cpm1.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789
  1. /*
  2. * General Purpose functions for the global management of the
  3. * Communication Processor Module.
  4. * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
  5. *
  6. * In addition to the individual control of the communication
  7. * channels, there are a few functions that globally affect the
  8. * communication processor.
  9. *
  10. * Buffer descriptors must be allocated from the dual ported memory
  11. * space. The allocator for that is here. When the communication
  12. * process is reset, we reclaim the memory available. There is
  13. * currently no deallocator for this memory.
  14. * The amount of space available is platform dependent. On the
  15. * MBX, the EPPC software loads additional microcode into the
  16. * communication processor, and uses some of the DP ram for this
  17. * purpose. Current, the first 512 bytes and the last 256 bytes of
  18. * memory are used. Right now I am conservative and only use the
  19. * memory that can never be used for microcode. If there are
  20. * applications that require more DP ram, we can expand the boundaries
  21. * but then we have to be careful of any downloaded microcode.
  22. */
  23. #include <linux/errno.h>
  24. #include <linux/sched.h>
  25. #include <linux/kernel.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/param.h>
  28. #include <linux/string.h>
  29. #include <linux/mm.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/irq.h>
  32. #include <linux/module.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/slab.h>
  35. #include <asm/page.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/8xx_immap.h>
  38. #include <asm/cpm1.h>
  39. #include <asm/io.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/rheap.h>
  42. #include <asm/prom.h>
  43. #include <asm/cpm.h>
  44. #include <asm/fs_pd.h>
  45. #ifdef CONFIG_8xx_GPIO
  46. #include <linux/of_gpio.h>
  47. #endif
  48. #define CPM_MAP_SIZE (0x4000)
  49. cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
  50. immap_t __iomem *mpc8xx_immr;
  51. static cpic8xx_t __iomem *cpic_reg;
  52. static struct irq_domain *cpm_pic_host;
  53. static void cpm_mask_irq(struct irq_data *d)
  54. {
  55. unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
  56. clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
  57. }
  58. static void cpm_unmask_irq(struct irq_data *d)
  59. {
  60. unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
  61. setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
  62. }
  63. static void cpm_end_irq(struct irq_data *d)
  64. {
  65. unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
  66. out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
  67. }
  68. static struct irq_chip cpm_pic = {
  69. .name = "CPM PIC",
  70. .irq_mask = cpm_mask_irq,
  71. .irq_unmask = cpm_unmask_irq,
  72. .irq_eoi = cpm_end_irq,
  73. };
  74. int cpm_get_irq(void)
  75. {
  76. int cpm_vec;
  77. /* Get the vector by setting the ACK bit and then reading
  78. * the register.
  79. */
  80. out_be16(&cpic_reg->cpic_civr, 1);
  81. cpm_vec = in_be16(&cpic_reg->cpic_civr);
  82. cpm_vec >>= 11;
  83. return irq_linear_revmap(cpm_pic_host, cpm_vec);
  84. }
  85. static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
  86. irq_hw_number_t hw)
  87. {
  88. pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
  89. irq_set_status_flags(virq, IRQ_LEVEL);
  90. irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
  91. return 0;
  92. }
  93. /* The CPM can generate the error interrupt when there is a race condition
  94. * between generating and masking interrupts. All we have to do is ACK it
  95. * and return. This is a no-op function so we don't need any special
  96. * tests in the interrupt handler.
  97. */
  98. static irqreturn_t cpm_error_interrupt(int irq, void *dev)
  99. {
  100. return IRQ_HANDLED;
  101. }
  102. static struct irqaction cpm_error_irqaction = {
  103. .handler = cpm_error_interrupt,
  104. .name = "error",
  105. };
  106. static const struct irq_domain_ops cpm_pic_host_ops = {
  107. .map = cpm_pic_host_map,
  108. };
  109. unsigned int cpm_pic_init(void)
  110. {
  111. struct device_node *np = NULL;
  112. struct resource res;
  113. unsigned int sirq = NO_IRQ, hwirq, eirq;
  114. int ret;
  115. pr_debug("cpm_pic_init\n");
  116. np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
  117. if (np == NULL)
  118. np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
  119. if (np == NULL) {
  120. printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
  121. return sirq;
  122. }
  123. ret = of_address_to_resource(np, 0, &res);
  124. if (ret)
  125. goto end;
  126. cpic_reg = ioremap(res.start, resource_size(&res));
  127. if (cpic_reg == NULL)
  128. goto end;
  129. sirq = irq_of_parse_and_map(np, 0);
  130. if (sirq == NO_IRQ)
  131. goto end;
  132. /* Initialize the CPM interrupt controller. */
  133. hwirq = (unsigned int)virq_to_hw(sirq);
  134. out_be32(&cpic_reg->cpic_cicr,
  135. (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
  136. ((hwirq/2) << 13) | CICR_HP_MASK);
  137. out_be32(&cpic_reg->cpic_cimr, 0);
  138. cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
  139. if (cpm_pic_host == NULL) {
  140. printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
  141. sirq = NO_IRQ;
  142. goto end;
  143. }
  144. /* Install our own error handler. */
  145. np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
  146. if (np == NULL)
  147. np = of_find_node_by_type(NULL, "cpm");
  148. if (np == NULL) {
  149. printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
  150. goto end;
  151. }
  152. eirq = irq_of_parse_and_map(np, 0);
  153. if (eirq == NO_IRQ)
  154. goto end;
  155. if (setup_irq(eirq, &cpm_error_irqaction))
  156. printk(KERN_ERR "Could not allocate CPM error IRQ!");
  157. setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
  158. end:
  159. of_node_put(np);
  160. return sirq;
  161. }
  162. void __init cpm_reset(void)
  163. {
  164. sysconf8xx_t __iomem *siu_conf;
  165. mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
  166. if (!mpc8xx_immr) {
  167. printk(KERN_CRIT "Could not map IMMR\n");
  168. return;
  169. }
  170. cpmp = &mpc8xx_immr->im_cpm;
  171. #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
  172. /* Perform a reset.
  173. */
  174. out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
  175. /* Wait for it.
  176. */
  177. while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
  178. #endif
  179. #ifdef CONFIG_UCODE_PATCH
  180. cpm_load_patch(cpmp);
  181. #endif
  182. /* Set SDMA Bus Request priority 5.
  183. * On 860T, this also enables FEC priority 6. I am not sure
  184. * this is what we really want for some applications, but the
  185. * manual recommends it.
  186. * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
  187. */
  188. siu_conf = immr_map(im_siu_conf);
  189. out_be32(&siu_conf->sc_sdcr, 1);
  190. immr_unmap(siu_conf);
  191. cpm_muram_init();
  192. }
  193. static DEFINE_SPINLOCK(cmd_lock);
  194. #define MAX_CR_CMD_LOOPS 10000
  195. int cpm_command(u32 command, u8 opcode)
  196. {
  197. int i, ret;
  198. unsigned long flags;
  199. if (command & 0xffffff0f)
  200. return -EINVAL;
  201. spin_lock_irqsave(&cmd_lock, flags);
  202. ret = 0;
  203. out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
  204. for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
  205. if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
  206. goto out;
  207. printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
  208. ret = -EIO;
  209. out:
  210. spin_unlock_irqrestore(&cmd_lock, flags);
  211. return ret;
  212. }
  213. EXPORT_SYMBOL(cpm_command);
  214. /* Set a baud rate generator. This needs lots of work. There are
  215. * four BRGs, any of which can be wired to any channel.
  216. * The internal baud rate clock is the system clock divided by 16.
  217. * This assumes the baudrate is 16x oversampled by the uart.
  218. */
  219. #define BRG_INT_CLK (get_brgfreq())
  220. #define BRG_UART_CLK (BRG_INT_CLK/16)
  221. #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
  222. void
  223. cpm_setbrg(uint brg, uint rate)
  224. {
  225. u32 __iomem *bp;
  226. /* This is good enough to get SMCs running.....
  227. */
  228. bp = &cpmp->cp_brgc1;
  229. bp += brg;
  230. /* The BRG has a 12-bit counter. For really slow baud rates (or
  231. * really fast processors), we may have to further divide by 16.
  232. */
  233. if (((BRG_UART_CLK / rate) - 1) < 4096)
  234. out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
  235. else
  236. out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
  237. CPM_BRG_EN | CPM_BRG_DIV16);
  238. }
  239. struct cpm_ioport16 {
  240. __be16 dir, par, odr_sor, dat, intr;
  241. __be16 res[3];
  242. };
  243. struct cpm_ioport32b {
  244. __be32 dir, par, odr, dat;
  245. };
  246. struct cpm_ioport32e {
  247. __be32 dir, par, sor, odr, dat;
  248. };
  249. static void cpm1_set_pin32(int port, int pin, int flags)
  250. {
  251. struct cpm_ioport32e __iomem *iop;
  252. pin = 1 << (31 - pin);
  253. if (port == CPM_PORTB)
  254. iop = (struct cpm_ioport32e __iomem *)
  255. &mpc8xx_immr->im_cpm.cp_pbdir;
  256. else
  257. iop = (struct cpm_ioport32e __iomem *)
  258. &mpc8xx_immr->im_cpm.cp_pedir;
  259. if (flags & CPM_PIN_OUTPUT)
  260. setbits32(&iop->dir, pin);
  261. else
  262. clrbits32(&iop->dir, pin);
  263. if (!(flags & CPM_PIN_GPIO))
  264. setbits32(&iop->par, pin);
  265. else
  266. clrbits32(&iop->par, pin);
  267. if (port == CPM_PORTB) {
  268. if (flags & CPM_PIN_OPENDRAIN)
  269. setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
  270. else
  271. clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
  272. }
  273. if (port == CPM_PORTE) {
  274. if (flags & CPM_PIN_SECONDARY)
  275. setbits32(&iop->sor, pin);
  276. else
  277. clrbits32(&iop->sor, pin);
  278. if (flags & CPM_PIN_OPENDRAIN)
  279. setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
  280. else
  281. clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
  282. }
  283. }
  284. static void cpm1_set_pin16(int port, int pin, int flags)
  285. {
  286. struct cpm_ioport16 __iomem *iop =
  287. (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
  288. pin = 1 << (15 - pin);
  289. if (port != 0)
  290. iop += port - 1;
  291. if (flags & CPM_PIN_OUTPUT)
  292. setbits16(&iop->dir, pin);
  293. else
  294. clrbits16(&iop->dir, pin);
  295. if (!(flags & CPM_PIN_GPIO))
  296. setbits16(&iop->par, pin);
  297. else
  298. clrbits16(&iop->par, pin);
  299. if (port == CPM_PORTA) {
  300. if (flags & CPM_PIN_OPENDRAIN)
  301. setbits16(&iop->odr_sor, pin);
  302. else
  303. clrbits16(&iop->odr_sor, pin);
  304. }
  305. if (port == CPM_PORTC) {
  306. if (flags & CPM_PIN_SECONDARY)
  307. setbits16(&iop->odr_sor, pin);
  308. else
  309. clrbits16(&iop->odr_sor, pin);
  310. }
  311. }
  312. void cpm1_set_pin(enum cpm_port port, int pin, int flags)
  313. {
  314. if (port == CPM_PORTB || port == CPM_PORTE)
  315. cpm1_set_pin32(port, pin, flags);
  316. else
  317. cpm1_set_pin16(port, pin, flags);
  318. }
  319. int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
  320. {
  321. int shift;
  322. int i, bits = 0;
  323. u32 __iomem *reg;
  324. u32 mask = 7;
  325. u8 clk_map[][3] = {
  326. {CPM_CLK_SCC1, CPM_BRG1, 0},
  327. {CPM_CLK_SCC1, CPM_BRG2, 1},
  328. {CPM_CLK_SCC1, CPM_BRG3, 2},
  329. {CPM_CLK_SCC1, CPM_BRG4, 3},
  330. {CPM_CLK_SCC1, CPM_CLK1, 4},
  331. {CPM_CLK_SCC1, CPM_CLK2, 5},
  332. {CPM_CLK_SCC1, CPM_CLK3, 6},
  333. {CPM_CLK_SCC1, CPM_CLK4, 7},
  334. {CPM_CLK_SCC2, CPM_BRG1, 0},
  335. {CPM_CLK_SCC2, CPM_BRG2, 1},
  336. {CPM_CLK_SCC2, CPM_BRG3, 2},
  337. {CPM_CLK_SCC2, CPM_BRG4, 3},
  338. {CPM_CLK_SCC2, CPM_CLK1, 4},
  339. {CPM_CLK_SCC2, CPM_CLK2, 5},
  340. {CPM_CLK_SCC2, CPM_CLK3, 6},
  341. {CPM_CLK_SCC2, CPM_CLK4, 7},
  342. {CPM_CLK_SCC3, CPM_BRG1, 0},
  343. {CPM_CLK_SCC3, CPM_BRG2, 1},
  344. {CPM_CLK_SCC3, CPM_BRG3, 2},
  345. {CPM_CLK_SCC3, CPM_BRG4, 3},
  346. {CPM_CLK_SCC3, CPM_CLK5, 4},
  347. {CPM_CLK_SCC3, CPM_CLK6, 5},
  348. {CPM_CLK_SCC3, CPM_CLK7, 6},
  349. {CPM_CLK_SCC3, CPM_CLK8, 7},
  350. {CPM_CLK_SCC4, CPM_BRG1, 0},
  351. {CPM_CLK_SCC4, CPM_BRG2, 1},
  352. {CPM_CLK_SCC4, CPM_BRG3, 2},
  353. {CPM_CLK_SCC4, CPM_BRG4, 3},
  354. {CPM_CLK_SCC4, CPM_CLK5, 4},
  355. {CPM_CLK_SCC4, CPM_CLK6, 5},
  356. {CPM_CLK_SCC4, CPM_CLK7, 6},
  357. {CPM_CLK_SCC4, CPM_CLK8, 7},
  358. {CPM_CLK_SMC1, CPM_BRG1, 0},
  359. {CPM_CLK_SMC1, CPM_BRG2, 1},
  360. {CPM_CLK_SMC1, CPM_BRG3, 2},
  361. {CPM_CLK_SMC1, CPM_BRG4, 3},
  362. {CPM_CLK_SMC1, CPM_CLK1, 4},
  363. {CPM_CLK_SMC1, CPM_CLK2, 5},
  364. {CPM_CLK_SMC1, CPM_CLK3, 6},
  365. {CPM_CLK_SMC1, CPM_CLK4, 7},
  366. {CPM_CLK_SMC2, CPM_BRG1, 0},
  367. {CPM_CLK_SMC2, CPM_BRG2, 1},
  368. {CPM_CLK_SMC2, CPM_BRG3, 2},
  369. {CPM_CLK_SMC2, CPM_BRG4, 3},
  370. {CPM_CLK_SMC2, CPM_CLK5, 4},
  371. {CPM_CLK_SMC2, CPM_CLK6, 5},
  372. {CPM_CLK_SMC2, CPM_CLK7, 6},
  373. {CPM_CLK_SMC2, CPM_CLK8, 7},
  374. };
  375. switch (target) {
  376. case CPM_CLK_SCC1:
  377. reg = &mpc8xx_immr->im_cpm.cp_sicr;
  378. shift = 0;
  379. break;
  380. case CPM_CLK_SCC2:
  381. reg = &mpc8xx_immr->im_cpm.cp_sicr;
  382. shift = 8;
  383. break;
  384. case CPM_CLK_SCC3:
  385. reg = &mpc8xx_immr->im_cpm.cp_sicr;
  386. shift = 16;
  387. break;
  388. case CPM_CLK_SCC4:
  389. reg = &mpc8xx_immr->im_cpm.cp_sicr;
  390. shift = 24;
  391. break;
  392. case CPM_CLK_SMC1:
  393. reg = &mpc8xx_immr->im_cpm.cp_simode;
  394. shift = 12;
  395. break;
  396. case CPM_CLK_SMC2:
  397. reg = &mpc8xx_immr->im_cpm.cp_simode;
  398. shift = 28;
  399. break;
  400. default:
  401. printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
  402. return -EINVAL;
  403. }
  404. for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
  405. if (clk_map[i][0] == target && clk_map[i][1] == clock) {
  406. bits = clk_map[i][2];
  407. break;
  408. }
  409. }
  410. if (i == ARRAY_SIZE(clk_map)) {
  411. printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
  412. return -EINVAL;
  413. }
  414. bits <<= shift;
  415. mask <<= shift;
  416. if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
  417. if (mode == CPM_CLK_RTX) {
  418. bits |= bits << 3;
  419. mask |= mask << 3;
  420. } else if (mode == CPM_CLK_RX) {
  421. bits <<= 3;
  422. mask <<= 3;
  423. }
  424. }
  425. out_be32(reg, (in_be32(reg) & ~mask) | bits);
  426. return 0;
  427. }
  428. /*
  429. * GPIO LIB API implementation
  430. */
  431. #ifdef CONFIG_8xx_GPIO
  432. struct cpm1_gpio16_chip {
  433. struct of_mm_gpio_chip mm_gc;
  434. spinlock_t lock;
  435. /* shadowed data register to clear/set bits safely */
  436. u16 cpdata;
  437. };
  438. static inline struct cpm1_gpio16_chip *
  439. to_cpm1_gpio16_chip(struct of_mm_gpio_chip *mm_gc)
  440. {
  441. return container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
  442. }
  443. static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
  444. {
  445. struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
  446. struct cpm_ioport16 __iomem *iop = mm_gc->regs;
  447. cpm1_gc->cpdata = in_be16(&iop->dat);
  448. }
  449. static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
  450. {
  451. struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
  452. struct cpm_ioport16 __iomem *iop = mm_gc->regs;
  453. u16 pin_mask;
  454. pin_mask = 1 << (15 - gpio);
  455. return !!(in_be16(&iop->dat) & pin_mask);
  456. }
  457. static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
  458. int value)
  459. {
  460. struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
  461. struct cpm_ioport16 __iomem *iop = mm_gc->regs;
  462. if (value)
  463. cpm1_gc->cpdata |= pin_mask;
  464. else
  465. cpm1_gc->cpdata &= ~pin_mask;
  466. out_be16(&iop->dat, cpm1_gc->cpdata);
  467. }
  468. static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
  469. {
  470. struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
  471. struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
  472. unsigned long flags;
  473. u16 pin_mask = 1 << (15 - gpio);
  474. spin_lock_irqsave(&cpm1_gc->lock, flags);
  475. __cpm1_gpio16_set(mm_gc, pin_mask, value);
  476. spin_unlock_irqrestore(&cpm1_gc->lock, flags);
  477. }
  478. static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
  479. {
  480. struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
  481. struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
  482. struct cpm_ioport16 __iomem *iop = mm_gc->regs;
  483. unsigned long flags;
  484. u16 pin_mask = 1 << (15 - gpio);
  485. spin_lock_irqsave(&cpm1_gc->lock, flags);
  486. setbits16(&iop->dir, pin_mask);
  487. __cpm1_gpio16_set(mm_gc, pin_mask, val);
  488. spin_unlock_irqrestore(&cpm1_gc->lock, flags);
  489. return 0;
  490. }
  491. static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
  492. {
  493. struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
  494. struct cpm1_gpio16_chip *cpm1_gc = to_cpm1_gpio16_chip(mm_gc);
  495. struct cpm_ioport16 __iomem *iop = mm_gc->regs;
  496. unsigned long flags;
  497. u16 pin_mask = 1 << (15 - gpio);
  498. spin_lock_irqsave(&cpm1_gc->lock, flags);
  499. clrbits16(&iop->dir, pin_mask);
  500. spin_unlock_irqrestore(&cpm1_gc->lock, flags);
  501. return 0;
  502. }
  503. int cpm1_gpiochip_add16(struct device_node *np)
  504. {
  505. struct cpm1_gpio16_chip *cpm1_gc;
  506. struct of_mm_gpio_chip *mm_gc;
  507. struct gpio_chip *gc;
  508. cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
  509. if (!cpm1_gc)
  510. return -ENOMEM;
  511. spin_lock_init(&cpm1_gc->lock);
  512. mm_gc = &cpm1_gc->mm_gc;
  513. gc = &mm_gc->gc;
  514. mm_gc->save_regs = cpm1_gpio16_save_regs;
  515. gc->ngpio = 16;
  516. gc->direction_input = cpm1_gpio16_dir_in;
  517. gc->direction_output = cpm1_gpio16_dir_out;
  518. gc->get = cpm1_gpio16_get;
  519. gc->set = cpm1_gpio16_set;
  520. return of_mm_gpiochip_add(np, mm_gc);
  521. }
  522. struct cpm1_gpio32_chip {
  523. struct of_mm_gpio_chip mm_gc;
  524. spinlock_t lock;
  525. /* shadowed data register to clear/set bits safely */
  526. u32 cpdata;
  527. };
  528. static inline struct cpm1_gpio32_chip *
  529. to_cpm1_gpio32_chip(struct of_mm_gpio_chip *mm_gc)
  530. {
  531. return container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
  532. }
  533. static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
  534. {
  535. struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
  536. struct cpm_ioport32b __iomem *iop = mm_gc->regs;
  537. cpm1_gc->cpdata = in_be32(&iop->dat);
  538. }
  539. static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
  540. {
  541. struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
  542. struct cpm_ioport32b __iomem *iop = mm_gc->regs;
  543. u32 pin_mask;
  544. pin_mask = 1 << (31 - gpio);
  545. return !!(in_be32(&iop->dat) & pin_mask);
  546. }
  547. static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
  548. int value)
  549. {
  550. struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
  551. struct cpm_ioport32b __iomem *iop = mm_gc->regs;
  552. if (value)
  553. cpm1_gc->cpdata |= pin_mask;
  554. else
  555. cpm1_gc->cpdata &= ~pin_mask;
  556. out_be32(&iop->dat, cpm1_gc->cpdata);
  557. }
  558. static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
  559. {
  560. struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
  561. struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
  562. unsigned long flags;
  563. u32 pin_mask = 1 << (31 - gpio);
  564. spin_lock_irqsave(&cpm1_gc->lock, flags);
  565. __cpm1_gpio32_set(mm_gc, pin_mask, value);
  566. spin_unlock_irqrestore(&cpm1_gc->lock, flags);
  567. }
  568. static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
  569. {
  570. struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
  571. struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
  572. struct cpm_ioport32b __iomem *iop = mm_gc->regs;
  573. unsigned long flags;
  574. u32 pin_mask = 1 << (31 - gpio);
  575. spin_lock_irqsave(&cpm1_gc->lock, flags);
  576. setbits32(&iop->dir, pin_mask);
  577. __cpm1_gpio32_set(mm_gc, pin_mask, val);
  578. spin_unlock_irqrestore(&cpm1_gc->lock, flags);
  579. return 0;
  580. }
  581. static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
  582. {
  583. struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
  584. struct cpm1_gpio32_chip *cpm1_gc = to_cpm1_gpio32_chip(mm_gc);
  585. struct cpm_ioport32b __iomem *iop = mm_gc->regs;
  586. unsigned long flags;
  587. u32 pin_mask = 1 << (31 - gpio);
  588. spin_lock_irqsave(&cpm1_gc->lock, flags);
  589. clrbits32(&iop->dir, pin_mask);
  590. spin_unlock_irqrestore(&cpm1_gc->lock, flags);
  591. return 0;
  592. }
  593. int cpm1_gpiochip_add32(struct device_node *np)
  594. {
  595. struct cpm1_gpio32_chip *cpm1_gc;
  596. struct of_mm_gpio_chip *mm_gc;
  597. struct gpio_chip *gc;
  598. cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
  599. if (!cpm1_gc)
  600. return -ENOMEM;
  601. spin_lock_init(&cpm1_gc->lock);
  602. mm_gc = &cpm1_gc->mm_gc;
  603. gc = &mm_gc->gc;
  604. mm_gc->save_regs = cpm1_gpio32_save_regs;
  605. gc->ngpio = 32;
  606. gc->direction_input = cpm1_gpio32_dir_in;
  607. gc->direction_output = cpm1_gpio32_dir_out;
  608. gc->get = cpm1_gpio32_get;
  609. gc->set = cpm1_gpio32_set;
  610. return of_mm_gpiochip_add(np, mm_gc);
  611. }
  612. static int cpm_init_par_io(void)
  613. {
  614. struct device_node *np;
  615. for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
  616. cpm1_gpiochip_add16(np);
  617. for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
  618. cpm1_gpiochip_add32(np);
  619. for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
  620. cpm1_gpiochip_add16(np);
  621. for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
  622. cpm1_gpiochip_add16(np);
  623. /* Port E uses CPM2 layout */
  624. for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
  625. cpm2_gpiochip_add32(np);
  626. return 0;
  627. }
  628. arch_initcall(cpm_init_par_io);
  629. #endif /* CONFIG_8xx_GPIO */