security.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. #include <linux/integrity.h>
  19. #include <linux/ima.h>
  20. #include <linux/evm.h>
  21. #include <linux/fsnotify.h>
  22. #include <net/flow.h>
  23. #define MAX_LSM_EVM_XATTR 2
  24. /* Boot-time LSM user choice */
  25. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  26. CONFIG_DEFAULT_SECURITY;
  27. static struct security_operations *security_ops;
  28. static struct security_operations default_security_ops = {
  29. .name = "default",
  30. };
  31. static inline int __init verify(struct security_operations *ops)
  32. {
  33. /* verify the security_operations structure exists */
  34. if (!ops)
  35. return -EINVAL;
  36. security_fixup_ops(ops);
  37. return 0;
  38. }
  39. static void __init do_security_initcalls(void)
  40. {
  41. initcall_t *call;
  42. call = __security_initcall_start;
  43. while (call < __security_initcall_end) {
  44. (*call) ();
  45. call++;
  46. }
  47. }
  48. /**
  49. * security_init - initializes the security framework
  50. *
  51. * This should be called early in the kernel initialization sequence.
  52. */
  53. int __init security_init(void)
  54. {
  55. printk(KERN_INFO "Security Framework initialized\n");
  56. security_fixup_ops(&default_security_ops);
  57. security_ops = &default_security_ops;
  58. do_security_initcalls();
  59. return 0;
  60. }
  61. void reset_security_ops(void)
  62. {
  63. security_ops = &default_security_ops;
  64. }
  65. /* Save user chosen LSM */
  66. static int __init choose_lsm(char *str)
  67. {
  68. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  69. return 1;
  70. }
  71. __setup("security=", choose_lsm);
  72. /**
  73. * security_module_enable - Load given security module on boot ?
  74. * @ops: a pointer to the struct security_operations that is to be checked.
  75. *
  76. * Each LSM must pass this method before registering its own operations
  77. * to avoid security registration races. This method may also be used
  78. * to check if your LSM is currently loaded during kernel initialization.
  79. *
  80. * Return true if:
  81. * -The passed LSM is the one chosen by user at boot time,
  82. * -or the passed LSM is configured as the default and the user did not
  83. * choose an alternate LSM at boot time.
  84. * Otherwise, return false.
  85. */
  86. int __init security_module_enable(struct security_operations *ops)
  87. {
  88. return !strcmp(ops->name, chosen_lsm);
  89. }
  90. /**
  91. * register_security - registers a security framework with the kernel
  92. * @ops: a pointer to the struct security_options that is to be registered
  93. *
  94. * This function allows a security module to register itself with the
  95. * kernel security subsystem. Some rudimentary checking is done on the @ops
  96. * value passed to this function. You'll need to check first if your LSM
  97. * is allowed to register its @ops by calling security_module_enable(@ops).
  98. *
  99. * If there is already a security module registered with the kernel,
  100. * an error will be returned. Otherwise %0 is returned on success.
  101. */
  102. int __init register_security(struct security_operations *ops)
  103. {
  104. if (verify(ops)) {
  105. printk(KERN_DEBUG "%s could not verify "
  106. "security_operations structure.\n", __func__);
  107. return -EINVAL;
  108. }
  109. if (security_ops != &default_security_ops)
  110. return -EAGAIN;
  111. security_ops = ops;
  112. return 0;
  113. }
  114. /* Security operations */
  115. int security_binder_set_context_mgr(struct task_struct *mgr)
  116. {
  117. return security_ops->binder_set_context_mgr(mgr);
  118. }
  119. int security_binder_transaction(struct task_struct *from, struct task_struct *to)
  120. {
  121. return security_ops->binder_transaction(from, to);
  122. }
  123. int security_binder_transfer_binder(struct task_struct *from, struct task_struct *to)
  124. {
  125. return security_ops->binder_transfer_binder(from, to);
  126. }
  127. int security_binder_transfer_file(struct task_struct *from, struct task_struct *to, struct file *file)
  128. {
  129. return security_ops->binder_transfer_file(from, to, file);
  130. }
  131. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  132. {
  133. return security_ops->ptrace_access_check(child, mode);
  134. }
  135. int security_ptrace_traceme(struct task_struct *parent)
  136. {
  137. return security_ops->ptrace_traceme(parent);
  138. }
  139. int security_capget(struct task_struct *target,
  140. kernel_cap_t *effective,
  141. kernel_cap_t *inheritable,
  142. kernel_cap_t *permitted)
  143. {
  144. return security_ops->capget(target, effective, inheritable, permitted);
  145. }
  146. int security_capset(struct cred *new, const struct cred *old,
  147. const kernel_cap_t *effective,
  148. const kernel_cap_t *inheritable,
  149. const kernel_cap_t *permitted)
  150. {
  151. return security_ops->capset(new, old,
  152. effective, inheritable, permitted);
  153. }
  154. int security_capable(const struct cred *cred, struct user_namespace *ns,
  155. int cap)
  156. {
  157. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  158. }
  159. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  160. int cap)
  161. {
  162. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  163. }
  164. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  165. {
  166. return security_ops->quotactl(cmds, type, id, sb);
  167. }
  168. int security_quota_on(struct dentry *dentry)
  169. {
  170. return security_ops->quota_on(dentry);
  171. }
  172. int security_syslog(int type)
  173. {
  174. return security_ops->syslog(type);
  175. }
  176. int security_settime(const struct timespec *ts, const struct timezone *tz)
  177. {
  178. return security_ops->settime(ts, tz);
  179. }
  180. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  181. {
  182. return security_ops->vm_enough_memory(mm, pages);
  183. }
  184. int security_bprm_set_creds(struct linux_binprm *bprm)
  185. {
  186. return security_ops->bprm_set_creds(bprm);
  187. }
  188. int security_bprm_check(struct linux_binprm *bprm)
  189. {
  190. int ret;
  191. ret = security_ops->bprm_check_security(bprm);
  192. if (ret)
  193. return ret;
  194. return ima_bprm_check(bprm);
  195. }
  196. void security_bprm_committing_creds(struct linux_binprm *bprm)
  197. {
  198. security_ops->bprm_committing_creds(bprm);
  199. }
  200. void security_bprm_committed_creds(struct linux_binprm *bprm)
  201. {
  202. security_ops->bprm_committed_creds(bprm);
  203. }
  204. int security_bprm_secureexec(struct linux_binprm *bprm)
  205. {
  206. return security_ops->bprm_secureexec(bprm);
  207. }
  208. int security_sb_alloc(struct super_block *sb)
  209. {
  210. return security_ops->sb_alloc_security(sb);
  211. }
  212. void security_sb_free(struct super_block *sb)
  213. {
  214. security_ops->sb_free_security(sb);
  215. }
  216. int security_sb_copy_data(char *orig, char *copy)
  217. {
  218. return security_ops->sb_copy_data(orig, copy);
  219. }
  220. EXPORT_SYMBOL(security_sb_copy_data);
  221. int security_sb_remount(struct super_block *sb, void *data)
  222. {
  223. return security_ops->sb_remount(sb, data);
  224. }
  225. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  226. {
  227. return security_ops->sb_kern_mount(sb, flags, data);
  228. }
  229. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  230. {
  231. return security_ops->sb_show_options(m, sb);
  232. }
  233. int security_sb_statfs(struct dentry *dentry)
  234. {
  235. return security_ops->sb_statfs(dentry);
  236. }
  237. int security_sb_mount(const char *dev_name, struct path *path,
  238. const char *type, unsigned long flags, void *data)
  239. {
  240. return security_ops->sb_mount(dev_name, path, type, flags, data);
  241. }
  242. int security_sb_umount(struct vfsmount *mnt, int flags)
  243. {
  244. return security_ops->sb_umount(mnt, flags);
  245. }
  246. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  247. {
  248. return security_ops->sb_pivotroot(old_path, new_path);
  249. }
  250. int security_sb_set_mnt_opts(struct super_block *sb,
  251. struct security_mnt_opts *opts)
  252. {
  253. return security_ops->sb_set_mnt_opts(sb, opts);
  254. }
  255. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  256. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  257. struct super_block *newsb)
  258. {
  259. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  260. }
  261. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  262. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  263. {
  264. return security_ops->sb_parse_opts_str(options, opts);
  265. }
  266. EXPORT_SYMBOL(security_sb_parse_opts_str);
  267. int security_inode_alloc(struct inode *inode)
  268. {
  269. inode->i_security = NULL;
  270. return security_ops->inode_alloc_security(inode);
  271. }
  272. void security_inode_free(struct inode *inode)
  273. {
  274. integrity_inode_free(inode);
  275. security_ops->inode_free_security(inode);
  276. }
  277. int security_inode_init_security(struct inode *inode, struct inode *dir,
  278. const struct qstr *qstr,
  279. const initxattrs initxattrs, void *fs_data)
  280. {
  281. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  282. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  283. int ret;
  284. if (unlikely(IS_PRIVATE(inode)))
  285. return 0;
  286. memset(new_xattrs, 0, sizeof new_xattrs);
  287. if (!initxattrs)
  288. return security_ops->inode_init_security(inode, dir, qstr,
  289. NULL, NULL, NULL);
  290. lsm_xattr = new_xattrs;
  291. ret = security_ops->inode_init_security(inode, dir, qstr,
  292. &lsm_xattr->name,
  293. &lsm_xattr->value,
  294. &lsm_xattr->value_len);
  295. if (ret)
  296. goto out;
  297. evm_xattr = lsm_xattr + 1;
  298. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  299. if (ret)
  300. goto out;
  301. ret = initxattrs(inode, new_xattrs, fs_data);
  302. out:
  303. for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
  304. kfree(xattr->name);
  305. kfree(xattr->value);
  306. }
  307. return (ret == -EOPNOTSUPP) ? 0 : ret;
  308. }
  309. EXPORT_SYMBOL(security_inode_init_security);
  310. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  311. const struct qstr *qstr, char **name,
  312. void **value, size_t *len)
  313. {
  314. if (unlikely(IS_PRIVATE(inode)))
  315. return -EOPNOTSUPP;
  316. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  317. len);
  318. }
  319. EXPORT_SYMBOL(security_old_inode_init_security);
  320. #ifdef CONFIG_SECURITY_PATH
  321. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  322. unsigned int dev)
  323. {
  324. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  325. return 0;
  326. return security_ops->path_mknod(dir, dentry, mode, dev);
  327. }
  328. EXPORT_SYMBOL(security_path_mknod);
  329. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  330. {
  331. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  332. return 0;
  333. return security_ops->path_mkdir(dir, dentry, mode);
  334. }
  335. EXPORT_SYMBOL(security_path_mkdir);
  336. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  337. {
  338. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  339. return 0;
  340. return security_ops->path_rmdir(dir, dentry);
  341. }
  342. int security_path_unlink(struct path *dir, struct dentry *dentry)
  343. {
  344. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  345. return 0;
  346. return security_ops->path_unlink(dir, dentry);
  347. }
  348. EXPORT_SYMBOL(security_path_unlink);
  349. int security_path_symlink(struct path *dir, struct dentry *dentry,
  350. const char *old_name)
  351. {
  352. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  353. return 0;
  354. return security_ops->path_symlink(dir, dentry, old_name);
  355. }
  356. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  357. struct dentry *new_dentry)
  358. {
  359. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  360. return 0;
  361. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  362. }
  363. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  364. struct path *new_dir, struct dentry *new_dentry)
  365. {
  366. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  367. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  368. return 0;
  369. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  370. new_dentry);
  371. }
  372. EXPORT_SYMBOL(security_path_rename);
  373. int security_path_truncate(struct path *path)
  374. {
  375. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  376. return 0;
  377. return security_ops->path_truncate(path);
  378. }
  379. int security_path_chmod(struct path *path, umode_t mode)
  380. {
  381. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  382. return 0;
  383. return security_ops->path_chmod(path, mode);
  384. }
  385. int security_path_chown(struct path *path, uid_t uid, gid_t gid)
  386. {
  387. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  388. return 0;
  389. return security_ops->path_chown(path, uid, gid);
  390. }
  391. int security_path_chroot(struct path *path)
  392. {
  393. return security_ops->path_chroot(path);
  394. }
  395. #endif
  396. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  397. {
  398. if (unlikely(IS_PRIVATE(dir)))
  399. return 0;
  400. return security_ops->inode_create(dir, dentry, mode);
  401. }
  402. EXPORT_SYMBOL_GPL(security_inode_create);
  403. int security_inode_post_create(struct inode *dir, struct dentry *dentry,
  404. umode_t mode)
  405. {
  406. if (unlikely(IS_PRIVATE(dir)))
  407. return 0;
  408. if (security_ops->inode_post_create == NULL)
  409. return 0;
  410. return security_ops->inode_post_create(dir, dentry, mode);
  411. }
  412. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  413. struct dentry *new_dentry)
  414. {
  415. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  416. return 0;
  417. return security_ops->inode_link(old_dentry, dir, new_dentry);
  418. }
  419. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  420. {
  421. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  422. return 0;
  423. return security_ops->inode_unlink(dir, dentry);
  424. }
  425. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  426. const char *old_name)
  427. {
  428. if (unlikely(IS_PRIVATE(dir)))
  429. return 0;
  430. return security_ops->inode_symlink(dir, dentry, old_name);
  431. }
  432. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  433. {
  434. if (unlikely(IS_PRIVATE(dir)))
  435. return 0;
  436. return security_ops->inode_mkdir(dir, dentry, mode);
  437. }
  438. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  439. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  440. {
  441. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  442. return 0;
  443. return security_ops->inode_rmdir(dir, dentry);
  444. }
  445. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  446. {
  447. if (unlikely(IS_PRIVATE(dir)))
  448. return 0;
  449. return security_ops->inode_mknod(dir, dentry, mode, dev);
  450. }
  451. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  452. struct inode *new_dir, struct dentry *new_dentry)
  453. {
  454. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  455. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  456. return 0;
  457. return security_ops->inode_rename(old_dir, old_dentry,
  458. new_dir, new_dentry);
  459. }
  460. int security_inode_readlink(struct dentry *dentry)
  461. {
  462. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  463. return 0;
  464. return security_ops->inode_readlink(dentry);
  465. }
  466. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  467. {
  468. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  469. return 0;
  470. return security_ops->inode_follow_link(dentry, nd);
  471. }
  472. int security_inode_permission(struct inode *inode, int mask)
  473. {
  474. if (unlikely(IS_PRIVATE(inode)))
  475. return 0;
  476. return security_ops->inode_permission(inode, mask);
  477. }
  478. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  479. {
  480. int ret;
  481. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  482. return 0;
  483. ret = security_ops->inode_setattr(dentry, attr);
  484. if (ret)
  485. return ret;
  486. return evm_inode_setattr(dentry, attr);
  487. }
  488. EXPORT_SYMBOL_GPL(security_inode_setattr);
  489. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  490. {
  491. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  492. return 0;
  493. return security_ops->inode_getattr(mnt, dentry);
  494. }
  495. int security_inode_setxattr(struct dentry *dentry, const char *name,
  496. const void *value, size_t size, int flags)
  497. {
  498. int ret;
  499. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  500. return 0;
  501. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  502. if (ret)
  503. return ret;
  504. return evm_inode_setxattr(dentry, name, value, size);
  505. }
  506. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  507. const void *value, size_t size, int flags)
  508. {
  509. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  510. return;
  511. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  512. evm_inode_post_setxattr(dentry, name, value, size);
  513. }
  514. int security_inode_getxattr(struct dentry *dentry, const char *name)
  515. {
  516. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  517. return 0;
  518. return security_ops->inode_getxattr(dentry, name);
  519. }
  520. int security_inode_listxattr(struct dentry *dentry)
  521. {
  522. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  523. return 0;
  524. return security_ops->inode_listxattr(dentry);
  525. }
  526. int security_inode_removexattr(struct dentry *dentry, const char *name)
  527. {
  528. int ret;
  529. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  530. return 0;
  531. ret = security_ops->inode_removexattr(dentry, name);
  532. if (ret)
  533. return ret;
  534. return evm_inode_removexattr(dentry, name);
  535. }
  536. int security_inode_need_killpriv(struct dentry *dentry)
  537. {
  538. return security_ops->inode_need_killpriv(dentry);
  539. }
  540. int security_inode_killpriv(struct dentry *dentry)
  541. {
  542. return security_ops->inode_killpriv(dentry);
  543. }
  544. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  545. {
  546. if (unlikely(IS_PRIVATE(inode)))
  547. return -EOPNOTSUPP;
  548. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  549. }
  550. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  551. {
  552. if (unlikely(IS_PRIVATE(inode)))
  553. return -EOPNOTSUPP;
  554. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  555. }
  556. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  557. {
  558. if (unlikely(IS_PRIVATE(inode)))
  559. return 0;
  560. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  561. }
  562. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  563. {
  564. security_ops->inode_getsecid(inode, secid);
  565. }
  566. int security_file_permission(struct file *file, int mask)
  567. {
  568. int ret;
  569. ret = security_ops->file_permission(file, mask);
  570. if (ret)
  571. return ret;
  572. return fsnotify_perm(file, mask);
  573. }
  574. #if defined(CONFIG_VMWARE_MVP)
  575. EXPORT_SYMBOL_GPL(security_file_permission);
  576. #endif
  577. int security_file_alloc(struct file *file)
  578. {
  579. return security_ops->file_alloc_security(file);
  580. }
  581. void security_file_free(struct file *file)
  582. {
  583. security_ops->file_free_security(file);
  584. }
  585. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  586. {
  587. return security_ops->file_ioctl(file, cmd, arg);
  588. }
  589. int security_file_mmap(struct file *file, unsigned long reqprot,
  590. unsigned long prot, unsigned long flags,
  591. unsigned long addr, unsigned long addr_only)
  592. {
  593. int ret;
  594. ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  595. if (ret)
  596. return ret;
  597. return ima_file_mmap(file, prot);
  598. }
  599. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  600. unsigned long prot)
  601. {
  602. return security_ops->file_mprotect(vma, reqprot, prot);
  603. }
  604. int security_file_lock(struct file *file, unsigned int cmd)
  605. {
  606. return security_ops->file_lock(file, cmd);
  607. }
  608. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  609. {
  610. return security_ops->file_fcntl(file, cmd, arg);
  611. }
  612. int security_file_set_fowner(struct file *file)
  613. {
  614. return security_ops->file_set_fowner(file);
  615. }
  616. int security_file_send_sigiotask(struct task_struct *tsk,
  617. struct fown_struct *fown, int sig)
  618. {
  619. return security_ops->file_send_sigiotask(tsk, fown, sig);
  620. }
  621. int security_file_receive(struct file *file)
  622. {
  623. return security_ops->file_receive(file);
  624. }
  625. int security_dentry_open(struct file *file, const struct cred *cred)
  626. {
  627. int ret;
  628. ret = security_ops->dentry_open(file, cred);
  629. if (ret)
  630. return ret;
  631. return fsnotify_perm(file, MAY_OPEN);
  632. }
  633. int security_file_close(struct file *file)
  634. {
  635. if (security_ops->file_close)
  636. return security_ops->file_close(file);
  637. return 0;
  638. }
  639. bool security_allow_merge_bio(struct bio *bio1, struct bio *bio2)
  640. {
  641. if (security_ops->allow_merge_bio)
  642. return security_ops->allow_merge_bio(bio1, bio2);
  643. return true;
  644. }
  645. int security_task_create(unsigned long clone_flags)
  646. {
  647. return security_ops->task_create(clone_flags);
  648. }
  649. void security_task_free(struct task_struct *task)
  650. {
  651. security_ops->task_free(task);
  652. }
  653. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  654. {
  655. return security_ops->cred_alloc_blank(cred, gfp);
  656. }
  657. void security_cred_free(struct cred *cred)
  658. {
  659. security_ops->cred_free(cred);
  660. }
  661. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  662. {
  663. return security_ops->cred_prepare(new, old, gfp);
  664. }
  665. void security_transfer_creds(struct cred *new, const struct cred *old)
  666. {
  667. security_ops->cred_transfer(new, old);
  668. }
  669. int security_kernel_act_as(struct cred *new, u32 secid)
  670. {
  671. return security_ops->kernel_act_as(new, secid);
  672. }
  673. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  674. {
  675. return security_ops->kernel_create_files_as(new, inode);
  676. }
  677. int security_kernel_module_request(char *kmod_name)
  678. {
  679. return security_ops->kernel_module_request(kmod_name);
  680. }
  681. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  682. int flags)
  683. {
  684. return security_ops->task_fix_setuid(new, old, flags);
  685. }
  686. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  687. {
  688. return security_ops->task_setpgid(p, pgid);
  689. }
  690. int security_task_getpgid(struct task_struct *p)
  691. {
  692. return security_ops->task_getpgid(p);
  693. }
  694. int security_task_getsid(struct task_struct *p)
  695. {
  696. return security_ops->task_getsid(p);
  697. }
  698. void security_task_getsecid(struct task_struct *p, u32 *secid)
  699. {
  700. security_ops->task_getsecid(p, secid);
  701. }
  702. EXPORT_SYMBOL(security_task_getsecid);
  703. int security_task_setnice(struct task_struct *p, int nice)
  704. {
  705. return security_ops->task_setnice(p, nice);
  706. }
  707. int security_task_setioprio(struct task_struct *p, int ioprio)
  708. {
  709. return security_ops->task_setioprio(p, ioprio);
  710. }
  711. int security_task_getioprio(struct task_struct *p)
  712. {
  713. return security_ops->task_getioprio(p);
  714. }
  715. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  716. struct rlimit *new_rlim)
  717. {
  718. return security_ops->task_setrlimit(p, resource, new_rlim);
  719. }
  720. int security_task_setscheduler(struct task_struct *p)
  721. {
  722. return security_ops->task_setscheduler(p);
  723. }
  724. int security_task_getscheduler(struct task_struct *p)
  725. {
  726. return security_ops->task_getscheduler(p);
  727. }
  728. int security_task_movememory(struct task_struct *p)
  729. {
  730. return security_ops->task_movememory(p);
  731. }
  732. int security_task_kill(struct task_struct *p, struct siginfo *info,
  733. int sig, u32 secid)
  734. {
  735. return security_ops->task_kill(p, info, sig, secid);
  736. }
  737. int security_task_wait(struct task_struct *p)
  738. {
  739. return security_ops->task_wait(p);
  740. }
  741. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  742. unsigned long arg4, unsigned long arg5)
  743. {
  744. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  745. }
  746. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  747. {
  748. security_ops->task_to_inode(p, inode);
  749. }
  750. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  751. {
  752. return security_ops->ipc_permission(ipcp, flag);
  753. }
  754. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  755. {
  756. security_ops->ipc_getsecid(ipcp, secid);
  757. }
  758. int security_msg_msg_alloc(struct msg_msg *msg)
  759. {
  760. return security_ops->msg_msg_alloc_security(msg);
  761. }
  762. void security_msg_msg_free(struct msg_msg *msg)
  763. {
  764. security_ops->msg_msg_free_security(msg);
  765. }
  766. int security_msg_queue_alloc(struct msg_queue *msq)
  767. {
  768. return security_ops->msg_queue_alloc_security(msq);
  769. }
  770. void security_msg_queue_free(struct msg_queue *msq)
  771. {
  772. security_ops->msg_queue_free_security(msq);
  773. }
  774. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  775. {
  776. return security_ops->msg_queue_associate(msq, msqflg);
  777. }
  778. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  779. {
  780. return security_ops->msg_queue_msgctl(msq, cmd);
  781. }
  782. int security_msg_queue_msgsnd(struct msg_queue *msq,
  783. struct msg_msg *msg, int msqflg)
  784. {
  785. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  786. }
  787. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  788. struct task_struct *target, long type, int mode)
  789. {
  790. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  791. }
  792. int security_shm_alloc(struct shmid_kernel *shp)
  793. {
  794. return security_ops->shm_alloc_security(shp);
  795. }
  796. void security_shm_free(struct shmid_kernel *shp)
  797. {
  798. security_ops->shm_free_security(shp);
  799. }
  800. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  801. {
  802. return security_ops->shm_associate(shp, shmflg);
  803. }
  804. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  805. {
  806. return security_ops->shm_shmctl(shp, cmd);
  807. }
  808. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  809. {
  810. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  811. }
  812. int security_sem_alloc(struct sem_array *sma)
  813. {
  814. return security_ops->sem_alloc_security(sma);
  815. }
  816. void security_sem_free(struct sem_array *sma)
  817. {
  818. security_ops->sem_free_security(sma);
  819. }
  820. int security_sem_associate(struct sem_array *sma, int semflg)
  821. {
  822. return security_ops->sem_associate(sma, semflg);
  823. }
  824. int security_sem_semctl(struct sem_array *sma, int cmd)
  825. {
  826. return security_ops->sem_semctl(sma, cmd);
  827. }
  828. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  829. unsigned nsops, int alter)
  830. {
  831. return security_ops->sem_semop(sma, sops, nsops, alter);
  832. }
  833. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  834. {
  835. if (unlikely(inode && IS_PRIVATE(inode)))
  836. return;
  837. security_ops->d_instantiate(dentry, inode);
  838. }
  839. EXPORT_SYMBOL(security_d_instantiate);
  840. int security_getprocattr(struct task_struct *p, char *name, char **value)
  841. {
  842. return security_ops->getprocattr(p, name, value);
  843. }
  844. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  845. {
  846. return security_ops->setprocattr(p, name, value, size);
  847. }
  848. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  849. {
  850. return security_ops->netlink_send(sk, skb);
  851. }
  852. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  853. {
  854. return security_ops->secid_to_secctx(secid, secdata, seclen);
  855. }
  856. EXPORT_SYMBOL(security_secid_to_secctx);
  857. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  858. {
  859. return security_ops->secctx_to_secid(secdata, seclen, secid);
  860. }
  861. EXPORT_SYMBOL(security_secctx_to_secid);
  862. void security_release_secctx(char *secdata, u32 seclen)
  863. {
  864. security_ops->release_secctx(secdata, seclen);
  865. }
  866. EXPORT_SYMBOL(security_release_secctx);
  867. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  868. {
  869. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  870. }
  871. EXPORT_SYMBOL(security_inode_notifysecctx);
  872. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  873. {
  874. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  875. }
  876. EXPORT_SYMBOL(security_inode_setsecctx);
  877. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  878. {
  879. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  880. }
  881. EXPORT_SYMBOL(security_inode_getsecctx);
  882. #ifdef CONFIG_SECURITY_NETWORK
  883. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  884. {
  885. return security_ops->unix_stream_connect(sock, other, newsk);
  886. }
  887. EXPORT_SYMBOL(security_unix_stream_connect);
  888. int security_unix_may_send(struct socket *sock, struct socket *other)
  889. {
  890. return security_ops->unix_may_send(sock, other);
  891. }
  892. EXPORT_SYMBOL(security_unix_may_send);
  893. int security_socket_create(int family, int type, int protocol, int kern)
  894. {
  895. return security_ops->socket_create(family, type, protocol, kern);
  896. }
  897. int security_socket_post_create(struct socket *sock, int family,
  898. int type, int protocol, int kern)
  899. {
  900. return security_ops->socket_post_create(sock, family, type,
  901. protocol, kern);
  902. }
  903. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  904. {
  905. return security_ops->socket_bind(sock, address, addrlen);
  906. }
  907. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  908. {
  909. return security_ops->socket_connect(sock, address, addrlen);
  910. }
  911. int security_socket_listen(struct socket *sock, int backlog)
  912. {
  913. return security_ops->socket_listen(sock, backlog);
  914. }
  915. int security_socket_accept(struct socket *sock, struct socket *newsock)
  916. {
  917. return security_ops->socket_accept(sock, newsock);
  918. }
  919. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  920. {
  921. return security_ops->socket_sendmsg(sock, msg, size);
  922. }
  923. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  924. int size, int flags)
  925. {
  926. return security_ops->socket_recvmsg(sock, msg, size, flags);
  927. }
  928. int security_socket_getsockname(struct socket *sock)
  929. {
  930. return security_ops->socket_getsockname(sock);
  931. }
  932. int security_socket_getpeername(struct socket *sock)
  933. {
  934. return security_ops->socket_getpeername(sock);
  935. }
  936. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  937. {
  938. return security_ops->socket_getsockopt(sock, level, optname);
  939. }
  940. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  941. {
  942. return security_ops->socket_setsockopt(sock, level, optname);
  943. }
  944. int security_socket_shutdown(struct socket *sock, int how)
  945. {
  946. return security_ops->socket_shutdown(sock, how);
  947. }
  948. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  949. {
  950. return security_ops->socket_sock_rcv_skb(sk, skb);
  951. }
  952. EXPORT_SYMBOL(security_sock_rcv_skb);
  953. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  954. int __user *optlen, unsigned len)
  955. {
  956. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  957. }
  958. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  959. {
  960. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  961. }
  962. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  963. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  964. {
  965. return security_ops->sk_alloc_security(sk, family, priority);
  966. }
  967. void security_sk_free(struct sock *sk)
  968. {
  969. security_ops->sk_free_security(sk);
  970. }
  971. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  972. {
  973. security_ops->sk_clone_security(sk, newsk);
  974. }
  975. EXPORT_SYMBOL(security_sk_clone);
  976. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  977. {
  978. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  979. }
  980. EXPORT_SYMBOL(security_sk_classify_flow);
  981. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  982. {
  983. security_ops->req_classify_flow(req, fl);
  984. }
  985. EXPORT_SYMBOL(security_req_classify_flow);
  986. void security_sock_graft(struct sock *sk, struct socket *parent)
  987. {
  988. security_ops->sock_graft(sk, parent);
  989. }
  990. EXPORT_SYMBOL(security_sock_graft);
  991. int security_inet_conn_request(struct sock *sk,
  992. struct sk_buff *skb, struct request_sock *req)
  993. {
  994. return security_ops->inet_conn_request(sk, skb, req);
  995. }
  996. EXPORT_SYMBOL(security_inet_conn_request);
  997. void security_inet_csk_clone(struct sock *newsk,
  998. const struct request_sock *req)
  999. {
  1000. security_ops->inet_csk_clone(newsk, req);
  1001. }
  1002. void security_inet_conn_established(struct sock *sk,
  1003. struct sk_buff *skb)
  1004. {
  1005. security_ops->inet_conn_established(sk, skb);
  1006. }
  1007. int security_secmark_relabel_packet(u32 secid)
  1008. {
  1009. return security_ops->secmark_relabel_packet(secid);
  1010. }
  1011. EXPORT_SYMBOL(security_secmark_relabel_packet);
  1012. void security_secmark_refcount_inc(void)
  1013. {
  1014. security_ops->secmark_refcount_inc();
  1015. }
  1016. EXPORT_SYMBOL(security_secmark_refcount_inc);
  1017. void security_secmark_refcount_dec(void)
  1018. {
  1019. security_ops->secmark_refcount_dec();
  1020. }
  1021. EXPORT_SYMBOL(security_secmark_refcount_dec);
  1022. int security_tun_dev_create(void)
  1023. {
  1024. return security_ops->tun_dev_create();
  1025. }
  1026. EXPORT_SYMBOL(security_tun_dev_create);
  1027. void security_tun_dev_post_create(struct sock *sk)
  1028. {
  1029. return security_ops->tun_dev_post_create(sk);
  1030. }
  1031. EXPORT_SYMBOL(security_tun_dev_post_create);
  1032. int security_tun_dev_attach(struct sock *sk)
  1033. {
  1034. return security_ops->tun_dev_attach(sk);
  1035. }
  1036. EXPORT_SYMBOL(security_tun_dev_attach);
  1037. #endif /* CONFIG_SECURITY_NETWORK */
  1038. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  1039. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  1040. {
  1041. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  1042. }
  1043. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1044. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1045. struct xfrm_sec_ctx **new_ctxp)
  1046. {
  1047. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1048. }
  1049. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1050. {
  1051. security_ops->xfrm_policy_free_security(ctx);
  1052. }
  1053. EXPORT_SYMBOL(security_xfrm_policy_free);
  1054. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1055. {
  1056. return security_ops->xfrm_policy_delete_security(ctx);
  1057. }
  1058. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  1059. {
  1060. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  1061. }
  1062. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1063. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1064. struct xfrm_sec_ctx *polsec, u32 secid)
  1065. {
  1066. if (!polsec)
  1067. return 0;
  1068. /*
  1069. * We want the context to be taken from secid which is usually
  1070. * from the sock.
  1071. */
  1072. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  1073. }
  1074. int security_xfrm_state_delete(struct xfrm_state *x)
  1075. {
  1076. return security_ops->xfrm_state_delete_security(x);
  1077. }
  1078. EXPORT_SYMBOL(security_xfrm_state_delete);
  1079. void security_xfrm_state_free(struct xfrm_state *x)
  1080. {
  1081. security_ops->xfrm_state_free_security(x);
  1082. }
  1083. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1084. {
  1085. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1086. }
  1087. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1088. struct xfrm_policy *xp,
  1089. const struct flowi *fl)
  1090. {
  1091. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1092. }
  1093. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1094. {
  1095. return security_ops->xfrm_decode_session(skb, secid, 1);
  1096. }
  1097. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1098. {
  1099. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1100. BUG_ON(rc);
  1101. }
  1102. EXPORT_SYMBOL(security_skb_classify_flow);
  1103. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1104. #ifdef CONFIG_KEYS
  1105. int security_key_alloc(struct key *key, const struct cred *cred,
  1106. unsigned long flags)
  1107. {
  1108. return security_ops->key_alloc(key, cred, flags);
  1109. }
  1110. void security_key_free(struct key *key)
  1111. {
  1112. security_ops->key_free(key);
  1113. }
  1114. int security_key_permission(key_ref_t key_ref,
  1115. const struct cred *cred, key_perm_t perm)
  1116. {
  1117. return security_ops->key_permission(key_ref, cred, perm);
  1118. }
  1119. int security_key_getsecurity(struct key *key, char **_buffer)
  1120. {
  1121. return security_ops->key_getsecurity(key, _buffer);
  1122. }
  1123. #endif /* CONFIG_KEYS */
  1124. #ifdef CONFIG_AUDIT
  1125. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1126. {
  1127. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1128. }
  1129. int security_audit_rule_known(struct audit_krule *krule)
  1130. {
  1131. return security_ops->audit_rule_known(krule);
  1132. }
  1133. void security_audit_rule_free(void *lsmrule)
  1134. {
  1135. security_ops->audit_rule_free(lsmrule);
  1136. }
  1137. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1138. struct audit_context *actx)
  1139. {
  1140. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1141. }
  1142. #endif /* CONFIG_AUDIT */