smp-bmips.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7. *
  8. * SMP support for BMIPS
  9. */
  10. #include <linux/init.h>
  11. #include <linux/sched.h>
  12. #include <linux/mm.h>
  13. #include <linux/delay.h>
  14. #include <linux/smp.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/init.h>
  18. #include <linux/cpu.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/reboot.h>
  21. #include <linux/io.h>
  22. #include <linux/compiler.h>
  23. #include <linux/linkage.h>
  24. #include <linux/bug.h>
  25. #include <linux/kernel.h>
  26. #include <asm/time.h>
  27. #include <asm/pgtable.h>
  28. #include <asm/processor.h>
  29. #include <asm/bootinfo.h>
  30. #include <asm/pmon.h>
  31. #include <asm/cacheflush.h>
  32. #include <asm/tlbflush.h>
  33. #include <asm/mipsregs.h>
  34. #include <asm/bmips.h>
  35. #include <asm/traps.h>
  36. #include <asm/barrier.h>
  37. static int __maybe_unused max_cpus = 1;
  38. /* these may be configured by the platform code */
  39. int bmips_smp_enabled = 1;
  40. int bmips_cpu_offset;
  41. cpumask_t bmips_booted_mask;
  42. #ifdef CONFIG_SMP
  43. /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
  44. unsigned long bmips_smp_boot_sp;
  45. unsigned long bmips_smp_boot_gp;
  46. static void bmips_send_ipi_single(int cpu, unsigned int action);
  47. static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id);
  48. /* SW interrupts 0,1 are used for interprocessor signaling */
  49. #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
  50. #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
  51. #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
  52. #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  53. #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
  54. #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
  55. static void __init bmips_smp_setup(void)
  56. {
  57. int i;
  58. #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
  59. /* arbitration priority */
  60. clear_c0_brcm_cmt_ctrl(0x30);
  61. /* NBK and weak order flags */
  62. set_c0_brcm_config_0(0x30000);
  63. /*
  64. * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other thread
  65. * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
  66. * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
  67. */
  68. change_c0_brcm_cmt_intr(0xf8018000,
  69. (0x02 << 27) | (0x03 << 15));
  70. /* single core, 2 threads (2 pipelines) */
  71. max_cpus = 2;
  72. #elif defined(CONFIG_CPU_BMIPS5000)
  73. /* enable raceless SW interrupts */
  74. set_c0_brcm_config(0x03 << 22);
  75. /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
  76. change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
  77. /* N cores, 2 threads per core */
  78. max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
  79. /* clear any pending SW interrupts */
  80. for (i = 0; i < max_cpus; i++) {
  81. write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
  82. write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
  83. }
  84. #endif
  85. if (!bmips_smp_enabled)
  86. max_cpus = 1;
  87. /* this can be overridden by the BSP */
  88. if (!board_ebase_setup)
  89. board_ebase_setup = &bmips_ebase_setup;
  90. for (i = 0; i < max_cpus; i++) {
  91. __cpu_number_map[i] = 1;
  92. __cpu_logical_map[i] = 1;
  93. set_cpu_possible(i, 1);
  94. set_cpu_present(i, 1);
  95. }
  96. }
  97. /*
  98. * IPI IRQ setup - runs on CPU0
  99. */
  100. static void bmips_prepare_cpus(unsigned int max_cpus)
  101. {
  102. if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
  103. "smp_ipi0", NULL))
  104. panic("Can't request IPI0 interrupt\n");
  105. if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
  106. "smp_ipi1", NULL))
  107. panic("Can't request IPI1 interrupt\n");
  108. }
  109. /*
  110. * Tell the hardware to boot CPUx - runs on CPU0
  111. */
  112. static void bmips_boot_secondary(int cpu, struct task_struct *idle)
  113. {
  114. bmips_smp_boot_sp = __KSTK_TOS(idle);
  115. bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
  116. mb();
  117. /*
  118. * Initial boot sequence for secondary CPU:
  119. * bmips_reset_nmi_vec @ a000_0000 ->
  120. * bmips_smp_entry ->
  121. * plat_wired_tlb_setup (cached function call; optional) ->
  122. * start_secondary (cached jump)
  123. *
  124. * Warm restart sequence:
  125. * play_dead WAIT loop ->
  126. * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
  127. * eret to play_dead ->
  128. * bmips_secondary_reentry ->
  129. * start_secondary
  130. */
  131. pr_info("SMP: Booting CPU%d...\n", cpu);
  132. if (cpumask_test_cpu(cpu, &bmips_booted_mask))
  133. bmips_send_ipi_single(cpu, 0);
  134. else {
  135. #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
  136. set_c0_brcm_cmt_ctrl(0x01);
  137. #elif defined(CONFIG_CPU_BMIPS5000)
  138. if (cpu & 0x01)
  139. write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
  140. else {
  141. /*
  142. * core N thread 0 was already booted; just
  143. * pulse the NMI line
  144. */
  145. bmips_write_zscm_reg(0x210, 0xc0000000);
  146. udelay(10);
  147. bmips_write_zscm_reg(0x210, 0x00);
  148. }
  149. #endif
  150. cpumask_set_cpu(cpu, &bmips_booted_mask);
  151. }
  152. }
  153. /*
  154. * Early setup - runs on secondary CPU after cache probe
  155. */
  156. static void bmips_init_secondary(void)
  157. {
  158. /* move NMI vector to kseg0, in case XKS01 is enabled */
  159. #if defined(CONFIG_CPU_BMIPS4350) || defined(CONFIG_CPU_BMIPS4380)
  160. void __iomem *cbr = BMIPS_GET_CBR();
  161. unsigned long old_vec;
  162. old_vec = __raw_readl(cbr + BMIPS_RELO_VECTOR_CONTROL_1);
  163. __raw_writel(old_vec & ~0x20000000, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
  164. clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
  165. #elif defined(CONFIG_CPU_BMIPS5000)
  166. write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
  167. (smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
  168. write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
  169. #endif
  170. /* make sure there won't be a timer interrupt for a little while */
  171. write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
  172. irq_enable_hazard();
  173. set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
  174. irq_enable_hazard();
  175. }
  176. /*
  177. * Late setup - runs on secondary CPU before entering the idle loop
  178. */
  179. static void bmips_smp_finish(void)
  180. {
  181. pr_info("SMP: CPU%d is running\n", smp_processor_id());
  182. }
  183. /*
  184. * Runs on CPU0 after all CPUs have been booted
  185. */
  186. static void bmips_cpus_done(void)
  187. {
  188. }
  189. #if defined(CONFIG_CPU_BMIPS5000)
  190. /*
  191. * BMIPS5000 raceless IPIs
  192. *
  193. * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
  194. * IPI0 is used for SMP_RESCHEDULE_YOURSELF
  195. * IPI1 is used for SMP_CALL_FUNCTION
  196. */
  197. static void bmips_send_ipi_single(int cpu, unsigned int action)
  198. {
  199. write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
  200. }
  201. static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
  202. {
  203. int action = irq - IPI0_IRQ;
  204. write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
  205. if (action == 0)
  206. scheduler_ipi();
  207. else
  208. smp_call_function_interrupt();
  209. return IRQ_HANDLED;
  210. }
  211. #else
  212. /*
  213. * BMIPS43xx racey IPIs
  214. *
  215. * We use one inbound SW IRQ for each CPU.
  216. *
  217. * A spinlock must be held in order to keep CPUx from accidentally clearing
  218. * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
  219. * same spinlock is used to protect the action masks.
  220. */
  221. static DEFINE_SPINLOCK(ipi_lock);
  222. static DEFINE_PER_CPU(int, ipi_action_mask);
  223. static void bmips_send_ipi_single(int cpu, unsigned int action)
  224. {
  225. unsigned long flags;
  226. spin_lock_irqsave(&ipi_lock, flags);
  227. set_c0_cause(cpu ? C_SW1 : C_SW0);
  228. per_cpu(ipi_action_mask, cpu) |= action;
  229. irq_enable_hazard();
  230. spin_unlock_irqrestore(&ipi_lock, flags);
  231. }
  232. static irqreturn_t bmips_ipi_interrupt(int irq, void *dev_id)
  233. {
  234. unsigned long flags;
  235. int action, cpu = irq - IPI0_IRQ;
  236. spin_lock_irqsave(&ipi_lock, flags);
  237. action = __get_cpu_var(ipi_action_mask);
  238. per_cpu(ipi_action_mask, cpu) = 0;
  239. clear_c0_cause(cpu ? C_SW1 : C_SW0);
  240. spin_unlock_irqrestore(&ipi_lock, flags);
  241. if (action & SMP_RESCHEDULE_YOURSELF)
  242. scheduler_ipi();
  243. if (action & SMP_CALL_FUNCTION)
  244. smp_call_function_interrupt();
  245. return IRQ_HANDLED;
  246. }
  247. #endif /* BMIPS type */
  248. static void bmips_send_ipi_mask(const struct cpumask *mask,
  249. unsigned int action)
  250. {
  251. unsigned int i;
  252. for_each_cpu(i, mask)
  253. bmips_send_ipi_single(i, action);
  254. }
  255. #ifdef CONFIG_HOTPLUG_CPU
  256. static int bmips_cpu_disable(void)
  257. {
  258. unsigned int cpu = smp_processor_id();
  259. if (cpu == 0)
  260. return -EBUSY;
  261. pr_info("SMP: CPU%d is offline\n", cpu);
  262. set_cpu_online(cpu, false);
  263. cpu_clear(cpu, cpu_callin_map);
  264. local_flush_tlb_all();
  265. local_flush_icache_range(0, ~0);
  266. return 0;
  267. }
  268. static void bmips_cpu_die(unsigned int cpu)
  269. {
  270. }
  271. void __ref play_dead(void)
  272. {
  273. idle_task_exit();
  274. /* flush data cache */
  275. _dma_cache_wback_inv(0, ~0);
  276. /*
  277. * Wakeup is on SW0 or SW1; disable everything else
  278. * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
  279. * IRQ handlers; this clears ST0_IE and returns immediately.
  280. */
  281. clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
  282. change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
  283. IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
  284. irq_disable_hazard();
  285. /*
  286. * wait for SW interrupt from bmips_boot_secondary(), then jump
  287. * back to start_secondary()
  288. */
  289. __asm__ __volatile__(
  290. " wait\n"
  291. " j bmips_secondary_reentry\n"
  292. : : : "memory");
  293. }
  294. #endif /* CONFIG_HOTPLUG_CPU */
  295. struct plat_smp_ops bmips_smp_ops = {
  296. .smp_setup = bmips_smp_setup,
  297. .prepare_cpus = bmips_prepare_cpus,
  298. .boot_secondary = bmips_boot_secondary,
  299. .smp_finish = bmips_smp_finish,
  300. .init_secondary = bmips_init_secondary,
  301. .cpus_done = bmips_cpus_done,
  302. .send_ipi_single = bmips_send_ipi_single,
  303. .send_ipi_mask = bmips_send_ipi_mask,
  304. #ifdef CONFIG_HOTPLUG_CPU
  305. .cpu_disable = bmips_cpu_disable,
  306. .cpu_die = bmips_cpu_die,
  307. #endif
  308. };
  309. #endif /* CONFIG_SMP */
  310. /***********************************************************************
  311. * BMIPS vector relocation
  312. * This is primarily used for SMP boot, but it is applicable to some
  313. * UP BMIPS systems as well.
  314. ***********************************************************************/
  315. static void __cpuinit bmips_wr_vec(unsigned long dst, char *start, char *end)
  316. {
  317. memcpy((void *)dst, start, end - start);
  318. dma_cache_wback((unsigned long)start, end - start);
  319. local_flush_icache_range(dst, dst + (end - start));
  320. instruction_hazard();
  321. }
  322. static inline void __cpuinit bmips_nmi_handler_setup(void)
  323. {
  324. bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
  325. &bmips_reset_nmi_vec_end);
  326. bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
  327. &bmips_smp_int_vec_end);
  328. }
  329. void __cpuinit bmips_ebase_setup(void)
  330. {
  331. unsigned long new_ebase = ebase;
  332. void __iomem __maybe_unused *cbr;
  333. BUG_ON(ebase != CKSEG0);
  334. #if defined(CONFIG_CPU_BMIPS4350)
  335. /*
  336. * BMIPS4350 cannot relocate the normal vectors, but it
  337. * can relocate the BEV=1 vectors. So CPU1 starts up at
  338. * the relocated BEV=1, IV=0 general exception vector @
  339. * 0xa000_0380.
  340. *
  341. * set_uncached_handler() is used here because:
  342. * - CPU1 will run this from uncached space
  343. * - None of the cacheflush functions are set up yet
  344. */
  345. set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
  346. &bmips_smp_int_vec, 0x80);
  347. __sync();
  348. return;
  349. #elif defined(CONFIG_CPU_BMIPS4380)
  350. /*
  351. * 0x8000_0000: reset/NMI (initially in kseg1)
  352. * 0x8000_0400: normal vectors
  353. */
  354. new_ebase = 0x80000400;
  355. cbr = BMIPS_GET_CBR();
  356. __raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
  357. __raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
  358. #elif defined(CONFIG_CPU_BMIPS5000)
  359. /*
  360. * 0x8000_0000: reset/NMI (initially in kseg1)
  361. * 0x8000_1000: normal vectors
  362. */
  363. new_ebase = 0x80001000;
  364. write_c0_brcm_bootvec(0xa0088008);
  365. write_c0_ebase(new_ebase);
  366. if (max_cpus > 2)
  367. bmips_write_zscm_reg(0xa0, 0xa008a008);
  368. #else
  369. return;
  370. #endif
  371. board_nmi_handler_setup = &bmips_nmi_handler_setup;
  372. ebase = new_ebase;
  373. }
  374. asmlinkage void __weak plat_wired_tlb_setup(void)
  375. {
  376. /*
  377. * Called when starting/restarting a secondary CPU.
  378. * Kernel stacks and other important data might only be accessible
  379. * once the wired entries are present.
  380. */
  381. }