process_32.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715
  1. /* linux/arch/sparc/kernel/process.c
  2. *
  3. * Copyright (C) 1995, 2008 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  5. */
  6. /*
  7. * This file handles the architecture-dependent parts of process handling..
  8. */
  9. #include <stdarg.h>
  10. #include <linux/errno.h>
  11. #include <linux/module.h>
  12. #include <linux/sched.h>
  13. #include <linux/kernel.h>
  14. #include <linux/mm.h>
  15. #include <linux/stddef.h>
  16. #include <linux/ptrace.h>
  17. #include <linux/user.h>
  18. #include <linux/smp.h>
  19. #include <linux/reboot.h>
  20. #include <linux/delay.h>
  21. #include <linux/pm.h>
  22. #include <linux/init.h>
  23. #include <linux/slab.h>
  24. #include <asm/auxio.h>
  25. #include <asm/oplib.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/page.h>
  28. #include <asm/pgalloc.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/delay.h>
  31. #include <asm/processor.h>
  32. #include <asm/psr.h>
  33. #include <asm/elf.h>
  34. #include <asm/prom.h>
  35. #include <asm/unistd.h>
  36. #include <asm/setup.h>
  37. /*
  38. * Power management idle function
  39. * Set in pm platform drivers (apc.c and pmc.c)
  40. */
  41. void (*pm_idle)(void);
  42. EXPORT_SYMBOL(pm_idle);
  43. /*
  44. * Power-off handler instantiation for pm.h compliance
  45. * This is done via auxio, but could be used as a fallback
  46. * handler when auxio is not present-- unused for now...
  47. */
  48. void (*pm_power_off)(void) = machine_power_off;
  49. EXPORT_SYMBOL(pm_power_off);
  50. /*
  51. * sysctl - toggle power-off restriction for serial console
  52. * systems in machine_power_off()
  53. */
  54. int scons_pwroff = 1;
  55. extern void fpsave(unsigned long *, unsigned long *, void *, unsigned long *);
  56. struct task_struct *last_task_used_math = NULL;
  57. struct thread_info *current_set[NR_CPUS];
  58. #ifndef CONFIG_SMP
  59. #define SUN4C_FAULT_HIGH 100
  60. /*
  61. * the idle loop on a Sparc... ;)
  62. */
  63. void cpu_idle(void)
  64. {
  65. /* endless idle loop with no priority at all */
  66. for (;;) {
  67. if (ARCH_SUN4C) {
  68. static int count = HZ;
  69. static unsigned long last_jiffies;
  70. static unsigned long last_faults;
  71. static unsigned long fps;
  72. unsigned long now;
  73. unsigned long faults;
  74. extern unsigned long sun4c_kernel_faults;
  75. extern void sun4c_grow_kernel_ring(void);
  76. local_irq_disable();
  77. now = jiffies;
  78. count -= (now - last_jiffies);
  79. last_jiffies = now;
  80. if (count < 0) {
  81. count += HZ;
  82. faults = sun4c_kernel_faults;
  83. fps = (fps + (faults - last_faults)) >> 1;
  84. last_faults = faults;
  85. #if 0
  86. printk("kernel faults / second = %ld\n", fps);
  87. #endif
  88. if (fps >= SUN4C_FAULT_HIGH) {
  89. sun4c_grow_kernel_ring();
  90. }
  91. }
  92. local_irq_enable();
  93. }
  94. if (pm_idle) {
  95. while (!need_resched())
  96. (*pm_idle)();
  97. } else {
  98. while (!need_resched())
  99. cpu_relax();
  100. }
  101. schedule_preempt_disabled();
  102. check_pgt_cache();
  103. }
  104. }
  105. #else
  106. /* This is being executed in task 0 'user space'. */
  107. void cpu_idle(void)
  108. {
  109. set_thread_flag(TIF_POLLING_NRFLAG);
  110. /* endless idle loop with no priority at all */
  111. while(1) {
  112. #ifdef CONFIG_SPARC_LEON
  113. if (pm_idle) {
  114. while (!need_resched())
  115. (*pm_idle)();
  116. } else
  117. #endif
  118. {
  119. while (!need_resched())
  120. cpu_relax();
  121. }
  122. schedule_preempt_disabled();
  123. check_pgt_cache();
  124. }
  125. }
  126. #endif
  127. /* XXX cli/sti -> local_irq_xxx here, check this works once SMP is fixed. */
  128. void machine_halt(void)
  129. {
  130. local_irq_enable();
  131. mdelay(8);
  132. local_irq_disable();
  133. prom_halt();
  134. panic("Halt failed!");
  135. }
  136. void machine_restart(char * cmd)
  137. {
  138. char *p;
  139. local_irq_enable();
  140. mdelay(8);
  141. local_irq_disable();
  142. p = strchr (reboot_command, '\n');
  143. if (p) *p = 0;
  144. if (cmd)
  145. prom_reboot(cmd);
  146. if (*reboot_command)
  147. prom_reboot(reboot_command);
  148. prom_feval ("reset");
  149. panic("Reboot failed!");
  150. }
  151. void machine_power_off(void)
  152. {
  153. if (auxio_power_register &&
  154. (strcmp(of_console_device->type, "serial") || scons_pwroff))
  155. *auxio_power_register |= AUXIO_POWER_OFF;
  156. machine_halt();
  157. }
  158. #if 0
  159. static DEFINE_SPINLOCK(sparc_backtrace_lock);
  160. void __show_backtrace(unsigned long fp)
  161. {
  162. struct reg_window32 *rw;
  163. unsigned long flags;
  164. int cpu = smp_processor_id();
  165. spin_lock_irqsave(&sparc_backtrace_lock, flags);
  166. rw = (struct reg_window32 *)fp;
  167. while(rw && (((unsigned long) rw) >= PAGE_OFFSET) &&
  168. !(((unsigned long) rw) & 0x7)) {
  169. printk("CPU[%d]: ARGS[%08lx,%08lx,%08lx,%08lx,%08lx,%08lx] "
  170. "FP[%08lx] CALLER[%08lx]: ", cpu,
  171. rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3],
  172. rw->ins[4], rw->ins[5],
  173. rw->ins[6],
  174. rw->ins[7]);
  175. printk("%pS\n", (void *) rw->ins[7]);
  176. rw = (struct reg_window32 *) rw->ins[6];
  177. }
  178. spin_unlock_irqrestore(&sparc_backtrace_lock, flags);
  179. }
  180. #define __SAVE __asm__ __volatile__("save %sp, -0x40, %sp\n\t")
  181. #define __RESTORE __asm__ __volatile__("restore %g0, %g0, %g0\n\t")
  182. #define __GET_FP(fp) __asm__ __volatile__("mov %%i6, %0" : "=r" (fp))
  183. void show_backtrace(void)
  184. {
  185. unsigned long fp;
  186. __SAVE; __SAVE; __SAVE; __SAVE;
  187. __SAVE; __SAVE; __SAVE; __SAVE;
  188. __RESTORE; __RESTORE; __RESTORE; __RESTORE;
  189. __RESTORE; __RESTORE; __RESTORE; __RESTORE;
  190. __GET_FP(fp);
  191. __show_backtrace(fp);
  192. }
  193. #ifdef CONFIG_SMP
  194. void smp_show_backtrace_all_cpus(void)
  195. {
  196. xc0((smpfunc_t) show_backtrace);
  197. show_backtrace();
  198. }
  199. #endif
  200. void show_stackframe(struct sparc_stackf *sf)
  201. {
  202. unsigned long size;
  203. unsigned long *stk;
  204. int i;
  205. printk("l0: %08lx l1: %08lx l2: %08lx l3: %08lx "
  206. "l4: %08lx l5: %08lx l6: %08lx l7: %08lx\n",
  207. sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3],
  208. sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
  209. printk("i0: %08lx i1: %08lx i2: %08lx i3: %08lx "
  210. "i4: %08lx i5: %08lx fp: %08lx i7: %08lx\n",
  211. sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3],
  212. sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc);
  213. printk("sp: %08lx x0: %08lx x1: %08lx x2: %08lx "
  214. "x3: %08lx x4: %08lx x5: %08lx xx: %08lx\n",
  215. (unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1],
  216. sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
  217. sf->xxargs[0]);
  218. size = ((unsigned long)sf->fp) - ((unsigned long)sf);
  219. size -= STACKFRAME_SZ;
  220. stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ);
  221. i = 0;
  222. do {
  223. printk("s%d: %08lx\n", i++, *stk++);
  224. } while ((size -= sizeof(unsigned long)));
  225. }
  226. #endif
  227. void show_regs(struct pt_regs *r)
  228. {
  229. struct reg_window32 *rw = (struct reg_window32 *) r->u_regs[14];
  230. printk("PSR: %08lx PC: %08lx NPC: %08lx Y: %08lx %s\n",
  231. r->psr, r->pc, r->npc, r->y, print_tainted());
  232. printk("PC: <%pS>\n", (void *) r->pc);
  233. printk("%%G: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
  234. r->u_regs[0], r->u_regs[1], r->u_regs[2], r->u_regs[3],
  235. r->u_regs[4], r->u_regs[5], r->u_regs[6], r->u_regs[7]);
  236. printk("%%O: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
  237. r->u_regs[8], r->u_regs[9], r->u_regs[10], r->u_regs[11],
  238. r->u_regs[12], r->u_regs[13], r->u_regs[14], r->u_regs[15]);
  239. printk("RPC: <%pS>\n", (void *) r->u_regs[15]);
  240. printk("%%L: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
  241. rw->locals[0], rw->locals[1], rw->locals[2], rw->locals[3],
  242. rw->locals[4], rw->locals[5], rw->locals[6], rw->locals[7]);
  243. printk("%%I: %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
  244. rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3],
  245. rw->ins[4], rw->ins[5], rw->ins[6], rw->ins[7]);
  246. }
  247. /*
  248. * The show_stack is an external API which we do not use ourselves.
  249. * The oops is printed in die_if_kernel.
  250. */
  251. void show_stack(struct task_struct *tsk, unsigned long *_ksp)
  252. {
  253. unsigned long pc, fp;
  254. unsigned long task_base;
  255. struct reg_window32 *rw;
  256. int count = 0;
  257. if (tsk != NULL)
  258. task_base = (unsigned long) task_stack_page(tsk);
  259. else
  260. task_base = (unsigned long) current_thread_info();
  261. fp = (unsigned long) _ksp;
  262. do {
  263. /* Bogus frame pointer? */
  264. if (fp < (task_base + sizeof(struct thread_info)) ||
  265. fp >= (task_base + (PAGE_SIZE << 1)))
  266. break;
  267. rw = (struct reg_window32 *) fp;
  268. pc = rw->ins[7];
  269. printk("[%08lx : ", pc);
  270. printk("%pS ] ", (void *) pc);
  271. fp = rw->ins[6];
  272. } while (++count < 16);
  273. printk("\n");
  274. }
  275. void dump_stack(void)
  276. {
  277. unsigned long *ksp;
  278. __asm__ __volatile__("mov %%fp, %0"
  279. : "=r" (ksp));
  280. show_stack(current, ksp);
  281. }
  282. EXPORT_SYMBOL(dump_stack);
  283. /*
  284. * Note: sparc64 has a pretty intricated thread_saved_pc, check it out.
  285. */
  286. unsigned long thread_saved_pc(struct task_struct *tsk)
  287. {
  288. return task_thread_info(tsk)->kpc;
  289. }
  290. /*
  291. * Free current thread data structures etc..
  292. */
  293. void exit_thread(void)
  294. {
  295. #ifndef CONFIG_SMP
  296. if(last_task_used_math == current) {
  297. #else
  298. if (test_thread_flag(TIF_USEDFPU)) {
  299. #endif
  300. /* Keep process from leaving FPU in a bogon state. */
  301. put_psr(get_psr() | PSR_EF);
  302. fpsave(&current->thread.float_regs[0], &current->thread.fsr,
  303. &current->thread.fpqueue[0], &current->thread.fpqdepth);
  304. #ifndef CONFIG_SMP
  305. last_task_used_math = NULL;
  306. #else
  307. clear_thread_flag(TIF_USEDFPU);
  308. #endif
  309. }
  310. }
  311. void flush_thread(void)
  312. {
  313. current_thread_info()->w_saved = 0;
  314. #ifndef CONFIG_SMP
  315. if(last_task_used_math == current) {
  316. #else
  317. if (test_thread_flag(TIF_USEDFPU)) {
  318. #endif
  319. /* Clean the fpu. */
  320. put_psr(get_psr() | PSR_EF);
  321. fpsave(&current->thread.float_regs[0], &current->thread.fsr,
  322. &current->thread.fpqueue[0], &current->thread.fpqdepth);
  323. #ifndef CONFIG_SMP
  324. last_task_used_math = NULL;
  325. #else
  326. clear_thread_flag(TIF_USEDFPU);
  327. #endif
  328. }
  329. /* This task is no longer a kernel thread. */
  330. if (current->thread.flags & SPARC_FLAG_KTHREAD) {
  331. current->thread.flags &= ~SPARC_FLAG_KTHREAD;
  332. /* We must fixup kregs as well. */
  333. /* XXX This was not fixed for ti for a while, worked. Unused? */
  334. current->thread.kregs = (struct pt_regs *)
  335. (task_stack_page(current) + (THREAD_SIZE - TRACEREG_SZ));
  336. }
  337. }
  338. static inline struct sparc_stackf __user *
  339. clone_stackframe(struct sparc_stackf __user *dst,
  340. struct sparc_stackf __user *src)
  341. {
  342. unsigned long size, fp;
  343. struct sparc_stackf *tmp;
  344. struct sparc_stackf __user *sp;
  345. if (get_user(tmp, &src->fp))
  346. return NULL;
  347. fp = (unsigned long) tmp;
  348. size = (fp - ((unsigned long) src));
  349. fp = (unsigned long) dst;
  350. sp = (struct sparc_stackf __user *)(fp - size);
  351. /* do_fork() grabs the parent semaphore, we must release it
  352. * temporarily so we can build the child clone stack frame
  353. * without deadlocking.
  354. */
  355. if (__copy_user(sp, src, size))
  356. sp = NULL;
  357. else if (put_user(fp, &sp->fp))
  358. sp = NULL;
  359. return sp;
  360. }
  361. asmlinkage int sparc_do_fork(unsigned long clone_flags,
  362. unsigned long stack_start,
  363. struct pt_regs *regs,
  364. unsigned long stack_size)
  365. {
  366. unsigned long parent_tid_ptr, child_tid_ptr;
  367. unsigned long orig_i1 = regs->u_regs[UREG_I1];
  368. long ret;
  369. parent_tid_ptr = regs->u_regs[UREG_I2];
  370. child_tid_ptr = regs->u_regs[UREG_I4];
  371. ret = do_fork(clone_flags, stack_start,
  372. regs, stack_size,
  373. (int __user *) parent_tid_ptr,
  374. (int __user *) child_tid_ptr);
  375. /* If we get an error and potentially restart the system
  376. * call, we're screwed because copy_thread() clobbered
  377. * the parent's %o1. So detect that case and restore it
  378. * here.
  379. */
  380. if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
  381. regs->u_regs[UREG_I1] = orig_i1;
  382. return ret;
  383. }
  384. /* Copy a Sparc thread. The fork() return value conventions
  385. * under SunOS are nothing short of bletcherous:
  386. * Parent --> %o0 == childs pid, %o1 == 0
  387. * Child --> %o0 == parents pid, %o1 == 1
  388. *
  389. * NOTE: We have a separate fork kpsr/kwim because
  390. * the parent could change these values between
  391. * sys_fork invocation and when we reach here
  392. * if the parent should sleep while trying to
  393. * allocate the task_struct and kernel stack in
  394. * do_fork().
  395. * XXX See comment above sys_vfork in sparc64. todo.
  396. */
  397. extern void ret_from_fork(void);
  398. int copy_thread(unsigned long clone_flags, unsigned long sp,
  399. unsigned long unused,
  400. struct task_struct *p, struct pt_regs *regs)
  401. {
  402. struct thread_info *ti = task_thread_info(p);
  403. struct pt_regs *childregs;
  404. char *new_stack;
  405. #ifndef CONFIG_SMP
  406. if(last_task_used_math == current) {
  407. #else
  408. if (test_thread_flag(TIF_USEDFPU)) {
  409. #endif
  410. put_psr(get_psr() | PSR_EF);
  411. fpsave(&p->thread.float_regs[0], &p->thread.fsr,
  412. &p->thread.fpqueue[0], &p->thread.fpqdepth);
  413. #ifdef CONFIG_SMP
  414. clear_thread_flag(TIF_USEDFPU);
  415. #endif
  416. }
  417. /*
  418. * p->thread_info new_stack childregs
  419. * ! ! ! {if(PSR_PS) }
  420. * V V (stk.fr.) V (pt_regs) { (stk.fr.) }
  421. * +----- - - - - - ------+===========+============={+==========}+
  422. */
  423. new_stack = task_stack_page(p) + THREAD_SIZE;
  424. if (regs->psr & PSR_PS)
  425. new_stack -= STACKFRAME_SZ;
  426. new_stack -= STACKFRAME_SZ + TRACEREG_SZ;
  427. memcpy(new_stack, (char *)regs - STACKFRAME_SZ, STACKFRAME_SZ + TRACEREG_SZ);
  428. childregs = (struct pt_regs *) (new_stack + STACKFRAME_SZ);
  429. /*
  430. * A new process must start with interrupts closed in 2.5,
  431. * because this is how Mingo's scheduler works (see schedule_tail
  432. * and finish_arch_switch). If we do not do it, a timer interrupt hits
  433. * before we unlock, attempts to re-take the rq->lock, and then we die.
  434. * Thus, kpsr|=PSR_PIL.
  435. */
  436. ti->ksp = (unsigned long) new_stack;
  437. ti->kpc = (((unsigned long) ret_from_fork) - 0x8);
  438. ti->kpsr = current->thread.fork_kpsr | PSR_PIL;
  439. ti->kwim = current->thread.fork_kwim;
  440. if(regs->psr & PSR_PS) {
  441. extern struct pt_regs fake_swapper_regs;
  442. p->thread.kregs = &fake_swapper_regs;
  443. new_stack += STACKFRAME_SZ + TRACEREG_SZ;
  444. childregs->u_regs[UREG_FP] = (unsigned long) new_stack;
  445. p->thread.flags |= SPARC_FLAG_KTHREAD;
  446. p->thread.current_ds = KERNEL_DS;
  447. memcpy(new_stack, (void *)regs->u_regs[UREG_FP], STACKFRAME_SZ);
  448. childregs->u_regs[UREG_G6] = (unsigned long) ti;
  449. } else {
  450. p->thread.kregs = childregs;
  451. childregs->u_regs[UREG_FP] = sp;
  452. p->thread.flags &= ~SPARC_FLAG_KTHREAD;
  453. p->thread.current_ds = USER_DS;
  454. if (sp != regs->u_regs[UREG_FP]) {
  455. struct sparc_stackf __user *childstack;
  456. struct sparc_stackf __user *parentstack;
  457. /*
  458. * This is a clone() call with supplied user stack.
  459. * Set some valid stack frames to give to the child.
  460. */
  461. childstack = (struct sparc_stackf __user *)
  462. (sp & ~0xfUL);
  463. parentstack = (struct sparc_stackf __user *)
  464. regs->u_regs[UREG_FP];
  465. #if 0
  466. printk("clone: parent stack:\n");
  467. show_stackframe(parentstack);
  468. #endif
  469. childstack = clone_stackframe(childstack, parentstack);
  470. if (!childstack)
  471. return -EFAULT;
  472. #if 0
  473. printk("clone: child stack:\n");
  474. show_stackframe(childstack);
  475. #endif
  476. childregs->u_regs[UREG_FP] = (unsigned long)childstack;
  477. }
  478. }
  479. #ifdef CONFIG_SMP
  480. /* FPU must be disabled on SMP. */
  481. childregs->psr &= ~PSR_EF;
  482. #endif
  483. /* Set the return value for the child. */
  484. childregs->u_regs[UREG_I0] = current->pid;
  485. childregs->u_regs[UREG_I1] = 1;
  486. /* Set the return value for the parent. */
  487. regs->u_regs[UREG_I1] = 0;
  488. if (clone_flags & CLONE_SETTLS)
  489. childregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
  490. return 0;
  491. }
  492. /*
  493. * fill in the fpu structure for a core dump.
  494. */
  495. int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
  496. {
  497. if (used_math()) {
  498. memset(fpregs, 0, sizeof(*fpregs));
  499. fpregs->pr_q_entrysize = 8;
  500. return 1;
  501. }
  502. #ifdef CONFIG_SMP
  503. if (test_thread_flag(TIF_USEDFPU)) {
  504. put_psr(get_psr() | PSR_EF);
  505. fpsave(&current->thread.float_regs[0], &current->thread.fsr,
  506. &current->thread.fpqueue[0], &current->thread.fpqdepth);
  507. if (regs != NULL) {
  508. regs->psr &= ~(PSR_EF);
  509. clear_thread_flag(TIF_USEDFPU);
  510. }
  511. }
  512. #else
  513. if (current == last_task_used_math) {
  514. put_psr(get_psr() | PSR_EF);
  515. fpsave(&current->thread.float_regs[0], &current->thread.fsr,
  516. &current->thread.fpqueue[0], &current->thread.fpqdepth);
  517. if (regs != NULL) {
  518. regs->psr &= ~(PSR_EF);
  519. last_task_used_math = NULL;
  520. }
  521. }
  522. #endif
  523. memcpy(&fpregs->pr_fr.pr_regs[0],
  524. &current->thread.float_regs[0],
  525. (sizeof(unsigned long) * 32));
  526. fpregs->pr_fsr = current->thread.fsr;
  527. fpregs->pr_qcnt = current->thread.fpqdepth;
  528. fpregs->pr_q_entrysize = 8;
  529. fpregs->pr_en = 1;
  530. if(fpregs->pr_qcnt != 0) {
  531. memcpy(&fpregs->pr_q[0],
  532. &current->thread.fpqueue[0],
  533. sizeof(struct fpq) * fpregs->pr_qcnt);
  534. }
  535. /* Zero out the rest. */
  536. memset(&fpregs->pr_q[fpregs->pr_qcnt], 0,
  537. sizeof(struct fpq) * (32 - fpregs->pr_qcnt));
  538. return 1;
  539. }
  540. /*
  541. * sparc_execve() executes a new program after the asm stub has set
  542. * things up for us. This should basically do what I want it to.
  543. */
  544. asmlinkage int sparc_execve(struct pt_regs *regs)
  545. {
  546. int error, base = 0;
  547. char *filename;
  548. /* Check for indirect call. */
  549. if(regs->u_regs[UREG_G1] == 0)
  550. base = 1;
  551. filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
  552. error = PTR_ERR(filename);
  553. if(IS_ERR(filename))
  554. goto out;
  555. error = do_execve(filename,
  556. (const char __user *const __user *)
  557. regs->u_regs[base + UREG_I1],
  558. (const char __user *const __user *)
  559. regs->u_regs[base + UREG_I2],
  560. regs);
  561. putname(filename);
  562. out:
  563. return error;
  564. }
  565. /*
  566. * This is the mechanism for creating a new kernel thread.
  567. *
  568. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  569. * who haven't done an "execve()") should use this: it will work within
  570. * a system call from a "real" process, but the process memory space will
  571. * not be freed until both the parent and the child have exited.
  572. */
  573. pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  574. {
  575. long retval;
  576. __asm__ __volatile__("mov %4, %%g2\n\t" /* Set aside fn ptr... */
  577. "mov %5, %%g3\n\t" /* and arg. */
  578. "mov %1, %%g1\n\t"
  579. "mov %2, %%o0\n\t" /* Clone flags. */
  580. "mov 0, %%o1\n\t" /* usp arg == 0 */
  581. "t 0x10\n\t" /* Linux/Sparc clone(). */
  582. "cmp %%o1, 0\n\t"
  583. "be 1f\n\t" /* The parent, just return. */
  584. " nop\n\t" /* Delay slot. */
  585. "jmpl %%g2, %%o7\n\t" /* Call the function. */
  586. " mov %%g3, %%o0\n\t" /* Get back the arg in delay. */
  587. "mov %3, %%g1\n\t"
  588. "t 0x10\n\t" /* Linux/Sparc exit(). */
  589. /* Notreached by child. */
  590. "1: mov %%o0, %0\n\t" :
  591. "=r" (retval) :
  592. "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
  593. "i" (__NR_exit), "r" (fn), "r" (arg) :
  594. "g1", "g2", "g3", "o0", "o1", "memory", "cc");
  595. return retval;
  596. }
  597. EXPORT_SYMBOL(kernel_thread);
  598. unsigned long get_wchan(struct task_struct *task)
  599. {
  600. unsigned long pc, fp, bias = 0;
  601. unsigned long task_base = (unsigned long) task;
  602. unsigned long ret = 0;
  603. struct reg_window32 *rw;
  604. int count = 0;
  605. if (!task || task == current ||
  606. task->state == TASK_RUNNING)
  607. goto out;
  608. fp = task_thread_info(task)->ksp + bias;
  609. do {
  610. /* Bogus frame pointer? */
  611. if (fp < (task_base + sizeof(struct thread_info)) ||
  612. fp >= (task_base + (2 * PAGE_SIZE)))
  613. break;
  614. rw = (struct reg_window32 *) fp;
  615. pc = rw->ins[7];
  616. if (!in_sched_functions(pc)) {
  617. ret = pc;
  618. goto out;
  619. }
  620. fp = rw->ins[6] + bias;
  621. } while (++count < 16);
  622. out:
  623. return ret;
  624. }