fsl_dma.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000
  1. /*
  2. * Freescale DMA ALSA SoC PCM driver
  3. *
  4. * Author: Timur Tabi <timur@freescale.com>
  5. *
  6. * Copyright 2007-2010 Freescale Semiconductor, Inc.
  7. *
  8. * This file is licensed under the terms of the GNU General Public License
  9. * version 2. This program is licensed "as is" without any warranty of any
  10. * kind, whether express or implied.
  11. *
  12. * This driver implements ASoC support for the Elo DMA controller, which is
  13. * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  14. * the PCM driver is what handles the DMA buffer.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/init.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/delay.h>
  22. #include <linux/gfp.h>
  23. #include <linux/of_platform.h>
  24. #include <linux/list.h>
  25. #include <linux/slab.h>
  26. #include <sound/core.h>
  27. #include <sound/pcm.h>
  28. #include <sound/pcm_params.h>
  29. #include <sound/soc.h>
  30. #include <asm/io.h>
  31. #include "fsl_dma.h"
  32. #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
  33. /*
  34. * The formats that the DMA controller supports, which is anything
  35. * that is 8, 16, or 32 bits.
  36. */
  37. #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  38. SNDRV_PCM_FMTBIT_U8 | \
  39. SNDRV_PCM_FMTBIT_S16_LE | \
  40. SNDRV_PCM_FMTBIT_S16_BE | \
  41. SNDRV_PCM_FMTBIT_U16_LE | \
  42. SNDRV_PCM_FMTBIT_U16_BE | \
  43. SNDRV_PCM_FMTBIT_S24_LE | \
  44. SNDRV_PCM_FMTBIT_S24_BE | \
  45. SNDRV_PCM_FMTBIT_U24_LE | \
  46. SNDRV_PCM_FMTBIT_U24_BE | \
  47. SNDRV_PCM_FMTBIT_S32_LE | \
  48. SNDRV_PCM_FMTBIT_S32_BE | \
  49. SNDRV_PCM_FMTBIT_U32_LE | \
  50. SNDRV_PCM_FMTBIT_U32_BE)
  51. #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  52. SNDRV_PCM_RATE_CONTINUOUS)
  53. struct dma_object {
  54. struct snd_soc_platform_driver dai;
  55. dma_addr_t ssi_stx_phys;
  56. dma_addr_t ssi_srx_phys;
  57. unsigned int ssi_fifo_depth;
  58. struct ccsr_dma_channel __iomem *channel;
  59. unsigned int irq;
  60. bool assigned;
  61. char path[1];
  62. };
  63. /*
  64. * The number of DMA links to use. Two is the bare minimum, but if you
  65. * have really small links you might need more.
  66. */
  67. #define NUM_DMA_LINKS 2
  68. /** fsl_dma_private: p-substream DMA data
  69. *
  70. * Each substream has a 1-to-1 association with a DMA channel.
  71. *
  72. * The link[] array is first because it needs to be aligned on a 32-byte
  73. * boundary, so putting it first will ensure alignment without padding the
  74. * structure.
  75. *
  76. * @link[]: array of link descriptors
  77. * @dma_channel: pointer to the DMA channel's registers
  78. * @irq: IRQ for this DMA channel
  79. * @substream: pointer to the substream object, needed by the ISR
  80. * @ssi_sxx_phys: bus address of the STX or SRX register to use
  81. * @ld_buf_phys: physical address of the LD buffer
  82. * @current_link: index into link[] of the link currently being processed
  83. * @dma_buf_phys: physical address of the DMA buffer
  84. * @dma_buf_next: physical address of the next period to process
  85. * @dma_buf_end: physical address of the byte after the end of the DMA
  86. * @buffer period_size: the size of a single period
  87. * @num_periods: the number of periods in the DMA buffer
  88. */
  89. struct fsl_dma_private {
  90. struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  91. struct ccsr_dma_channel __iomem *dma_channel;
  92. unsigned int irq;
  93. struct snd_pcm_substream *substream;
  94. dma_addr_t ssi_sxx_phys;
  95. unsigned int ssi_fifo_depth;
  96. dma_addr_t ld_buf_phys;
  97. unsigned int current_link;
  98. dma_addr_t dma_buf_phys;
  99. dma_addr_t dma_buf_next;
  100. dma_addr_t dma_buf_end;
  101. size_t period_size;
  102. unsigned int num_periods;
  103. };
  104. /**
  105. * fsl_dma_hardare: define characteristics of the PCM hardware.
  106. *
  107. * The PCM hardware is the Freescale DMA controller. This structure defines
  108. * the capabilities of that hardware.
  109. *
  110. * Since the sampling rate and data format are not controlled by the DMA
  111. * controller, we specify no limits for those values. The only exception is
  112. * period_bytes_min, which is set to a reasonably low value to prevent the
  113. * DMA controller from generating too many interrupts per second.
  114. *
  115. * Since each link descriptor has a 32-bit byte count field, we set
  116. * period_bytes_max to the largest 32-bit number. We also have no maximum
  117. * number of periods.
  118. *
  119. * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
  120. * limitation in the SSI driver requires the sample rates for playback and
  121. * capture to be the same.
  122. */
  123. static const struct snd_pcm_hardware fsl_dma_hardware = {
  124. .info = SNDRV_PCM_INFO_INTERLEAVED |
  125. SNDRV_PCM_INFO_MMAP |
  126. SNDRV_PCM_INFO_MMAP_VALID |
  127. SNDRV_PCM_INFO_JOINT_DUPLEX |
  128. SNDRV_PCM_INFO_PAUSE,
  129. .formats = FSLDMA_PCM_FORMATS,
  130. .rates = FSLDMA_PCM_RATES,
  131. .rate_min = 5512,
  132. .rate_max = 192000,
  133. .period_bytes_min = 512, /* A reasonable limit */
  134. .period_bytes_max = (u32) -1,
  135. .periods_min = NUM_DMA_LINKS,
  136. .periods_max = (unsigned int) -1,
  137. .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
  138. };
  139. /**
  140. * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
  141. *
  142. * This function should be called by the ISR whenever the DMA controller
  143. * halts data transfer.
  144. */
  145. static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
  146. {
  147. unsigned long flags;
  148. snd_pcm_stream_lock_irqsave(substream, flags);
  149. if (snd_pcm_running(substream))
  150. snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
  151. snd_pcm_stream_unlock_irqrestore(substream, flags);
  152. }
  153. /**
  154. * fsl_dma_update_pointers - update LD pointers to point to the next period
  155. *
  156. * As each period is completed, this function changes the the link
  157. * descriptor pointers for that period to point to the next period.
  158. */
  159. static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
  160. {
  161. struct fsl_dma_link_descriptor *link =
  162. &dma_private->link[dma_private->current_link];
  163. /* Update our link descriptors to point to the next period. On a 36-bit
  164. * system, we also need to update the ESAD bits. We also set (keep) the
  165. * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
  166. */
  167. if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  168. link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
  169. #ifdef CONFIG_PHYS_64BIT
  170. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  171. upper_32_bits(dma_private->dma_buf_next));
  172. #endif
  173. } else {
  174. link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
  175. #ifdef CONFIG_PHYS_64BIT
  176. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  177. upper_32_bits(dma_private->dma_buf_next));
  178. #endif
  179. }
  180. /* Update our variables for next time */
  181. dma_private->dma_buf_next += dma_private->period_size;
  182. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  183. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  184. if (++dma_private->current_link >= NUM_DMA_LINKS)
  185. dma_private->current_link = 0;
  186. }
  187. /**
  188. * fsl_dma_isr: interrupt handler for the DMA controller
  189. *
  190. * @irq: IRQ of the DMA channel
  191. * @dev_id: pointer to the dma_private structure for this DMA channel
  192. */
  193. static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
  194. {
  195. struct fsl_dma_private *dma_private = dev_id;
  196. struct snd_pcm_substream *substream = dma_private->substream;
  197. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  198. struct device *dev = rtd->platform->dev;
  199. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  200. irqreturn_t ret = IRQ_NONE;
  201. u32 sr, sr2 = 0;
  202. /* We got an interrupt, so read the status register to see what we
  203. were interrupted for.
  204. */
  205. sr = in_be32(&dma_channel->sr);
  206. if (sr & CCSR_DMA_SR_TE) {
  207. dev_err(dev, "dma transmit error\n");
  208. fsl_dma_abort_stream(substream);
  209. sr2 |= CCSR_DMA_SR_TE;
  210. ret = IRQ_HANDLED;
  211. }
  212. if (sr & CCSR_DMA_SR_CH)
  213. ret = IRQ_HANDLED;
  214. if (sr & CCSR_DMA_SR_PE) {
  215. dev_err(dev, "dma programming error\n");
  216. fsl_dma_abort_stream(substream);
  217. sr2 |= CCSR_DMA_SR_PE;
  218. ret = IRQ_HANDLED;
  219. }
  220. if (sr & CCSR_DMA_SR_EOLNI) {
  221. sr2 |= CCSR_DMA_SR_EOLNI;
  222. ret = IRQ_HANDLED;
  223. }
  224. if (sr & CCSR_DMA_SR_CB)
  225. ret = IRQ_HANDLED;
  226. if (sr & CCSR_DMA_SR_EOSI) {
  227. /* Tell ALSA we completed a period. */
  228. snd_pcm_period_elapsed(substream);
  229. /*
  230. * Update our link descriptors to point to the next period. We
  231. * only need to do this if the number of periods is not equal to
  232. * the number of links.
  233. */
  234. if (dma_private->num_periods != NUM_DMA_LINKS)
  235. fsl_dma_update_pointers(dma_private);
  236. sr2 |= CCSR_DMA_SR_EOSI;
  237. ret = IRQ_HANDLED;
  238. }
  239. if (sr & CCSR_DMA_SR_EOLSI) {
  240. sr2 |= CCSR_DMA_SR_EOLSI;
  241. ret = IRQ_HANDLED;
  242. }
  243. /* Clear the bits that we set */
  244. if (sr2)
  245. out_be32(&dma_channel->sr, sr2);
  246. return ret;
  247. }
  248. /**
  249. * fsl_dma_new: initialize this PCM driver.
  250. *
  251. * This function is called when the codec driver calls snd_soc_new_pcms(),
  252. * once for each .dai_link in the machine driver's snd_soc_card
  253. * structure.
  254. *
  255. * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
  256. * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
  257. * is specified. Therefore, any DMA buffers we allocate will always be in low
  258. * memory, but we support for 36-bit physical addresses anyway.
  259. *
  260. * Regardless of where the memory is actually allocated, since the device can
  261. * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
  262. */
  263. static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
  264. {
  265. struct snd_card *card = rtd->card->snd_card;
  266. struct snd_pcm *pcm = rtd->pcm;
  267. static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
  268. int ret;
  269. if (!card->dev->dma_mask)
  270. card->dev->dma_mask = &fsl_dma_dmamask;
  271. if (!card->dev->coherent_dma_mask)
  272. card->dev->coherent_dma_mask = fsl_dma_dmamask;
  273. /* Some codecs have separate DAIs for playback and capture, so we
  274. * should allocate a DMA buffer only for the streams that are valid.
  275. */
  276. if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
  277. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  278. fsl_dma_hardware.buffer_bytes_max,
  279. &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
  280. if (ret) {
  281. dev_err(card->dev, "can't alloc playback dma buffer\n");
  282. return ret;
  283. }
  284. }
  285. if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
  286. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  287. fsl_dma_hardware.buffer_bytes_max,
  288. &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
  289. if (ret) {
  290. dev_err(card->dev, "can't alloc capture dma buffer\n");
  291. snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
  292. return ret;
  293. }
  294. }
  295. return 0;
  296. }
  297. /**
  298. * fsl_dma_open: open a new substream.
  299. *
  300. * Each substream has its own DMA buffer.
  301. *
  302. * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
  303. * descriptors that ping-pong from one period to the next. For example, if
  304. * there are six periods and two link descriptors, this is how they look
  305. * before playback starts:
  306. *
  307. * The last link descriptor
  308. * ____________ points back to the first
  309. * | |
  310. * V |
  311. * ___ ___ |
  312. * | |->| |->|
  313. * |___| |___|
  314. * | |
  315. * | |
  316. * V V
  317. * _________________________________________
  318. * | | | | | | | The DMA buffer is
  319. * | | | | | | | divided into 6 parts
  320. * |______|______|______|______|______|______|
  321. *
  322. * and here's how they look after the first period is finished playing:
  323. *
  324. * ____________
  325. * | |
  326. * V |
  327. * ___ ___ |
  328. * | |->| |->|
  329. * |___| |___|
  330. * | |
  331. * |______________
  332. * | |
  333. * V V
  334. * _________________________________________
  335. * | | | | | | |
  336. * | | | | | | |
  337. * |______|______|______|______|______|______|
  338. *
  339. * The first link descriptor now points to the third period. The DMA
  340. * controller is currently playing the second period. When it finishes, it
  341. * will jump back to the first descriptor and play the third period.
  342. *
  343. * There are four reasons we do this:
  344. *
  345. * 1. The only way to get the DMA controller to automatically restart the
  346. * transfer when it gets to the end of the buffer is to use chaining
  347. * mode. Basic direct mode doesn't offer that feature.
  348. * 2. We need to receive an interrupt at the end of every period. The DMA
  349. * controller can generate an interrupt at the end of every link transfer
  350. * (aka segment). Making each period into a DMA segment will give us the
  351. * interrupts we need.
  352. * 3. By creating only two link descriptors, regardless of the number of
  353. * periods, we do not need to reallocate the link descriptors if the
  354. * number of periods changes.
  355. * 4. All of the audio data is still stored in a single, contiguous DMA
  356. * buffer, which is what ALSA expects. We're just dividing it into
  357. * contiguous parts, and creating a link descriptor for each one.
  358. */
  359. static int fsl_dma_open(struct snd_pcm_substream *substream)
  360. {
  361. struct snd_pcm_runtime *runtime = substream->runtime;
  362. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  363. struct device *dev = rtd->platform->dev;
  364. struct dma_object *dma =
  365. container_of(rtd->platform->driver, struct dma_object, dai);
  366. struct fsl_dma_private *dma_private;
  367. struct ccsr_dma_channel __iomem *dma_channel;
  368. dma_addr_t ld_buf_phys;
  369. u64 temp_link; /* Pointer to next link descriptor */
  370. u32 mr;
  371. unsigned int channel;
  372. int ret = 0;
  373. unsigned int i;
  374. /*
  375. * Reject any DMA buffer whose size is not a multiple of the period
  376. * size. We need to make sure that the DMA buffer can be evenly divided
  377. * into periods.
  378. */
  379. ret = snd_pcm_hw_constraint_integer(runtime,
  380. SNDRV_PCM_HW_PARAM_PERIODS);
  381. if (ret < 0) {
  382. dev_err(dev, "invalid buffer size\n");
  383. return ret;
  384. }
  385. channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  386. if (dma->assigned) {
  387. dev_err(dev, "dma channel already assigned\n");
  388. return -EBUSY;
  389. }
  390. dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
  391. &ld_buf_phys, GFP_KERNEL);
  392. if (!dma_private) {
  393. dev_err(dev, "can't allocate dma private data\n");
  394. return -ENOMEM;
  395. }
  396. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  397. dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
  398. else
  399. dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
  400. dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
  401. dma_private->dma_channel = dma->channel;
  402. dma_private->irq = dma->irq;
  403. dma_private->substream = substream;
  404. dma_private->ld_buf_phys = ld_buf_phys;
  405. dma_private->dma_buf_phys = substream->dma_buffer.addr;
  406. ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
  407. dma_private);
  408. if (ret) {
  409. dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
  410. dma_private->irq, ret);
  411. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  412. dma_private, dma_private->ld_buf_phys);
  413. return ret;
  414. }
  415. dma->assigned = 1;
  416. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  417. snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
  418. runtime->private_data = dma_private;
  419. /* Program the fixed DMA controller parameters */
  420. dma_channel = dma_private->dma_channel;
  421. temp_link = dma_private->ld_buf_phys +
  422. sizeof(struct fsl_dma_link_descriptor);
  423. for (i = 0; i < NUM_DMA_LINKS; i++) {
  424. dma_private->link[i].next = cpu_to_be64(temp_link);
  425. temp_link += sizeof(struct fsl_dma_link_descriptor);
  426. }
  427. /* The last link descriptor points to the first */
  428. dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
  429. /* Tell the DMA controller where the first link descriptor is */
  430. out_be32(&dma_channel->clndar,
  431. CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
  432. out_be32(&dma_channel->eclndar,
  433. CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
  434. /* The manual says the BCR must be clear before enabling EMP */
  435. out_be32(&dma_channel->bcr, 0);
  436. /*
  437. * Program the mode register for interrupts, external master control,
  438. * and source/destination hold. Also clear the Channel Abort bit.
  439. */
  440. mr = in_be32(&dma_channel->mr) &
  441. ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
  442. /*
  443. * We want External Master Start and External Master Pause enabled,
  444. * because the SSI is controlling the DMA controller. We want the DMA
  445. * controller to be set up in advance, and then we signal only the SSI
  446. * to start transferring.
  447. *
  448. * We want End-Of-Segment Interrupts enabled, because this will generate
  449. * an interrupt at the end of each segment (each link descriptor
  450. * represents one segment). Each DMA segment is the same thing as an
  451. * ALSA period, so this is how we get an interrupt at the end of every
  452. * period.
  453. *
  454. * We want Error Interrupt enabled, so that we can get an error if
  455. * the DMA controller is mis-programmed somehow.
  456. */
  457. mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
  458. CCSR_DMA_MR_EMS_EN;
  459. /* For playback, we want the destination address to be held. For
  460. capture, set the source address to be held. */
  461. mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
  462. CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
  463. out_be32(&dma_channel->mr, mr);
  464. return 0;
  465. }
  466. /**
  467. * fsl_dma_hw_params: continue initializing the DMA links
  468. *
  469. * This function obtains hardware parameters about the opened stream and
  470. * programs the DMA controller accordingly.
  471. *
  472. * One drawback of big-endian is that when copying integers of different
  473. * sizes to a fixed-sized register, the address to which the integer must be
  474. * copied is dependent on the size of the integer.
  475. *
  476. * For example, if P is the address of a 32-bit register, and X is a 32-bit
  477. * integer, then X should be copied to address P. However, if X is a 16-bit
  478. * integer, then it should be copied to P+2. If X is an 8-bit register,
  479. * then it should be copied to P+3.
  480. *
  481. * So for playback of 8-bit samples, the DMA controller must transfer single
  482. * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
  483. * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
  484. *
  485. * For 24-bit samples, the offset is 1 byte. However, the DMA controller
  486. * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
  487. * and 8 bytes at a time). So we do not support packed 24-bit samples.
  488. * 24-bit data must be padded to 32 bits.
  489. */
  490. static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
  491. struct snd_pcm_hw_params *hw_params)
  492. {
  493. struct snd_pcm_runtime *runtime = substream->runtime;
  494. struct fsl_dma_private *dma_private = runtime->private_data;
  495. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  496. struct device *dev = rtd->platform->dev;
  497. /* Number of bits per sample */
  498. unsigned int sample_bits =
  499. snd_pcm_format_physical_width(params_format(hw_params));
  500. /* Number of bytes per frame */
  501. unsigned int sample_bytes = sample_bits / 8;
  502. /* Bus address of SSI STX register */
  503. dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
  504. /* Size of the DMA buffer, in bytes */
  505. size_t buffer_size = params_buffer_bytes(hw_params);
  506. /* Number of bytes per period */
  507. size_t period_size = params_period_bytes(hw_params);
  508. /* Pointer to next period */
  509. dma_addr_t temp_addr = substream->dma_buffer.addr;
  510. /* Pointer to DMA controller */
  511. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  512. u32 mr; /* DMA Mode Register */
  513. unsigned int i;
  514. /* Initialize our DMA tracking variables */
  515. dma_private->period_size = period_size;
  516. dma_private->num_periods = params_periods(hw_params);
  517. dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
  518. dma_private->dma_buf_next = dma_private->dma_buf_phys +
  519. (NUM_DMA_LINKS * period_size);
  520. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  521. /* This happens if the number of periods == NUM_DMA_LINKS */
  522. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  523. mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
  524. CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
  525. /* Due to a quirk of the SSI's STX register, the target address
  526. * for the DMA operations depends on the sample size. So we calculate
  527. * that offset here. While we're at it, also tell the DMA controller
  528. * how much data to transfer per sample.
  529. */
  530. switch (sample_bits) {
  531. case 8:
  532. mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
  533. ssi_sxx_phys += 3;
  534. break;
  535. case 16:
  536. mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
  537. ssi_sxx_phys += 2;
  538. break;
  539. case 32:
  540. mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
  541. break;
  542. default:
  543. /* We should never get here */
  544. dev_err(dev, "unsupported sample size %u\n", sample_bits);
  545. return -EINVAL;
  546. }
  547. /*
  548. * BWC determines how many bytes are sent/received before the DMA
  549. * controller checks the SSI to see if it needs to stop. BWC should
  550. * always be a multiple of the frame size, so that we always transmit
  551. * whole frames. Each frame occupies two slots in the FIFO. The
  552. * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
  553. * (MR[BWC] can only represent even powers of two).
  554. *
  555. * To simplify the process, we set BWC to the largest value that is
  556. * less than or equal to the FIFO watermark. For playback, this ensures
  557. * that we transfer the maximum amount without overrunning the FIFO.
  558. * For capture, this ensures that we transfer the maximum amount without
  559. * underrunning the FIFO.
  560. *
  561. * f = SSI FIFO depth
  562. * w = SSI watermark value (which equals f - 2)
  563. * b = DMA bandwidth count (in bytes)
  564. * s = sample size (in bytes, which equals frame_size * 2)
  565. *
  566. * For playback, we never transmit more than the transmit FIFO
  567. * watermark, otherwise we might write more data than the FIFO can hold.
  568. * The watermark is equal to the FIFO depth minus two.
  569. *
  570. * For capture, two equations must hold:
  571. * w > f - (b / s)
  572. * w >= b / s
  573. *
  574. * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
  575. * b = s * w, which is equal to
  576. * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
  577. */
  578. mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
  579. out_be32(&dma_channel->mr, mr);
  580. for (i = 0; i < NUM_DMA_LINKS; i++) {
  581. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  582. link->count = cpu_to_be32(period_size);
  583. /* The snoop bit tells the DMA controller whether it should tell
  584. * the ECM to snoop during a read or write to an address. For
  585. * audio, we use DMA to transfer data between memory and an I/O
  586. * device (the SSI's STX0 or SRX0 register). Snooping is only
  587. * needed if there is a cache, so we need to snoop memory
  588. * addresses only. For playback, that means we snoop the source
  589. * but not the destination. For capture, we snoop the
  590. * destination but not the source.
  591. *
  592. * Note that failing to snoop properly is unlikely to cause
  593. * cache incoherency if the period size is larger than the
  594. * size of L1 cache. This is because filling in one period will
  595. * flush out the data for the previous period. So if you
  596. * increased period_bytes_min to a large enough size, you might
  597. * get more performance by not snooping, and you'll still be
  598. * okay. You'll need to update fsl_dma_update_pointers() also.
  599. */
  600. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  601. link->source_addr = cpu_to_be32(temp_addr);
  602. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  603. upper_32_bits(temp_addr));
  604. link->dest_addr = cpu_to_be32(ssi_sxx_phys);
  605. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  606. upper_32_bits(ssi_sxx_phys));
  607. } else {
  608. link->source_addr = cpu_to_be32(ssi_sxx_phys);
  609. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  610. upper_32_bits(ssi_sxx_phys));
  611. link->dest_addr = cpu_to_be32(temp_addr);
  612. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  613. upper_32_bits(temp_addr));
  614. }
  615. temp_addr += period_size;
  616. }
  617. return 0;
  618. }
  619. /**
  620. * fsl_dma_pointer: determine the current position of the DMA transfer
  621. *
  622. * This function is called by ALSA when ALSA wants to know where in the
  623. * stream buffer the hardware currently is.
  624. *
  625. * For playback, the SAR register contains the physical address of the most
  626. * recent DMA transfer. For capture, the value is in the DAR register.
  627. *
  628. * The base address of the buffer is stored in the source_addr field of the
  629. * first link descriptor.
  630. */
  631. static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
  632. {
  633. struct snd_pcm_runtime *runtime = substream->runtime;
  634. struct fsl_dma_private *dma_private = runtime->private_data;
  635. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  636. struct device *dev = rtd->platform->dev;
  637. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  638. dma_addr_t position;
  639. snd_pcm_uframes_t frames;
  640. /* Obtain the current DMA pointer, but don't read the ESAD bits if we
  641. * only have 32-bit DMA addresses. This function is typically called
  642. * in interrupt context, so we need to optimize it.
  643. */
  644. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  645. position = in_be32(&dma_channel->sar);
  646. #ifdef CONFIG_PHYS_64BIT
  647. position |= (u64)(in_be32(&dma_channel->satr) &
  648. CCSR_DMA_ATR_ESAD_MASK) << 32;
  649. #endif
  650. } else {
  651. position = in_be32(&dma_channel->dar);
  652. #ifdef CONFIG_PHYS_64BIT
  653. position |= (u64)(in_be32(&dma_channel->datr) &
  654. CCSR_DMA_ATR_ESAD_MASK) << 32;
  655. #endif
  656. }
  657. /*
  658. * When capture is started, the SSI immediately starts to fill its FIFO.
  659. * This means that the DMA controller is not started until the FIFO is
  660. * full. However, ALSA calls this function before that happens, when
  661. * MR.DAR is still zero. In this case, just return zero to indicate
  662. * that nothing has been received yet.
  663. */
  664. if (!position)
  665. return 0;
  666. if ((position < dma_private->dma_buf_phys) ||
  667. (position > dma_private->dma_buf_end)) {
  668. dev_err(dev, "dma pointer is out of range, halting stream\n");
  669. return SNDRV_PCM_POS_XRUN;
  670. }
  671. frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
  672. /*
  673. * If the current address is just past the end of the buffer, wrap it
  674. * around.
  675. */
  676. if (frames == runtime->buffer_size)
  677. frames = 0;
  678. return frames;
  679. }
  680. /**
  681. * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
  682. *
  683. * Release the resources allocated in fsl_dma_hw_params() and de-program the
  684. * registers.
  685. *
  686. * This function can be called multiple times.
  687. */
  688. static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
  689. {
  690. struct snd_pcm_runtime *runtime = substream->runtime;
  691. struct fsl_dma_private *dma_private = runtime->private_data;
  692. if (dma_private) {
  693. struct ccsr_dma_channel __iomem *dma_channel;
  694. dma_channel = dma_private->dma_channel;
  695. /* Stop the DMA */
  696. out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
  697. out_be32(&dma_channel->mr, 0);
  698. /* Reset all the other registers */
  699. out_be32(&dma_channel->sr, -1);
  700. out_be32(&dma_channel->clndar, 0);
  701. out_be32(&dma_channel->eclndar, 0);
  702. out_be32(&dma_channel->satr, 0);
  703. out_be32(&dma_channel->sar, 0);
  704. out_be32(&dma_channel->datr, 0);
  705. out_be32(&dma_channel->dar, 0);
  706. out_be32(&dma_channel->bcr, 0);
  707. out_be32(&dma_channel->nlndar, 0);
  708. out_be32(&dma_channel->enlndar, 0);
  709. }
  710. return 0;
  711. }
  712. /**
  713. * fsl_dma_close: close the stream.
  714. */
  715. static int fsl_dma_close(struct snd_pcm_substream *substream)
  716. {
  717. struct snd_pcm_runtime *runtime = substream->runtime;
  718. struct fsl_dma_private *dma_private = runtime->private_data;
  719. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  720. struct device *dev = rtd->platform->dev;
  721. struct dma_object *dma =
  722. container_of(rtd->platform->driver, struct dma_object, dai);
  723. if (dma_private) {
  724. if (dma_private->irq)
  725. free_irq(dma_private->irq, dma_private);
  726. if (dma_private->ld_buf_phys) {
  727. dma_unmap_single(dev, dma_private->ld_buf_phys,
  728. sizeof(dma_private->link),
  729. DMA_TO_DEVICE);
  730. }
  731. /* Deallocate the fsl_dma_private structure */
  732. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  733. dma_private, dma_private->ld_buf_phys);
  734. substream->runtime->private_data = NULL;
  735. }
  736. dma->assigned = 0;
  737. return 0;
  738. }
  739. /*
  740. * Remove this PCM driver.
  741. */
  742. static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
  743. {
  744. struct snd_pcm_substream *substream;
  745. unsigned int i;
  746. for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
  747. substream = pcm->streams[i].substream;
  748. if (substream) {
  749. snd_dma_free_pages(&substream->dma_buffer);
  750. substream->dma_buffer.area = NULL;
  751. substream->dma_buffer.addr = 0;
  752. }
  753. }
  754. }
  755. /**
  756. * find_ssi_node -- returns the SSI node that points to his DMA channel node
  757. *
  758. * Although this DMA driver attempts to operate independently of the other
  759. * devices, it still needs to determine some information about the SSI device
  760. * that it's working with. Unfortunately, the device tree does not contain
  761. * a pointer from the DMA channel node to the SSI node -- the pointer goes the
  762. * other way. So we need to scan the device tree for SSI nodes until we find
  763. * the one that points to the given DMA channel node. It's ugly, but at least
  764. * it's contained in this one function.
  765. */
  766. static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
  767. {
  768. struct device_node *ssi_np, *np;
  769. for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
  770. /* Check each DMA phandle to see if it points to us. We
  771. * assume that device_node pointers are a valid comparison.
  772. */
  773. np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
  774. of_node_put(np);
  775. if (np == dma_channel_np)
  776. return ssi_np;
  777. np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
  778. of_node_put(np);
  779. if (np == dma_channel_np)
  780. return ssi_np;
  781. }
  782. return NULL;
  783. }
  784. static struct snd_pcm_ops fsl_dma_ops = {
  785. .open = fsl_dma_open,
  786. .close = fsl_dma_close,
  787. .ioctl = snd_pcm_lib_ioctl,
  788. .hw_params = fsl_dma_hw_params,
  789. .hw_free = fsl_dma_hw_free,
  790. .pointer = fsl_dma_pointer,
  791. };
  792. static int __devinit fsl_soc_dma_probe(struct platform_device *pdev)
  793. {
  794. struct dma_object *dma;
  795. struct device_node *np = pdev->dev.of_node;
  796. struct device_node *ssi_np;
  797. struct resource res;
  798. const uint32_t *iprop;
  799. int ret;
  800. /* Find the SSI node that points to us. */
  801. ssi_np = find_ssi_node(np);
  802. if (!ssi_np) {
  803. dev_err(&pdev->dev, "cannot find parent SSI node\n");
  804. return -ENODEV;
  805. }
  806. ret = of_address_to_resource(ssi_np, 0, &res);
  807. if (ret) {
  808. dev_err(&pdev->dev, "could not determine resources for %s\n",
  809. ssi_np->full_name);
  810. of_node_put(ssi_np);
  811. return ret;
  812. }
  813. dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
  814. if (!dma) {
  815. dev_err(&pdev->dev, "could not allocate dma object\n");
  816. of_node_put(ssi_np);
  817. return -ENOMEM;
  818. }
  819. strcpy(dma->path, np->full_name);
  820. dma->dai.ops = &fsl_dma_ops;
  821. dma->dai.pcm_new = fsl_dma_new;
  822. dma->dai.pcm_free = fsl_dma_free_dma_buffers;
  823. /* Store the SSI-specific information that we need */
  824. dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
  825. dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
  826. iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
  827. if (iprop)
  828. dma->ssi_fifo_depth = be32_to_cpup(iprop);
  829. else
  830. /* Older 8610 DTs didn't have the fifo-depth property */
  831. dma->ssi_fifo_depth = 8;
  832. of_node_put(ssi_np);
  833. ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
  834. if (ret) {
  835. dev_err(&pdev->dev, "could not register platform\n");
  836. kfree(dma);
  837. return ret;
  838. }
  839. dma->channel = of_iomap(np, 0);
  840. dma->irq = irq_of_parse_and_map(np, 0);
  841. dev_set_drvdata(&pdev->dev, dma);
  842. return 0;
  843. }
  844. static int __devexit fsl_soc_dma_remove(struct platform_device *pdev)
  845. {
  846. struct dma_object *dma = dev_get_drvdata(&pdev->dev);
  847. snd_soc_unregister_platform(&pdev->dev);
  848. iounmap(dma->channel);
  849. irq_dispose_mapping(dma->irq);
  850. kfree(dma);
  851. return 0;
  852. }
  853. static const struct of_device_id fsl_soc_dma_ids[] = {
  854. { .compatible = "fsl,ssi-dma-channel", },
  855. {}
  856. };
  857. MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
  858. static struct platform_driver fsl_soc_dma_driver = {
  859. .driver = {
  860. .name = "fsl-pcm-audio",
  861. .owner = THIS_MODULE,
  862. .of_match_table = fsl_soc_dma_ids,
  863. },
  864. .probe = fsl_soc_dma_probe,
  865. .remove = __devexit_p(fsl_soc_dma_remove),
  866. };
  867. module_platform_driver(fsl_soc_dma_driver);
  868. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  869. MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
  870. MODULE_LICENSE("GPL v2");