) udbg_printf(fmt)
  24. #else
  25. #define DBG(fmt...)
  26. #endif
  27. #ifndef CONFIG_NONSTATIC_KERNEL
  28. void __init reserve_kdump_trampoline(void)
  29. {
  30. memblock_reserve(0, KDUMP_RESERVE_LIMIT);
  31. }
  32. static void __init create_trampoline(unsigned long addr)
  33. {
  34. unsigned int *p = (unsigned int *)addr;
  35. /* The maximum range of a single instruction branch, is the current
  36. * instruction's address + (32 MB - 4) bytes. For the trampoline we
  37. * need to branch to current address + 32 MB. So we insert a nop at
  38. * the trampoline address, then the next instruction (+ 4 bytes)
  39. * does a branch to (32 MB - 4). The net effect is that when we
  40. * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
  41. * two instructions it doesn't require any registers.
  42. */
  43. patch_instruction(p, PPC_INST_NOP);
  44. patch_branch(++p, addr + PHYSICAL_START, 0);
  45. }
  46. void __init setup_kdump_trampoline(void)
  47. {
  48. unsigned long i;
  49. DBG(" -> setup_kdump_trampoline()\n");
  50. for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
  51. create_trampoline(i);
  52. }
  53. #ifdef CONFIG_PPC_PSERIES
  54. create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
  55. create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
  56. #endif /* CONFIG_PPC_PSERIES */
  57. DBG(" <- setup_kdump_trampoline()\n");
  58. }
  59. #endif /* CONFIG_NONSTATIC_KERNEL */
  60. static int __init parse_savemaxmem(char *p)
  61. {
  62. if (p)
  63. saved_max_pfn = (memparse(p, &p) >> PAGE_SHIFT) - 1;
  64. return 1;
  65. }
  66. __setup("savemaxmem=", parse_savemaxmem);
  67. static size_t copy_oldmem_vaddr(void *vaddr, char *buf, size_t csize,
  68. unsigned long offset, int userbuf)
  69. {
  70. if (userbuf) {
  71. if (copy_to_user((char __user *)buf, (vaddr + offset), csize))
  72. return -EFAULT;
  73. } else
  74. memcpy(buf, (vaddr + offset), csize);
  75. return csize;
  76. }
  77. /**
  78. * copy_oldmem_page - copy one page from "oldmem"
  79. * @pfn: page frame number to be copied
  80. * @buf: target memory address for the copy; this can be in kernel address
  81. * space or user address space (see @userbuf)
  82. * @csize: number of bytes to copy
  83. * @offset: offset in bytes into the page (based on pfn) to begin the copy
  84. * @userbuf: if set, @buf is in user address space, use copy_to_user(),
  85. * otherwise @buf is in kernel address space, use memcpy().
  86. *
  87. * Copy a page from "oldmem". For this page, there is no pte mapped
  88. * in the current kernel. We stitch up a pte, similar to kmap_atomic.
  89. */
  90. ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
  91. size_t csize, unsigned long offset, int userbuf)
  92. {
  93. void *vaddr;
  94. phys_addr_t paddr;
  95. if (!csize)
  96. return 0;
  97. csize = min_t(size_t, csize, PAGE_SIZE);
  98. paddr = pfn << PAGE_SHIFT;
  99. if (memblock_is_region_memory(paddr, csize)) {
  100. vaddr = __va(paddr);
  101. csize = copy_oldmem_vaddr(vaddr, buf, csize, offset, userbuf);
  102. } else {
  103. vaddr = __ioremap(paddr, PAGE_SIZE, 0);
  104. csize = copy_oldmem_vaddr(vaddr, buf, csize, offset, userbuf);
  105. iounmap(vaddr);
  106. }
  107. return csize;
  108. }
  109. #ifdef CONFIG_PPC_RTAS
  110. /*
  111. * The crashkernel region will almost always overlap the RTAS region, so
  112. * we have to be careful when shrinking the crashkernel region.
  113. */
  114. void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
  115. {
  116. unsigned long addr;
  117. const u32 *basep, *sizep;
  118. unsigned int rtas_start = 0, rtas_end = 0;
  119. basep = of_get_property(rtas.dev, "linux,rtas-base", NULL);
  120. sizep = of_get_property(rtas.dev, "rtas-size", NULL);
  121. if (basep && sizep) {
  122. rtas_start = *basep;
  123. rtas_end = *basep + *sizep;
  124. }
  125. for (addr = begin; addr < end; addr += PAGE_SIZE) {
  126. /* Does this page overlap with the RTAS region? */
  127. if (addr <= rtas_end && ((addr + PAGE_SIZE) > rtas_start))
  128. continue;
  129. ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
  130. init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
  131. free_page((unsigned long)__va(addr));
  132. totalram_pages++;
  133. }
  134. }
  135. #endif