pci_sun4v.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026
  1. /* pci_sun4v.c: SUN4V specific PCI controller support.
  2. *
  3. * Copyright (C) 2006, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/types.h>
  7. #include <linux/pci.h>
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/percpu.h>
  12. #include <linux/irq.h>
  13. #include <linux/msi.h>
  14. #include <linux/export.h>
  15. #include <linux/log2.h>
  16. #include <linux/of_device.h>
  17. #include <asm/iommu.h>
  18. #include <asm/irq.h>
  19. #include <asm/hypervisor.h>
  20. #include <asm/prom.h>
  21. #include "pci_impl.h"
  22. #include "iommu_common.h"
  23. #include "pci_sun4v.h"
  24. #define DRIVER_NAME "pci_sun4v"
  25. #define PFX DRIVER_NAME ": "
  26. static unsigned long vpci_major = 1;
  27. static unsigned long vpci_minor = 1;
  28. #define PGLIST_NENTS (PAGE_SIZE / sizeof(u64))
  29. struct iommu_batch {
  30. struct device *dev; /* Device mapping is for. */
  31. unsigned long prot; /* IOMMU page protections */
  32. unsigned long entry; /* Index into IOTSB. */
  33. u64 *pglist; /* List of physical pages */
  34. unsigned long npages; /* Number of pages in list. */
  35. };
  36. static DEFINE_PER_CPU(struct iommu_batch, iommu_batch);
  37. static int iommu_batch_initialized;
  38. /* Interrupts must be disabled. */
  39. static inline void iommu_batch_start(struct device *dev, unsigned long prot, unsigned long entry)
  40. {
  41. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  42. p->dev = dev;
  43. p->prot = prot;
  44. p->entry = entry;
  45. p->npages = 0;
  46. }
  47. /* Interrupts must be disabled. */
  48. static long iommu_batch_flush(struct iommu_batch *p)
  49. {
  50. struct pci_pbm_info *pbm = p->dev->archdata.host_controller;
  51. unsigned long devhandle = pbm->devhandle;
  52. unsigned long prot = p->prot;
  53. unsigned long entry = p->entry;
  54. u64 *pglist = p->pglist;
  55. unsigned long npages = p->npages;
  56. while (npages != 0) {
  57. long num;
  58. num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry),
  59. npages, prot, __pa(pglist));
  60. if (unlikely(num < 0)) {
  61. if (printk_ratelimit())
  62. printk("iommu_batch_flush: IOMMU map of "
  63. "[%08lx:%08llx:%lx:%lx:%lx] failed with "
  64. "status %ld\n",
  65. devhandle, HV_PCI_TSBID(0, entry),
  66. npages, prot, __pa(pglist), num);
  67. return -1;
  68. }
  69. entry += num;
  70. npages -= num;
  71. pglist += num;
  72. }
  73. p->entry = entry;
  74. p->npages = 0;
  75. return 0;
  76. }
  77. static inline void iommu_batch_new_entry(unsigned long entry)
  78. {
  79. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  80. if (p->entry + p->npages == entry)
  81. return;
  82. if (p->entry != ~0UL)
  83. iommu_batch_flush(p);
  84. p->entry = entry;
  85. }
  86. /* Interrupts must be disabled. */
  87. static inline long iommu_batch_add(u64 phys_page)
  88. {
  89. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  90. BUG_ON(p->npages >= PGLIST_NENTS);
  91. p->pglist[p->npages++] = phys_page;
  92. if (p->npages == PGLIST_NENTS)
  93. return iommu_batch_flush(p);
  94. return 0;
  95. }
  96. /* Interrupts must be disabled. */
  97. static inline long iommu_batch_end(void)
  98. {
  99. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  100. BUG_ON(p->npages >= PGLIST_NENTS);
  101. return iommu_batch_flush(p);
  102. }
  103. static void *dma_4v_alloc_coherent(struct device *dev, size_t size,
  104. dma_addr_t *dma_addrp, gfp_t gfp,
  105. struct dma_attrs *attrs)
  106. {
  107. unsigned long flags, order, first_page, npages, n;
  108. struct iommu *iommu;
  109. struct page *page;
  110. void *ret;
  111. long entry;
  112. int nid;
  113. size = IO_PAGE_ALIGN(size);
  114. order = get_order(size);
  115. if (unlikely(order >= MAX_ORDER))
  116. return NULL;
  117. npages = size >> IO_PAGE_SHIFT;
  118. nid = dev->archdata.numa_node;
  119. page = alloc_pages_node(nid, gfp, order);
  120. if (unlikely(!page))
  121. return NULL;
  122. first_page = (unsigned long) page_address(page);
  123. memset((char *)first_page, 0, PAGE_SIZE << order);
  124. iommu = dev->archdata.iommu;
  125. spin_lock_irqsave(&iommu->lock, flags);
  126. entry = iommu_range_alloc(dev, iommu, npages, NULL);
  127. spin_unlock_irqrestore(&iommu->lock, flags);
  128. if (unlikely(entry == DMA_ERROR_CODE))
  129. goto range_alloc_fail;
  130. *dma_addrp = (iommu->page_table_map_base +
  131. (entry << IO_PAGE_SHIFT));
  132. ret = (void *) first_page;
  133. first_page = __pa(first_page);
  134. local_irq_save(flags);
  135. iommu_batch_start(dev,
  136. (HV_PCI_MAP_ATTR_READ |
  137. HV_PCI_MAP_ATTR_WRITE),
  138. entry);
  139. for (n = 0; n < npages; n++) {
  140. long err = iommu_batch_add(first_page + (n * PAGE_SIZE));
  141. if (unlikely(err < 0L))
  142. goto iommu_map_fail;
  143. }
  144. if (unlikely(iommu_batch_end() < 0L))
  145. goto iommu_map_fail;
  146. local_irq_restore(flags);
  147. return ret;
  148. iommu_map_fail:
  149. /* Interrupts are disabled. */
  150. spin_lock(&iommu->lock);
  151. iommu_range_free(iommu, *dma_addrp, npages);
  152. spin_unlock_irqrestore(&iommu->lock, flags);
  153. range_alloc_fail:
  154. free_pages(first_page, order);
  155. return NULL;
  156. }
  157. static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu,
  158. dma_addr_t dvma, struct dma_attrs *attrs)
  159. {
  160. struct pci_pbm_info *pbm;
  161. struct iommu *iommu;
  162. unsigned long flags, order, npages, entry;
  163. u32 devhandle;
  164. npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
  165. iommu = dev->archdata.iommu;
  166. pbm = dev->archdata.host_controller;
  167. devhandle = pbm->devhandle;
  168. entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  169. spin_lock_irqsave(&iommu->lock, flags);
  170. iommu_range_free(iommu, dvma, npages);
  171. do {
  172. unsigned long num;
  173. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  174. npages);
  175. entry += num;
  176. npages -= num;
  177. } while (npages != 0);
  178. spin_unlock_irqrestore(&iommu->lock, flags);
  179. order = get_order(size);
  180. if (order < 10)
  181. free_pages((unsigned long)cpu, order);
  182. }
  183. static dma_addr_t dma_4v_map_page(struct device *dev, struct page *page,
  184. unsigned long offset, size_t sz,
  185. enum dma_data_direction direction,
  186. struct dma_attrs *attrs)
  187. {
  188. struct iommu *iommu;
  189. unsigned long flags, npages, oaddr;
  190. unsigned long i, base_paddr;
  191. u32 bus_addr, ret;
  192. unsigned long prot;
  193. long entry;
  194. iommu = dev->archdata.iommu;
  195. if (unlikely(direction == DMA_NONE))
  196. goto bad;
  197. oaddr = (unsigned long)(page_address(page) + offset);
  198. npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
  199. npages >>= IO_PAGE_SHIFT;
  200. spin_lock_irqsave(&iommu->lock, flags);
  201. entry = iommu_range_alloc(dev, iommu, npages, NULL);
  202. spin_unlock_irqrestore(&iommu->lock, flags);
  203. if (unlikely(entry == DMA_ERROR_CODE))
  204. goto bad;
  205. bus_addr = (iommu->page_table_map_base +
  206. (entry << IO_PAGE_SHIFT));
  207. ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
  208. base_paddr = __pa(oaddr & IO_PAGE_MASK);
  209. prot = HV_PCI_MAP_ATTR_READ;
  210. if (direction != DMA_TO_DEVICE)
  211. prot |= HV_PCI_MAP_ATTR_WRITE;
  212. local_irq_save(flags);
  213. iommu_batch_start(dev, prot, entry);
  214. for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) {
  215. long err = iommu_batch_add(base_paddr);
  216. if (unlikely(err < 0L))
  217. goto iommu_map_fail;
  218. }
  219. if (unlikely(iommu_batch_end() < 0L))
  220. goto iommu_map_fail;
  221. local_irq_restore(flags);
  222. return ret;
  223. bad:
  224. if (printk_ratelimit())
  225. WARN_ON(1);
  226. return DMA_ERROR_CODE;
  227. iommu_map_fail:
  228. /* Interrupts are disabled. */
  229. spin_lock(&iommu->lock);
  230. iommu_range_free(iommu, bus_addr, npages);
  231. spin_unlock_irqrestore(&iommu->lock, flags);
  232. return DMA_ERROR_CODE;
  233. }
  234. static void dma_4v_unmap_page(struct device *dev, dma_addr_t bus_addr,
  235. size_t sz, enum dma_data_direction direction,
  236. struct dma_attrs *attrs)
  237. {
  238. struct pci_pbm_info *pbm;
  239. struct iommu *iommu;
  240. unsigned long flags, npages;
  241. long entry;
  242. u32 devhandle;
  243. if (unlikely(direction == DMA_NONE)) {
  244. if (printk_ratelimit())
  245. WARN_ON(1);
  246. return;
  247. }
  248. iommu = dev->archdata.iommu;
  249. pbm = dev->archdata.host_controller;
  250. devhandle = pbm->devhandle;
  251. npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
  252. npages >>= IO_PAGE_SHIFT;
  253. bus_addr &= IO_PAGE_MASK;
  254. spin_lock_irqsave(&iommu->lock, flags);
  255. iommu_range_free(iommu, bus_addr, npages);
  256. entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
  257. do {
  258. unsigned long num;
  259. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  260. npages);
  261. entry += num;
  262. npages -= num;
  263. } while (npages != 0);
  264. spin_unlock_irqrestore(&iommu->lock, flags);
  265. }
  266. static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist,
  267. int nelems, enum dma_data_direction direction,
  268. struct dma_attrs *attrs)
  269. {
  270. struct scatterlist *s, *outs, *segstart;
  271. unsigned long flags, handle, prot;
  272. dma_addr_t dma_next = 0, dma_addr;
  273. unsigned int max_seg_size;
  274. unsigned long seg_boundary_size;
  275. int outcount, incount, i;
  276. struct iommu *iommu;
  277. unsigned long base_shift;
  278. long err;
  279. BUG_ON(direction == DMA_NONE);
  280. iommu = dev->archdata.iommu;
  281. if (nelems == 0 || !iommu)
  282. return 0;
  283. prot = HV_PCI_MAP_ATTR_READ;
  284. if (direction != DMA_TO_DEVICE)
  285. prot |= HV_PCI_MAP_ATTR_WRITE;
  286. outs = s = segstart = &sglist[0];
  287. outcount = 1;
  288. incount = nelems;
  289. handle = 0;
  290. /* Init first segment length for backout at failure */
  291. outs->dma_length = 0;
  292. spin_lock_irqsave(&iommu->lock, flags);
  293. iommu_batch_start(dev, prot, ~0UL);
  294. max_seg_size = dma_get_max_seg_size(dev);
  295. seg_boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  296. IO_PAGE_SIZE) >> IO_PAGE_SHIFT;
  297. base_shift = iommu->page_table_map_base >> IO_PAGE_SHIFT;
  298. for_each_sg(sglist, s, nelems, i) {
  299. unsigned long paddr, npages, entry, out_entry = 0, slen;
  300. slen = s->length;
  301. /* Sanity check */
  302. if (slen == 0) {
  303. dma_next = 0;
  304. continue;
  305. }
  306. /* Allocate iommu entries for that segment */
  307. paddr = (unsigned long) SG_ENT_PHYS_ADDRESS(s);
  308. npages = iommu_num_pages(paddr, slen, IO_PAGE_SIZE);
  309. entry = iommu_range_alloc(dev, iommu, npages, &handle);
  310. /* Handle failure */
  311. if (unlikely(entry == DMA_ERROR_CODE)) {
  312. if (printk_ratelimit())
  313. printk(KERN_INFO "iommu_alloc failed, iommu %p paddr %lx"
  314. " npages %lx\n", iommu, paddr, npages);
  315. goto iommu_map_failed;
  316. }
  317. iommu_batch_new_entry(entry);
  318. /* Convert entry to a dma_addr_t */
  319. dma_addr = iommu->page_table_map_base +
  320. (entry << IO_PAGE_SHIFT);
  321. dma_addr |= (s->offset & ~IO_PAGE_MASK);
  322. /* Insert into HW table */
  323. paddr &= IO_PAGE_MASK;
  324. while (npages--) {
  325. err = iommu_batch_add(paddr);
  326. if (unlikely(err < 0L))
  327. goto iommu_map_failed;
  328. paddr += IO_PAGE_SIZE;
  329. }
  330. /* If we are in an open segment, try merging */
  331. if (segstart != s) {
  332. /* We cannot merge if:
  333. * - allocated dma_addr isn't contiguous to previous allocation
  334. */
  335. if ((dma_addr != dma_next) ||
  336. (outs->dma_length + s->length > max_seg_size) ||
  337. (is_span_boundary(out_entry, base_shift,
  338. seg_boundary_size, outs, s))) {
  339. /* Can't merge: create a new segment */
  340. segstart = s;
  341. outcount++;
  342. outs = sg_next(outs);
  343. } else {
  344. outs->dma_length += s->length;
  345. }
  346. }
  347. if (segstart == s) {
  348. /* This is a new segment, fill entries */
  349. outs->dma_address = dma_addr;
  350. outs->dma_length = slen;
  351. out_entry = entry;
  352. }
  353. /* Calculate next page pointer for contiguous check */
  354. dma_next = dma_addr + slen;
  355. }
  356. err = iommu_batch_end();
  357. if (unlikely(err < 0L))
  358. goto iommu_map_failed;
  359. spin_unlock_irqrestore(&iommu->lock, flags);
  360. if (outcount < incount) {
  361. outs = sg_next(outs);
  362. outs->dma_address = DMA_ERROR_CODE;
  363. outs->dma_length = 0;
  364. }
  365. return outcount;
  366. iommu_map_failed:
  367. for_each_sg(sglist, s, nelems, i) {
  368. if (s->dma_length != 0) {
  369. unsigned long vaddr, npages;
  370. vaddr = s->dma_address & IO_PAGE_MASK;
  371. npages = iommu_num_pages(s->dma_address, s->dma_length,
  372. IO_PAGE_SIZE);
  373. iommu_range_free(iommu, vaddr, npages);
  374. /* XXX demap? XXX */
  375. s->dma_address = DMA_ERROR_CODE;
  376. s->dma_length = 0;
  377. }
  378. if (s == outs)
  379. break;
  380. }
  381. spin_unlock_irqrestore(&iommu->lock, flags);
  382. return 0;
  383. }
  384. static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
  385. int nelems, enum dma_data_direction direction,
  386. struct dma_attrs *attrs)
  387. {
  388. struct pci_pbm_info *pbm;
  389. struct scatterlist *sg;
  390. struct iommu *iommu;
  391. unsigned long flags;
  392. u32 devhandle;
  393. BUG_ON(direction == DMA_NONE);
  394. iommu = dev->archdata.iommu;
  395. pbm = dev->archdata.host_controller;
  396. devhandle = pbm->devhandle;
  397. spin_lock_irqsave(&iommu->lock, flags);
  398. sg = sglist;
  399. while (nelems--) {
  400. dma_addr_t dma_handle = sg->dma_address;
  401. unsigned int len = sg->dma_length;
  402. unsigned long npages, entry;
  403. if (!len)
  404. break;
  405. npages = iommu_num_pages(dma_handle, len, IO_PAGE_SIZE);
  406. iommu_range_free(iommu, dma_handle, npages);
  407. entry = ((dma_handle - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  408. while (npages) {
  409. unsigned long num;
  410. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  411. npages);
  412. entry += num;
  413. npages -= num;
  414. }
  415. sg = sg_next(sg);
  416. }
  417. spin_unlock_irqrestore(&iommu->lock, flags);
  418. }
  419. static struct dma_map_ops sun4v_dma_ops = {
  420. .alloc = dma_4v_alloc_coherent,
  421. .free = dma_4v_free_coherent,
  422. .map_page = dma_4v_map_page,
  423. .unmap_page = dma_4v_unmap_page,
  424. .map_sg = dma_4v_map_sg,
  425. .unmap_sg = dma_4v_unmap_sg,
  426. };
  427. static void __devinit pci_sun4v_scan_bus(struct pci_pbm_info *pbm,
  428. struct device *parent)
  429. {
  430. struct property *prop;
  431. struct device_node *dp;
  432. dp = pbm->op->dev.of_node;
  433. prop = of_find_property(dp, "66mhz-capable", NULL);
  434. pbm->is_66mhz_capable = (prop != NULL);
  435. pbm->pci_bus = pci_scan_one_pbm(pbm, parent);
  436. /* XXX register error interrupt handlers XXX */
  437. }
  438. static unsigned long __devinit probe_existing_entries(struct pci_pbm_info *pbm,
  439. struct iommu *iommu)
  440. {
  441. struct iommu_arena *arena = &iommu->arena;
  442. unsigned long i, cnt = 0;
  443. u32 devhandle;
  444. devhandle = pbm->devhandle;
  445. for (i = 0; i < arena->limit; i++) {
  446. unsigned long ret, io_attrs, ra;
  447. ret = pci_sun4v_iommu_getmap(devhandle,
  448. HV_PCI_TSBID(0, i),
  449. &io_attrs, &ra);
  450. if (ret == HV_EOK) {
  451. if (page_in_phys_avail(ra)) {
  452. pci_sun4v_iommu_demap(devhandle,
  453. HV_PCI_TSBID(0, i), 1);
  454. } else {
  455. cnt++;
  456. __set_bit(i, arena->map);
  457. }
  458. }
  459. }
  460. return cnt;
  461. }
  462. static int __devinit pci_sun4v_iommu_init(struct pci_pbm_info *pbm)
  463. {
  464. static const u32 vdma_default[] = { 0x80000000, 0x80000000 };
  465. struct iommu *iommu = pbm->iommu;
  466. unsigned long num_tsb_entries, sz;
  467. u32 dma_mask, dma_offset;
  468. const u32 *vdma;
  469. vdma = of_get_property(pbm->op->dev.of_node, "virtual-dma", NULL);
  470. if (!vdma)
  471. vdma = vdma_default;
  472. if ((vdma[0] | vdma[1]) & ~IO_PAGE_MASK) {
  473. printk(KERN_ERR PFX "Strange virtual-dma[%08x:%08x].\n",
  474. vdma[0], vdma[1]);
  475. return -EINVAL;
  476. };
  477. dma_mask = (roundup_pow_of_two(vdma[1]) - 1UL);
  478. num_tsb_entries = vdma[1] / IO_PAGE_SIZE;
  479. dma_offset = vdma[0];
  480. /* Setup initial software IOMMU state. */
  481. spin_lock_init(&iommu->lock);
  482. iommu->ctx_lowest_free = 1;
  483. iommu->page_table_map_base = dma_offset;
  484. iommu->dma_addr_mask = dma_mask;
  485. /* Allocate and initialize the free area map. */
  486. sz = (num_tsb_entries + 7) / 8;
  487. sz = (sz + 7UL) & ~7UL;
  488. iommu->arena.map = kzalloc(sz, GFP_KERNEL);
  489. if (!iommu->arena.map) {
  490. printk(KERN_ERR PFX "Error, kmalloc(arena.map) failed.\n");
  491. return -ENOMEM;
  492. }
  493. iommu->arena.limit = num_tsb_entries;
  494. sz = probe_existing_entries(pbm, iommu);
  495. if (sz)
  496. printk("%s: Imported %lu TSB entries from OBP\n",
  497. pbm->name, sz);
  498. return 0;
  499. }
  500. #ifdef CONFIG_PCI_MSI
  501. struct pci_sun4v_msiq_entry {
  502. u64 version_type;
  503. #define MSIQ_VERSION_MASK 0xffffffff00000000UL
  504. #define MSIQ_VERSION_SHIFT 32
  505. #define MSIQ_TYPE_MASK 0x00000000000000ffUL
  506. #define MSIQ_TYPE_SHIFT 0
  507. #define MSIQ_TYPE_NONE 0x00
  508. #define MSIQ_TYPE_MSG 0x01
  509. #define MSIQ_TYPE_MSI32 0x02
  510. #define MSIQ_TYPE_MSI64 0x03
  511. #define MSIQ_TYPE_INTX 0x08
  512. #define MSIQ_TYPE_NONE2 0xff
  513. u64 intx_sysino;
  514. u64 reserved1;
  515. u64 stick;
  516. u64 req_id; /* bus/device/func */
  517. #define MSIQ_REQID_BUS_MASK 0xff00UL
  518. #define MSIQ_REQID_BUS_SHIFT 8
  519. #define MSIQ_REQID_DEVICE_MASK 0x00f8UL
  520. #define MSIQ_REQID_DEVICE_SHIFT 3
  521. #define MSIQ_REQID_FUNC_MASK 0x0007UL
  522. #define MSIQ_REQID_FUNC_SHIFT 0
  523. u64 msi_address;
  524. /* The format of this value is message type dependent.
  525. * For MSI bits 15:0 are the data from the MSI packet.
  526. * For MSI-X bits 31:0 are the data from the MSI packet.
  527. * For MSG, the message code and message routing code where:
  528. * bits 39:32 is the bus/device/fn of the msg target-id
  529. * bits 18:16 is the message routing code
  530. * bits 7:0 is the message code
  531. * For INTx the low order 2-bits are:
  532. * 00 - INTA
  533. * 01 - INTB
  534. * 10 - INTC
  535. * 11 - INTD
  536. */
  537. u64 msi_data;
  538. u64 reserved2;
  539. };
  540. static int pci_sun4v_get_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  541. unsigned long *head)
  542. {
  543. unsigned long err, limit;
  544. err = pci_sun4v_msiq_gethead(pbm->devhandle, msiqid, head);
  545. if (unlikely(err))
  546. return -ENXIO;
  547. limit = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  548. if (unlikely(*head >= limit))
  549. return -EFBIG;
  550. return 0;
  551. }
  552. static int pci_sun4v_dequeue_msi(struct pci_pbm_info *pbm,
  553. unsigned long msiqid, unsigned long *head,
  554. unsigned long *msi)
  555. {
  556. struct pci_sun4v_msiq_entry *ep;
  557. unsigned long err, type;
  558. /* Note: void pointer arithmetic, 'head' is a byte offset */
  559. ep = (pbm->msi_queues + ((msiqid - pbm->msiq_first) *
  560. (pbm->msiq_ent_count *
  561. sizeof(struct pci_sun4v_msiq_entry))) +
  562. *head);
  563. if ((ep->version_type & MSIQ_TYPE_MASK) == 0)
  564. return 0;
  565. type = (ep->version_type & MSIQ_TYPE_MASK) >> MSIQ_TYPE_SHIFT;
  566. if (unlikely(type != MSIQ_TYPE_MSI32 &&
  567. type != MSIQ_TYPE_MSI64))
  568. return -EINVAL;
  569. *msi = ep->msi_data;
  570. err = pci_sun4v_msi_setstate(pbm->devhandle,
  571. ep->msi_data /* msi_num */,
  572. HV_MSISTATE_IDLE);
  573. if (unlikely(err))
  574. return -ENXIO;
  575. /* Clear the entry. */
  576. ep->version_type &= ~MSIQ_TYPE_MASK;
  577. (*head) += sizeof(struct pci_sun4v_msiq_entry);
  578. if (*head >=
  579. (pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry)))
  580. *head = 0;
  581. return 1;
  582. }
  583. static int pci_sun4v_set_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  584. unsigned long head)
  585. {
  586. unsigned long err;
  587. err = pci_sun4v_msiq_sethead(pbm->devhandle, msiqid, head);
  588. if (unlikely(err))
  589. return -EINVAL;
  590. return 0;
  591. }
  592. static int pci_sun4v_msi_setup(struct pci_pbm_info *pbm, unsigned long msiqid,
  593. unsigned long msi, int is_msi64)
  594. {
  595. if (pci_sun4v_msi_setmsiq(pbm->devhandle, msi, msiqid,
  596. (is_msi64 ?
  597. HV_MSITYPE_MSI64 : HV_MSITYPE_MSI32)))
  598. return -ENXIO;
  599. if (pci_sun4v_msi_setstate(pbm->devhandle, msi, HV_MSISTATE_IDLE))
  600. return -ENXIO;
  601. if (pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_VALID))
  602. return -ENXIO;
  603. return 0;
  604. }
  605. static int pci_sun4v_msi_teardown(struct pci_pbm_info *pbm, unsigned long msi)
  606. {
  607. unsigned long err, msiqid;
  608. err = pci_sun4v_msi_getmsiq(pbm->devhandle, msi, &msiqid);
  609. if (err)
  610. return -ENXIO;
  611. pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_INVALID);
  612. return 0;
  613. }
  614. static int pci_sun4v_msiq_alloc(struct pci_pbm_info *pbm)
  615. {
  616. unsigned long q_size, alloc_size, pages, order;
  617. int i;
  618. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  619. alloc_size = (pbm->msiq_num * q_size);
  620. order = get_order(alloc_size);
  621. pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order);
  622. if (pages == 0UL) {
  623. printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n",
  624. order);
  625. return -ENOMEM;
  626. }
  627. memset((char *)pages, 0, PAGE_SIZE << order);
  628. pbm->msi_queues = (void *) pages;
  629. for (i = 0; i < pbm->msiq_num; i++) {
  630. unsigned long err, base = __pa(pages + (i * q_size));
  631. unsigned long ret1, ret2;
  632. err = pci_sun4v_msiq_conf(pbm->devhandle,
  633. pbm->msiq_first + i,
  634. base, pbm->msiq_ent_count);
  635. if (err) {
  636. printk(KERN_ERR "MSI: msiq register fails (err=%lu)\n",
  637. err);
  638. goto h_error;
  639. }
  640. err = pci_sun4v_msiq_info(pbm->devhandle,
  641. pbm->msiq_first + i,
  642. &ret1, &ret2);
  643. if (err) {
  644. printk(KERN_ERR "MSI: Cannot read msiq (err=%lu)\n",
  645. err);
  646. goto h_error;
  647. }
  648. if (ret1 != base || ret2 != pbm->msiq_ent_count) {
  649. printk(KERN_ERR "MSI: Bogus qconf "
  650. "expected[%lx:%x] got[%lx:%lx]\n",
  651. base, pbm->msiq_ent_count,
  652. ret1, ret2);
  653. goto h_error;
  654. }
  655. }
  656. return 0;
  657. h_error:
  658. free_pages(pages, order);
  659. return -EINVAL;
  660. }
  661. static void pci_sun4v_msiq_free(struct pci_pbm_info *pbm)
  662. {
  663. unsigned long q_size, alloc_size, pages, order;
  664. int i;
  665. for (i = 0; i < pbm->msiq_num; i++) {
  666. unsigned long msiqid = pbm->msiq_first + i;
  667. (void) pci_sun4v_msiq_conf(pbm->devhandle, msiqid, 0UL, 0);
  668. }
  669. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  670. alloc_size = (pbm->msiq_num * q_size);
  671. order = get_order(alloc_size);
  672. pages = (unsigned long) pbm->msi_queues;
  673. free_pages(pages, order);
  674. pbm->msi_queues = NULL;
  675. }
  676. static int pci_sun4v_msiq_build_irq(struct pci_pbm_info *pbm,
  677. unsigned long msiqid,
  678. unsigned long devino)
  679. {
  680. unsigned int irq = sun4v_build_irq(pbm->devhandle, devino);
  681. if (!irq)
  682. return -ENOMEM;
  683. if (pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_VALID))
  684. return -EINVAL;
  685. if (pci_sun4v_msiq_setstate(pbm->devhandle, msiqid, HV_MSIQSTATE_IDLE))
  686. return -EINVAL;
  687. return irq;
  688. }
  689. static const struct sparc64_msiq_ops pci_sun4v_msiq_ops = {
  690. .get_head = pci_sun4v_get_head,
  691. .dequeue_msi = pci_sun4v_dequeue_msi,
  692. .set_head = pci_sun4v_set_head,
  693. .msi_setup = pci_sun4v_msi_setup,
  694. .msi_teardown = pci_sun4v_msi_teardown,
  695. .msiq_alloc = pci_sun4v_msiq_alloc,
  696. .msiq_free = pci_sun4v_msiq_free,
  697. .msiq_build_irq = pci_sun4v_msiq_build_irq,
  698. };
  699. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  700. {
  701. sparc64_pbm_msi_init(pbm, &pci_sun4v_msiq_ops);
  702. }
  703. #else /* CONFIG_PCI_MSI */
  704. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  705. {
  706. }
  707. #endif /* !(CONFIG_PCI_MSI) */
  708. static int __devinit pci_sun4v_pbm_init(struct pci_pbm_info *pbm,
  709. struct platform_device *op, u32 devhandle)
  710. {
  711. struct device_node *dp = op->dev.of_node;
  712. int err;
  713. pbm->numa_node = of_node_to_nid(dp);
  714. pbm->pci_ops = &sun4v_pci_ops;
  715. pbm->config_space_reg_bits = 12;
  716. pbm->index = pci_num_pbms++;
  717. pbm->op = op;
  718. pbm->devhandle = devhandle;
  719. pbm->name = dp->full_name;
  720. printk("%s: SUN4V PCI Bus Module\n", pbm->name);
  721. printk("%s: On NUMA node %d\n", pbm->name, pbm->numa_node);
  722. pci_determine_mem_io_space(pbm);
  723. pci_get_pbm_props(pbm);
  724. err = pci_sun4v_iommu_init(pbm);
  725. if (err)
  726. return err;
  727. pci_sun4v_msi_init(pbm);
  728. pci_sun4v_scan_bus(pbm, &op->dev);
  729. pbm->next = pci_pbm_root;
  730. pci_pbm_root = pbm;
  731. return 0;
  732. }
  733. static int __devinit pci_sun4v_probe(struct platform_device *op)
  734. {
  735. const struct linux_prom64_registers *regs;
  736. static int hvapi_negotiated = 0;
  737. struct pci_pbm_info *pbm;
  738. struct device_node *dp;
  739. struct iommu *iommu;
  740. u32 devhandle;
  741. int i, err;
  742. dp = op->dev.of_node;
  743. if (!hvapi_negotiated++) {
  744. err = sun4v_hvapi_register(HV_GRP_PCI,
  745. vpci_major,
  746. &vpci_minor);
  747. if (err) {
  748. printk(KERN_ERR PFX "Could not register hvapi, "
  749. "err=%d\n", err);
  750. return err;
  751. }
  752. printk(KERN_INFO PFX "Registered hvapi major[%lu] minor[%lu]\n",
  753. vpci_major, vpci_minor);
  754. dma_ops = &sun4v_dma_ops;
  755. }
  756. regs = of_get_property(dp, "reg", NULL);
  757. err = -ENODEV;
  758. if (!regs) {
  759. printk(KERN_ERR PFX "Could not find config registers\n");
  760. goto out_err;
  761. }
  762. devhandle = (regs->phys_addr >> 32UL) & 0x0fffffff;
  763. err = -ENOMEM;
  764. if (!iommu_batch_initialized) {
  765. for_each_possible_cpu(i) {
  766. unsigned long page = get_zeroed_page(GFP_KERNEL);
  767. if (!page)
  768. goto out_err;
  769. per_cpu(iommu_batch, i).pglist = (u64 *) page;
  770. }
  771. iommu_batch_initialized = 1;
  772. }
  773. pbm = kzalloc(sizeof(*pbm), GFP_KERNEL);
  774. if (!pbm) {
  775. printk(KERN_ERR PFX "Could not allocate pci_pbm_info\n");
  776. goto out_err;
  777. }
  778. iommu = kzalloc(sizeof(struct iommu), GFP_KERNEL);
  779. if (!iommu) {
  780. printk(KERN_ERR PFX "Could not allocate pbm iommu\n");
  781. goto out_free_controller;
  782. }
  783. pbm->iommu = iommu;
  784. err = pci_sun4v_pbm_init(pbm, op, devhandle);
  785. if (err)
  786. goto out_free_iommu;
  787. dev_set_drvdata(&op->dev, pbm);
  788. return 0;
  789. out_free_iommu:
  790. kfree(pbm->iommu);
  791. out_free_controller:
  792. kfree(pbm);
  793. out_err:
  794. return err;
  795. }
  796. static const struct of_device_id pci_sun4v_match[] = {
  797. {
  798. .name = "pci",
  799. .compatible = "SUNW,sun4v-pci",
  800. },
  801. {},
  802. };
  803. static struct platform_driver pci_sun4v_driver = {
  804. .driver = {
  805. .name = DRIVER_NAME,
  806. .owner = THIS_MODULE,
  807. .of_match_table = pci_sun4v_match,
  808. },
  809. .probe = pci_sun4v_probe,
  810. };
  811. static int __init pci_sun4v_init(void)
  812. {
  813. return platform_driver_register(&pci_sun4v_driver);
  814. }
  815. subsys_initcall(pci_sun4v_init);