vmalloc.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <linux/atomic.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/shmparam.h>
  32. /*** Page table manipulation functions ***/
  33. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  34. {
  35. pte_t *pte;
  36. #ifdef CONFIG_TIMA_RKP_LAZY_MMU
  37. unsigned long do_lazy_mmu = 0;
  38. #endif
  39. pte = pte_offset_kernel(pmd, addr);
  40. #ifdef CONFIG_TIMA_RKP_LAZY_MMU
  41. do_lazy_mmu = 1;
  42. if (do_lazy_mmu) {
  43. spin_lock(&init_mm.page_table_lock);
  44. tima_send_cmd2((unsigned int)pmd, TIMA_LAZY_MMU_START, TIMA_LAZY_MMU_CMDID);
  45. flush_tlb_l2_page(pmd);
  46. spin_unlock(&init_mm.page_table_lock);
  47. }
  48. #endif
  49. do {
  50. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  51. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  52. } while (pte++, addr += PAGE_SIZE, addr != end);
  53. #ifdef CONFIG_TIMA_RKP_LAZY_MMU
  54. if (do_lazy_mmu) {
  55. spin_lock(&init_mm.page_table_lock);
  56. tima_send_cmd2((unsigned int)pmd, TIMA_LAZY_MMU_STOP, TIMA_LAZY_MMU_CMDID);
  57. flush_tlb_l2_page(pmd);
  58. spin_unlock(&init_mm.page_table_lock);
  59. }
  60. #endif
  61. }
  62. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  63. {
  64. pmd_t *pmd;
  65. unsigned long next;
  66. pmd = pmd_offset(pud, addr);
  67. do {
  68. next = pmd_addr_end(addr, end);
  69. if (pmd_none_or_clear_bad(pmd))
  70. continue;
  71. vunmap_pte_range(pmd, addr, next);
  72. } while (pmd++, addr = next, addr != end);
  73. }
  74. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  75. {
  76. pud_t *pud;
  77. unsigned long next;
  78. pud = pud_offset(pgd, addr);
  79. do {
  80. next = pud_addr_end(addr, end);
  81. if (pud_none_or_clear_bad(pud))
  82. continue;
  83. vunmap_pmd_range(pud, addr, next);
  84. } while (pud++, addr = next, addr != end);
  85. }
  86. static void vunmap_page_range(unsigned long addr, unsigned long end)
  87. {
  88. pgd_t *pgd;
  89. unsigned long next;
  90. BUG_ON(addr >= end);
  91. pgd = pgd_offset_k(addr);
  92. do {
  93. next = pgd_addr_end(addr, end);
  94. if (pgd_none_or_clear_bad(pgd))
  95. continue;
  96. vunmap_pud_range(pgd, addr, next);
  97. } while (pgd++, addr = next, addr != end);
  98. }
  99. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  100. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  101. {
  102. pte_t *pte;
  103. #ifdef CONFIG_TIMA_RKP_LAZY_MMU
  104. unsigned long do_lazy_mmu = 0;
  105. #endif
  106. /*
  107. * nr is a running index into the array which helps higher level
  108. * callers keep track of where we're up to.
  109. */
  110. pte = pte_alloc_kernel(pmd, addr);
  111. if (!pte)
  112. return -ENOMEM;
  113. #ifdef CONFIG_TIMA_RKP_LAZY_MMU
  114. do_lazy_mmu = 1;
  115. if (do_lazy_mmu) {
  116. spin_lock(&init_mm.page_table_lock);
  117. tima_send_cmd2((unsigned int)pmd, TIMA_LAZY_MMU_START, TIMA_LAZY_MMU_CMDID);
  118. flush_tlb_l2_page(pmd);
  119. spin_unlock(&init_mm.page_table_lock);
  120. }
  121. #endif
  122. do {
  123. struct page *page = pages[*nr];
  124. if (WARN_ON(!pte_none(*pte)))
  125. return -EBUSY;
  126. if (WARN_ON(!page))
  127. return -ENOMEM;
  128. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  129. (*nr)++;
  130. } while (pte++, addr += PAGE_SIZE, addr != end);
  131. #ifdef CONFIG_TIMA_RKP_LAZY_MMU
  132. if (do_lazy_mmu) {
  133. spin_lock(&init_mm.page_table_lock);
  134. tima_send_cmd2((unsigned int)pmd, TIMA_LAZY_MMU_STOP, TIMA_LAZY_MMU_CMDID);
  135. flush_tlb_l2_page(pmd);
  136. spin_unlock(&init_mm.page_table_lock);
  137. }
  138. #endif
  139. return 0;
  140. }
  141. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  142. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  143. {
  144. pmd_t *pmd;
  145. unsigned long next;
  146. pmd = pmd_alloc(&init_mm, pud, addr);
  147. if (!pmd)
  148. return -ENOMEM;
  149. do {
  150. next = pmd_addr_end(addr, end);
  151. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  152. return -ENOMEM;
  153. } while (pmd++, addr = next, addr != end);
  154. return 0;
  155. }
  156. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  157. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  158. {
  159. pud_t *pud;
  160. unsigned long next;
  161. pud = pud_alloc(&init_mm, pgd, addr);
  162. if (!pud)
  163. return -ENOMEM;
  164. do {
  165. next = pud_addr_end(addr, end);
  166. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  167. return -ENOMEM;
  168. } while (pud++, addr = next, addr != end);
  169. return 0;
  170. }
  171. /*
  172. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  173. * will have pfns corresponding to the "pages" array.
  174. *
  175. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  176. */
  177. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  178. pgprot_t prot, struct page **pages)
  179. {
  180. pgd_t *pgd;
  181. unsigned long next;
  182. unsigned long addr = start;
  183. int err = 0;
  184. int nr = 0;
  185. BUG_ON(addr >= end);
  186. pgd = pgd_offset_k(addr);
  187. do {
  188. next = pgd_addr_end(addr, end);
  189. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  190. if (err)
  191. return err;
  192. } while (pgd++, addr = next, addr != end);
  193. return nr;
  194. }
  195. static int vmap_page_range(unsigned long start, unsigned long end,
  196. pgprot_t prot, struct page **pages)
  197. {
  198. int ret;
  199. ret = vmap_page_range_noflush(start, end, prot, pages);
  200. flush_cache_vmap(start, end);
  201. return ret;
  202. }
  203. int is_vmalloc_or_module_addr(const void *x)
  204. {
  205. /*
  206. * ARM, x86-64 and sparc64 put modules in a special place,
  207. * and fall back on vmalloc() if that fails. Others
  208. * just put it in the vmalloc space.
  209. */
  210. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  211. unsigned long addr = (unsigned long)x;
  212. if (addr >= MODULES_VADDR && addr < MODULES_END)
  213. return 1;
  214. #endif
  215. return is_vmalloc_addr(x);
  216. }
  217. /*
  218. * Walk a vmap address to the struct page it maps.
  219. */
  220. struct page *vmalloc_to_page(const void *vmalloc_addr)
  221. {
  222. unsigned long addr = (unsigned long) vmalloc_addr;
  223. struct page *page = NULL;
  224. pgd_t *pgd = pgd_offset_k(addr);
  225. /*
  226. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  227. * architectures that do not vmalloc module space
  228. */
  229. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  230. if (!pgd_none(*pgd)) {
  231. pud_t *pud = pud_offset(pgd, addr);
  232. if (!pud_none(*pud)) {
  233. pmd_t *pmd = pmd_offset(pud, addr);
  234. if (!pmd_none(*pmd)) {
  235. pte_t *ptep, pte;
  236. ptep = pte_offset_map(pmd, addr);
  237. pte = *ptep;
  238. if (pte_present(pte))
  239. page = pte_page(pte);
  240. pte_unmap(ptep);
  241. }
  242. }
  243. }
  244. return page;
  245. }
  246. EXPORT_SYMBOL(vmalloc_to_page);
  247. /*
  248. * Map a vmalloc()-space virtual address to the physical page frame number.
  249. */
  250. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  251. {
  252. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  253. }
  254. EXPORT_SYMBOL(vmalloc_to_pfn);
  255. /*** Global kva allocator ***/
  256. #define VM_LAZY_FREE 0x01
  257. #define VM_LAZY_FREEING 0x02
  258. #define VM_VM_AREA 0x04
  259. struct vmap_area {
  260. unsigned long va_start;
  261. unsigned long va_end;
  262. unsigned long flags;
  263. struct rb_node rb_node; /* address sorted rbtree */
  264. struct list_head list; /* address sorted list */
  265. struct list_head purge_list; /* "lazy purge" list */
  266. struct vm_struct *vm;
  267. struct rcu_head rcu_head;
  268. };
  269. static DEFINE_SPINLOCK(vmap_area_lock);
  270. static LIST_HEAD(vmap_area_list);
  271. static struct rb_root vmap_area_root = RB_ROOT;
  272. /* The vmap cache globals are protected by vmap_area_lock */
  273. static struct rb_node *free_vmap_cache;
  274. static unsigned long cached_hole_size;
  275. static unsigned long cached_vstart;
  276. static unsigned long cached_align;
  277. static unsigned long vmap_area_pcpu_hole;
  278. #ifdef CONFIG_ENABLE_VMALLOC_SAVING
  279. #define POSSIBLE_VMALLOC_START PAGE_OFFSET
  280. #define VMALLOC_BITMAP_SIZE ((VMALLOC_END - PAGE_OFFSET) >> \
  281. PAGE_SHIFT)
  282. #define VMALLOC_TO_BIT(addr) ((addr - PAGE_OFFSET) >> PAGE_SHIFT)
  283. #define BIT_TO_VMALLOC(i) (PAGE_OFFSET + i * PAGE_SIZE)
  284. DECLARE_BITMAP(possible_areas, VMALLOC_BITMAP_SIZE);
  285. void mark_vmalloc_reserved_area(void *x, unsigned long size)
  286. {
  287. unsigned long addr = (unsigned long)x;
  288. bitmap_set(possible_areas, VMALLOC_TO_BIT(addr), size >> PAGE_SHIFT);
  289. }
  290. int is_vmalloc_addr(const void *x)
  291. {
  292. unsigned long addr = (unsigned long)x;
  293. if (addr < POSSIBLE_VMALLOC_START || addr >= VMALLOC_END)
  294. return 0;
  295. if (test_bit(VMALLOC_TO_BIT(addr), possible_areas))
  296. return 0;
  297. return 1;
  298. }
  299. #else
  300. int is_vmalloc_addr(const void *x)
  301. {
  302. unsigned long addr = (unsigned long)x;
  303. return addr >= VMALLOC_START && addr < VMALLOC_END;
  304. }
  305. #endif
  306. EXPORT_SYMBOL(is_vmalloc_addr);
  307. static struct vmap_area *__find_vmap_area(unsigned long addr)
  308. {
  309. struct rb_node *n = vmap_area_root.rb_node;
  310. while (n) {
  311. struct vmap_area *va;
  312. va = rb_entry(n, struct vmap_area, rb_node);
  313. if (addr < va->va_start)
  314. n = n->rb_left;
  315. else if (addr > va->va_start)
  316. n = n->rb_right;
  317. else
  318. return va;
  319. }
  320. return NULL;
  321. }
  322. static void __insert_vmap_area(struct vmap_area *va)
  323. {
  324. struct rb_node **p = &vmap_area_root.rb_node;
  325. struct rb_node *parent = NULL;
  326. struct rb_node *tmp;
  327. while (*p) {
  328. struct vmap_area *tmp_va;
  329. parent = *p;
  330. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  331. if (va->va_start < tmp_va->va_end)
  332. p = &(*p)->rb_left;
  333. else if (va->va_end > tmp_va->va_start)
  334. p = &(*p)->rb_right;
  335. else
  336. BUG();
  337. }
  338. rb_link_node(&va->rb_node, parent, p);
  339. rb_insert_color(&va->rb_node, &vmap_area_root);
  340. /* address-sort this list so it is usable like the vmlist */
  341. tmp = rb_prev(&va->rb_node);
  342. if (tmp) {
  343. struct vmap_area *prev;
  344. prev = rb_entry(tmp, struct vmap_area, rb_node);
  345. list_add_rcu(&va->list, &prev->list);
  346. } else
  347. list_add_rcu(&va->list, &vmap_area_list);
  348. }
  349. static void purge_vmap_area_lazy(void);
  350. /*
  351. * Allocate a region of KVA of the specified size and alignment, within the
  352. * vstart and vend.
  353. */
  354. static struct vmap_area *alloc_vmap_area(unsigned long size,
  355. unsigned long align,
  356. unsigned long vstart, unsigned long vend,
  357. int node, gfp_t gfp_mask)
  358. {
  359. struct vmap_area *va;
  360. struct rb_node *n;
  361. unsigned long addr;
  362. int purged = 0;
  363. struct vmap_area *first;
  364. BUG_ON(!size);
  365. BUG_ON(size & ~PAGE_MASK);
  366. BUG_ON(!is_power_of_2(align));
  367. va = kmalloc_node(sizeof(struct vmap_area),
  368. gfp_mask & GFP_RECLAIM_MASK, node);
  369. if (unlikely(!va))
  370. return ERR_PTR(-ENOMEM);
  371. /*
  372. * Only scan the relevant parts containing pointers to other objects
  373. * to avoid false negatives.
  374. */
  375. kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
  376. retry:
  377. spin_lock(&vmap_area_lock);
  378. /*
  379. * Invalidate cache if we have more permissive parameters.
  380. * cached_hole_size notes the largest hole noticed _below_
  381. * the vmap_area cached in free_vmap_cache: if size fits
  382. * into that hole, we want to scan from vstart to reuse
  383. * the hole instead of allocating above free_vmap_cache.
  384. * Note that __free_vmap_area may update free_vmap_cache
  385. * without updating cached_hole_size or cached_align.
  386. */
  387. if (!free_vmap_cache ||
  388. size < cached_hole_size ||
  389. vstart < cached_vstart ||
  390. align < cached_align) {
  391. nocache:
  392. cached_hole_size = 0;
  393. free_vmap_cache = NULL;
  394. }
  395. /* record if we encounter less permissive parameters */
  396. cached_vstart = vstart;
  397. cached_align = align;
  398. /* find starting point for our search */
  399. if (free_vmap_cache) {
  400. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  401. addr = ALIGN(first->va_end, align);
  402. if (addr < vstart)
  403. goto nocache;
  404. if (addr + size < addr)
  405. goto overflow;
  406. } else {
  407. addr = ALIGN(vstart, align);
  408. if (addr + size < addr)
  409. goto overflow;
  410. n = vmap_area_root.rb_node;
  411. first = NULL;
  412. while (n) {
  413. struct vmap_area *tmp;
  414. tmp = rb_entry(n, struct vmap_area, rb_node);
  415. if (tmp->va_end >= addr) {
  416. first = tmp;
  417. if (tmp->va_start <= addr)
  418. break;
  419. n = n->rb_left;
  420. } else
  421. n = n->rb_right;
  422. }
  423. if (!first)
  424. goto found;
  425. }
  426. /* from the starting point, walk areas until a suitable hole is found */
  427. while (addr + size > first->va_start && addr + size <= vend) {
  428. if (addr + cached_hole_size < first->va_start)
  429. cached_hole_size = first->va_start - addr;
  430. addr = ALIGN(first->va_end, align);
  431. if (addr + size < addr)
  432. goto overflow;
  433. if (list_is_last(&first->list, &vmap_area_list))
  434. goto found;
  435. first = list_entry(first->list.next,
  436. struct vmap_area, list);
  437. }
  438. found:
  439. if (addr + size > vend)
  440. goto overflow;
  441. va->va_start = addr;
  442. va->va_end = addr + size;
  443. va->flags = 0;
  444. __insert_vmap_area(va);
  445. free_vmap_cache = &va->rb_node;
  446. spin_unlock(&vmap_area_lock);
  447. BUG_ON(va->va_start & (align-1));
  448. BUG_ON(va->va_start < vstart);
  449. BUG_ON(va->va_end > vend);
  450. return va;
  451. overflow:
  452. spin_unlock(&vmap_area_lock);
  453. if (!purged) {
  454. purge_vmap_area_lazy();
  455. purged = 1;
  456. goto retry;
  457. }
  458. if (printk_ratelimit())
  459. printk(KERN_WARNING
  460. "vmap allocation for size %lu failed: "
  461. "use vmalloc=<size> to increase size.\n", size);
  462. kfree(va);
  463. return ERR_PTR(-EBUSY);
  464. }
  465. static void __free_vmap_area(struct vmap_area *va)
  466. {
  467. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  468. if (free_vmap_cache) {
  469. if (va->va_end < cached_vstart) {
  470. free_vmap_cache = NULL;
  471. } else {
  472. struct vmap_area *cache;
  473. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  474. if (va->va_start <= cache->va_start) {
  475. free_vmap_cache = rb_prev(&va->rb_node);
  476. /*
  477. * We don't try to update cached_hole_size or
  478. * cached_align, but it won't go very wrong.
  479. */
  480. }
  481. }
  482. }
  483. rb_erase(&va->rb_node, &vmap_area_root);
  484. RB_CLEAR_NODE(&va->rb_node);
  485. list_del_rcu(&va->list);
  486. /*
  487. * Track the highest possible candidate for pcpu area
  488. * allocation. Areas outside of vmalloc area can be returned
  489. * here too, consider only end addresses which fall inside
  490. * vmalloc area proper.
  491. */
  492. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  493. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  494. kfree_rcu(va, rcu_head);
  495. }
  496. /*
  497. * Free a region of KVA allocated by alloc_vmap_area
  498. */
  499. static void free_vmap_area(struct vmap_area *va)
  500. {
  501. spin_lock(&vmap_area_lock);
  502. __free_vmap_area(va);
  503. spin_unlock(&vmap_area_lock);
  504. }
  505. /*
  506. * Clear the pagetable entries of a given vmap_area
  507. */
  508. static void unmap_vmap_area(struct vmap_area *va)
  509. {
  510. vunmap_page_range(va->va_start, va->va_end);
  511. }
  512. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  513. {
  514. /*
  515. * Unmap page tables and force a TLB flush immediately if
  516. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  517. * bugs similarly to those in linear kernel virtual address
  518. * space after a page has been freed.
  519. *
  520. * All the lazy freeing logic is still retained, in order to
  521. * minimise intrusiveness of this debugging feature.
  522. *
  523. * This is going to be *slow* (linear kernel virtual address
  524. * debugging doesn't do a broadcast TLB flush so it is a lot
  525. * faster).
  526. */
  527. #ifdef CONFIG_DEBUG_PAGEALLOC
  528. vunmap_page_range(start, end);
  529. flush_tlb_kernel_range(start, end);
  530. #endif
  531. }
  532. /*
  533. * lazy_max_pages is the maximum amount of virtual address space we gather up
  534. * before attempting to purge with a TLB flush.
  535. *
  536. * There is a tradeoff here: a larger number will cover more kernel page tables
  537. * and take slightly longer to purge, but it will linearly reduce the number of
  538. * global TLB flushes that must be performed. It would seem natural to scale
  539. * this number up linearly with the number of CPUs (because vmapping activity
  540. * could also scale linearly with the number of CPUs), however it is likely
  541. * that in practice, workloads might be constrained in other ways that mean
  542. * vmap activity will not scale linearly with CPUs. Also, I want to be
  543. * conservative and not introduce a big latency on huge systems, so go with
  544. * a less aggressive log scale. It will still be an improvement over the old
  545. * code, and it will be simple to change the scale factor if we find that it
  546. * becomes a problem on bigger systems.
  547. */
  548. static unsigned long lazy_max_pages(void)
  549. {
  550. unsigned int log;
  551. log = fls(num_online_cpus());
  552. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  553. }
  554. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  555. /* for per-CPU blocks */
  556. static void purge_fragmented_blocks_allcpus(void);
  557. /*
  558. * called before a call to iounmap() if the caller wants vm_area_struct's
  559. * immediately freed.
  560. */
  561. void set_iounmap_nonlazy(void)
  562. {
  563. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  564. }
  565. /*
  566. * Purges all lazily-freed vmap areas.
  567. *
  568. * If sync is 0 then don't purge if there is already a purge in progress.
  569. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  570. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  571. * their own TLB flushing).
  572. * Returns with *start = min(*start, lowest purged address)
  573. * *end = max(*end, highest purged address)
  574. */
  575. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  576. int sync, int force_flush)
  577. {
  578. static DEFINE_SPINLOCK(purge_lock);
  579. LIST_HEAD(valist);
  580. struct vmap_area *va;
  581. struct vmap_area *n_va;
  582. int nr = 0;
  583. /*
  584. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  585. * should not expect such behaviour. This just simplifies locking for
  586. * the case that isn't actually used at the moment anyway.
  587. */
  588. if (!sync && !force_flush) {
  589. if (!spin_trylock(&purge_lock))
  590. return;
  591. } else
  592. spin_lock(&purge_lock);
  593. if (sync)
  594. purge_fragmented_blocks_allcpus();
  595. rcu_read_lock();
  596. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  597. if (va->flags & VM_LAZY_FREE) {
  598. if (va->va_start < *start)
  599. *start = va->va_start;
  600. if (va->va_end > *end)
  601. *end = va->va_end;
  602. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  603. list_add_tail(&va->purge_list, &valist);
  604. va->flags |= VM_LAZY_FREEING;
  605. va->flags &= ~VM_LAZY_FREE;
  606. }
  607. }
  608. rcu_read_unlock();
  609. if (nr)
  610. atomic_sub(nr, &vmap_lazy_nr);
  611. if (nr || force_flush)
  612. flush_tlb_kernel_range(*start, *end);
  613. if (nr) {
  614. spin_lock(&vmap_area_lock);
  615. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  616. __free_vmap_area(va);
  617. spin_unlock(&vmap_area_lock);
  618. }
  619. spin_unlock(&purge_lock);
  620. }
  621. /*
  622. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  623. * is already purging.
  624. */
  625. static void try_purge_vmap_area_lazy(void)
  626. {
  627. unsigned long start = ULONG_MAX, end = 0;
  628. __purge_vmap_area_lazy(&start, &end, 0, 0);
  629. }
  630. /*
  631. * Kick off a purge of the outstanding lazy areas.
  632. */
  633. static void purge_vmap_area_lazy(void)
  634. {
  635. unsigned long start = ULONG_MAX, end = 0;
  636. __purge_vmap_area_lazy(&start, &end, 1, 0);
  637. }
  638. /*
  639. * Free a vmap area, caller ensuring that the area has been unmapped
  640. * and flush_cache_vunmap had been called for the correct range
  641. * previously.
  642. */
  643. static void free_vmap_area_noflush(struct vmap_area *va)
  644. {
  645. va->flags |= VM_LAZY_FREE;
  646. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  647. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  648. try_purge_vmap_area_lazy();
  649. }
  650. /*
  651. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  652. * called for the correct range previously.
  653. */
  654. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  655. {
  656. unmap_vmap_area(va);
  657. free_vmap_area_noflush(va);
  658. }
  659. /*
  660. * Free and unmap a vmap area
  661. */
  662. static void free_unmap_vmap_area(struct vmap_area *va)
  663. {
  664. flush_cache_vunmap(va->va_start, va->va_end);
  665. free_unmap_vmap_area_noflush(va);
  666. }
  667. static struct vmap_area *find_vmap_area(unsigned long addr)
  668. {
  669. struct vmap_area *va;
  670. spin_lock(&vmap_area_lock);
  671. va = __find_vmap_area(addr);
  672. spin_unlock(&vmap_area_lock);
  673. return va;
  674. }
  675. static void free_unmap_vmap_area_addr(unsigned long addr)
  676. {
  677. struct vmap_area *va;
  678. va = find_vmap_area(addr);
  679. BUG_ON(!va);
  680. free_unmap_vmap_area(va);
  681. }
  682. /*** Per cpu kva allocator ***/
  683. /*
  684. * vmap space is limited especially on 32 bit architectures. Ensure there is
  685. * room for at least 16 percpu vmap blocks per CPU.
  686. */
  687. /*
  688. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  689. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  690. * instead (we just need a rough idea)
  691. */
  692. #if BITS_PER_LONG == 32
  693. #define VMALLOC_SPACE (128UL*1024*1024)
  694. #else
  695. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  696. #endif
  697. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  698. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  699. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  700. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  701. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  702. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  703. #define VMAP_BBMAP_BITS \
  704. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  705. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  706. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  707. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  708. static bool vmap_initialized __read_mostly = false;
  709. struct vmap_block_queue {
  710. spinlock_t lock;
  711. struct list_head free;
  712. };
  713. struct vmap_block {
  714. spinlock_t lock;
  715. struct vmap_area *va;
  716. struct vmap_block_queue *vbq;
  717. unsigned long free, dirty;
  718. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  719. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  720. struct list_head free_list;
  721. struct rcu_head rcu_head;
  722. struct list_head purge;
  723. };
  724. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  725. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  726. /*
  727. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  728. * in the free path. Could get rid of this if we change the API to return a
  729. * "cookie" from alloc, to be passed to free. But no big deal yet.
  730. */
  731. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  732. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  733. /*
  734. * We should probably have a fallback mechanism to allocate virtual memory
  735. * out of partially filled vmap blocks. However vmap block sizing should be
  736. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  737. * big problem.
  738. */
  739. static unsigned long addr_to_vb_idx(unsigned long addr)
  740. {
  741. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  742. addr /= VMAP_BLOCK_SIZE;
  743. return addr;
  744. }
  745. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  746. {
  747. struct vmap_block_queue *vbq;
  748. struct vmap_block *vb;
  749. struct vmap_area *va;
  750. unsigned long vb_idx;
  751. int node, err;
  752. node = numa_node_id();
  753. vb = kmalloc_node(sizeof(struct vmap_block),
  754. gfp_mask & GFP_RECLAIM_MASK, node);
  755. if (unlikely(!vb))
  756. return ERR_PTR(-ENOMEM);
  757. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  758. VMALLOC_START, VMALLOC_END,
  759. node, gfp_mask);
  760. if (IS_ERR(va)) {
  761. kfree(vb);
  762. return ERR_CAST(va);
  763. }
  764. err = radix_tree_preload(gfp_mask);
  765. if (unlikely(err)) {
  766. kfree(vb);
  767. free_vmap_area(va);
  768. return ERR_PTR(err);
  769. }
  770. spin_lock_init(&vb->lock);
  771. vb->va = va;
  772. vb->free = VMAP_BBMAP_BITS;
  773. vb->dirty = 0;
  774. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  775. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  776. INIT_LIST_HEAD(&vb->free_list);
  777. vb_idx = addr_to_vb_idx(va->va_start);
  778. spin_lock(&vmap_block_tree_lock);
  779. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  780. spin_unlock(&vmap_block_tree_lock);
  781. BUG_ON(err);
  782. radix_tree_preload_end();
  783. vbq = &get_cpu_var(vmap_block_queue);
  784. vb->vbq = vbq;
  785. spin_lock(&vbq->lock);
  786. list_add_rcu(&vb->free_list, &vbq->free);
  787. spin_unlock(&vbq->lock);
  788. put_cpu_var(vmap_block_queue);
  789. return vb;
  790. }
  791. static void free_vmap_block(struct vmap_block *vb)
  792. {
  793. struct vmap_block *tmp;
  794. unsigned long vb_idx;
  795. vb_idx = addr_to_vb_idx(vb->va->va_start);
  796. spin_lock(&vmap_block_tree_lock);
  797. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  798. spin_unlock(&vmap_block_tree_lock);
  799. BUG_ON(tmp != vb);
  800. free_vmap_area_noflush(vb->va);
  801. kfree_rcu(vb, rcu_head);
  802. }
  803. static void purge_fragmented_blocks(int cpu)
  804. {
  805. LIST_HEAD(purge);
  806. struct vmap_block *vb;
  807. struct vmap_block *n_vb;
  808. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  809. rcu_read_lock();
  810. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  811. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  812. continue;
  813. spin_lock(&vb->lock);
  814. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  815. vb->free = 0; /* prevent further allocs after releasing lock */
  816. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  817. bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
  818. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  819. spin_lock(&vbq->lock);
  820. list_del_rcu(&vb->free_list);
  821. spin_unlock(&vbq->lock);
  822. spin_unlock(&vb->lock);
  823. list_add_tail(&vb->purge, &purge);
  824. } else
  825. spin_unlock(&vb->lock);
  826. }
  827. rcu_read_unlock();
  828. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  829. list_del(&vb->purge);
  830. free_vmap_block(vb);
  831. }
  832. }
  833. static void purge_fragmented_blocks_thiscpu(void)
  834. {
  835. purge_fragmented_blocks(smp_processor_id());
  836. }
  837. static void purge_fragmented_blocks_allcpus(void)
  838. {
  839. int cpu;
  840. for_each_possible_cpu(cpu)
  841. purge_fragmented_blocks(cpu);
  842. }
  843. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  844. {
  845. struct vmap_block_queue *vbq;
  846. struct vmap_block *vb;
  847. unsigned long addr = 0;
  848. unsigned int order;
  849. int purge = 0;
  850. BUG_ON(size & ~PAGE_MASK);
  851. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  852. order = get_order(size);
  853. again:
  854. rcu_read_lock();
  855. vbq = &get_cpu_var(vmap_block_queue);
  856. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  857. int i;
  858. spin_lock(&vb->lock);
  859. if (vb->free < 1UL << order)
  860. goto next;
  861. i = bitmap_find_free_region(vb->alloc_map,
  862. VMAP_BBMAP_BITS, order);
  863. if (i < 0) {
  864. if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
  865. /* fragmented and no outstanding allocations */
  866. BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
  867. purge = 1;
  868. }
  869. goto next;
  870. }
  871. addr = vb->va->va_start + (i << PAGE_SHIFT);
  872. BUG_ON(addr_to_vb_idx(addr) !=
  873. addr_to_vb_idx(vb->va->va_start));
  874. vb->free -= 1UL << order;
  875. if (vb->free == 0) {
  876. spin_lock(&vbq->lock);
  877. list_del_rcu(&vb->free_list);
  878. spin_unlock(&vbq->lock);
  879. }
  880. spin_unlock(&vb->lock);
  881. break;
  882. next:
  883. spin_unlock(&vb->lock);
  884. }
  885. if (purge)
  886. purge_fragmented_blocks_thiscpu();
  887. put_cpu_var(vmap_block_queue);
  888. rcu_read_unlock();
  889. if (!addr) {
  890. vb = new_vmap_block(gfp_mask);
  891. if (IS_ERR(vb))
  892. return vb;
  893. goto again;
  894. }
  895. return (void *)addr;
  896. }
  897. static void vb_free(const void *addr, unsigned long size)
  898. {
  899. unsigned long offset;
  900. unsigned long vb_idx;
  901. unsigned int order;
  902. struct vmap_block *vb;
  903. BUG_ON(size & ~PAGE_MASK);
  904. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  905. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  906. order = get_order(size);
  907. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  908. vb_idx = addr_to_vb_idx((unsigned long)addr);
  909. rcu_read_lock();
  910. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  911. rcu_read_unlock();
  912. BUG_ON(!vb);
  913. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  914. spin_lock(&vb->lock);
  915. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  916. vb->dirty += 1UL << order;
  917. if (vb->dirty == VMAP_BBMAP_BITS) {
  918. BUG_ON(vb->free);
  919. spin_unlock(&vb->lock);
  920. free_vmap_block(vb);
  921. } else
  922. spin_unlock(&vb->lock);
  923. }
  924. /**
  925. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  926. *
  927. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  928. * to amortize TLB flushing overheads. What this means is that any page you
  929. * have now, may, in a former life, have been mapped into kernel virtual
  930. * address by the vmap layer and so there might be some CPUs with TLB entries
  931. * still referencing that page (additional to the regular 1:1 kernel mapping).
  932. *
  933. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  934. * be sure that none of the pages we have control over will have any aliases
  935. * from the vmap layer.
  936. */
  937. void vm_unmap_aliases(void)
  938. {
  939. unsigned long start = ULONG_MAX, end = 0;
  940. int cpu;
  941. int flush = 0;
  942. if (unlikely(!vmap_initialized))
  943. return;
  944. for_each_possible_cpu(cpu) {
  945. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  946. struct vmap_block *vb;
  947. rcu_read_lock();
  948. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  949. int i;
  950. spin_lock(&vb->lock);
  951. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  952. while (i < VMAP_BBMAP_BITS) {
  953. unsigned long s, e;
  954. int j;
  955. j = find_next_zero_bit(vb->dirty_map,
  956. VMAP_BBMAP_BITS, i);
  957. s = vb->va->va_start + (i << PAGE_SHIFT);
  958. e = vb->va->va_start + (j << PAGE_SHIFT);
  959. flush = 1;
  960. if (s < start)
  961. start = s;
  962. if (e > end)
  963. end = e;
  964. i = j;
  965. i = find_next_bit(vb->dirty_map,
  966. VMAP_BBMAP_BITS, i);
  967. }
  968. spin_unlock(&vb->lock);
  969. }
  970. rcu_read_unlock();
  971. }
  972. __purge_vmap_area_lazy(&start, &end, 1, flush);
  973. }
  974. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  975. /**
  976. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  977. * @mem: the pointer returned by vm_map_ram
  978. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  979. */
  980. void vm_unmap_ram(const void *mem, unsigned int count)
  981. {
  982. unsigned long size = count << PAGE_SHIFT;
  983. unsigned long addr = (unsigned long)mem;
  984. BUG_ON(!addr);
  985. BUG_ON(addr < VMALLOC_START);
  986. BUG_ON(addr > VMALLOC_END);
  987. BUG_ON(addr & (PAGE_SIZE-1));
  988. debug_check_no_locks_freed(mem, size);
  989. vmap_debug_free_range(addr, addr+size);
  990. if (likely(count <= VMAP_MAX_ALLOC))
  991. vb_free(mem, size);
  992. else
  993. free_unmap_vmap_area_addr(addr);
  994. }
  995. EXPORT_SYMBOL(vm_unmap_ram);
  996. /**
  997. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  998. * @pages: an array of pointers to the pages to be mapped
  999. * @count: number of pages
  1000. * @node: prefer to allocate data structures on this node
  1001. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  1002. *
  1003. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  1004. */
  1005. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  1006. {
  1007. unsigned long size = count << PAGE_SHIFT;
  1008. unsigned long addr;
  1009. void *mem;
  1010. if (likely(count <= VMAP_MAX_ALLOC)) {
  1011. mem = vb_alloc(size, GFP_KERNEL);
  1012. if (IS_ERR(mem))
  1013. return NULL;
  1014. addr = (unsigned long)mem;
  1015. } else {
  1016. struct vmap_area *va;
  1017. va = alloc_vmap_area(size, PAGE_SIZE,
  1018. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  1019. if (IS_ERR(va))
  1020. return NULL;
  1021. addr = va->va_start;
  1022. mem = (void *)addr;
  1023. }
  1024. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  1025. vm_unmap_ram(mem, count);
  1026. return NULL;
  1027. }
  1028. return mem;
  1029. }
  1030. EXPORT_SYMBOL(vm_map_ram);
  1031. /**
  1032. * vm_area_check_early - check if vmap area is already mapped
  1033. * @vm: vm_struct to be checked
  1034. *
  1035. * This function is used to check if the vmap area has been
  1036. * mapped already. @vm->addr, @vm->size and @vm->flags should
  1037. * contain proper values.
  1038. *
  1039. */
  1040. int __init vm_area_check_early(struct vm_struct *vm)
  1041. {
  1042. struct vm_struct *tmp, **p;
  1043. BUG_ON(vmap_initialized);
  1044. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1045. if (tmp->addr >= vm->addr) {
  1046. if (tmp->addr < vm->addr + vm->size)
  1047. return 1;
  1048. } else {
  1049. if (tmp->addr + tmp->size > vm->addr)
  1050. return 1;
  1051. }
  1052. }
  1053. return 0;
  1054. }
  1055. /**
  1056. * vm_area_add_early - add vmap area early during boot
  1057. * @vm: vm_struct to add
  1058. *
  1059. * This function is used to add fixed kernel vm area to vmlist before
  1060. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  1061. * should contain proper values and the other fields should be zero.
  1062. *
  1063. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1064. */
  1065. void __init vm_area_add_early(struct vm_struct *vm)
  1066. {
  1067. struct vm_struct *tmp, **p;
  1068. BUG_ON(vmap_initialized);
  1069. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1070. if (tmp->addr >= vm->addr) {
  1071. BUG_ON(tmp->addr < vm->addr + vm->size);
  1072. break;
  1073. } else
  1074. BUG_ON(tmp->addr + tmp->size > vm->addr);
  1075. }
  1076. vm->next = *p;
  1077. *p = vm;
  1078. }
  1079. /**
  1080. * vm_area_register_early - register vmap area early during boot
  1081. * @vm: vm_struct to register
  1082. * @align: requested alignment
  1083. *
  1084. * This function is used to register kernel vm area before
  1085. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  1086. * proper values on entry and other fields should be zero. On return,
  1087. * vm->addr contains the allocated address.
  1088. *
  1089. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1090. */
  1091. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  1092. {
  1093. static size_t vm_init_off __initdata;
  1094. unsigned long addr;
  1095. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  1096. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1097. vm->addr = (void *)addr;
  1098. vm_area_add_early(vm);
  1099. }
  1100. void __init vmalloc_init(void)
  1101. {
  1102. struct vmap_area *va;
  1103. struct vm_struct *tmp;
  1104. int i;
  1105. for_each_possible_cpu(i) {
  1106. struct vmap_block_queue *vbq;
  1107. vbq = &per_cpu(vmap_block_queue, i);
  1108. spin_lock_init(&vbq->lock);
  1109. INIT_LIST_HEAD(&vbq->free);
  1110. }
  1111. /* Import existing vmlist entries. */
  1112. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1113. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1114. va->flags = VM_VM_AREA;
  1115. va->va_start = (unsigned long)tmp->addr;
  1116. va->va_end = va->va_start + tmp->size;
  1117. va->vm = tmp;
  1118. __insert_vmap_area(va);
  1119. }
  1120. vmap_area_pcpu_hole = VMALLOC_END;
  1121. vmap_initialized = true;
  1122. }
  1123. /**
  1124. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1125. * @addr: start of the VM area to map
  1126. * @size: size of the VM area to map
  1127. * @prot: page protection flags to use
  1128. * @pages: pages to map
  1129. *
  1130. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1131. * specify should have been allocated using get_vm_area() and its
  1132. * friends.
  1133. *
  1134. * NOTE:
  1135. * This function does NOT do any cache flushing. The caller is
  1136. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1137. * before calling this function.
  1138. *
  1139. * RETURNS:
  1140. * The number of pages mapped on success, -errno on failure.
  1141. */
  1142. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1143. pgprot_t prot, struct page **pages)
  1144. {
  1145. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1146. }
  1147. /**
  1148. * unmap_kernel_range_noflush - unmap kernel VM area
  1149. * @addr: start of the VM area to unmap
  1150. * @size: size of the VM area to unmap
  1151. *
  1152. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1153. * specify should have been allocated using get_vm_area() and its
  1154. * friends.
  1155. *
  1156. * NOTE:
  1157. * This function does NOT do any cache flushing. The caller is
  1158. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1159. * before calling this function and flush_tlb_kernel_range() after.
  1160. */
  1161. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1162. {
  1163. vunmap_page_range(addr, addr + size);
  1164. }
  1165. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1166. /**
  1167. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1168. * @addr: start of the VM area to unmap
  1169. * @size: size of the VM area to unmap
  1170. *
  1171. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1172. * the unmapping and tlb after.
  1173. */
  1174. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1175. {
  1176. unsigned long end = addr + size;
  1177. flush_cache_vunmap(addr, end);
  1178. vunmap_page_range(addr, end);
  1179. flush_tlb_kernel_range(addr, end);
  1180. }
  1181. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  1182. {
  1183. unsigned long addr = (unsigned long)area->addr;
  1184. unsigned long end = addr + area->size - PAGE_SIZE;
  1185. int err;
  1186. err = vmap_page_range(addr, end, prot, *pages);
  1187. if (err > 0) {
  1188. *pages += err;
  1189. err = 0;
  1190. }
  1191. return err;
  1192. }
  1193. EXPORT_SYMBOL_GPL(map_vm_area);
  1194. /*** Old vmalloc interfaces ***/
  1195. DEFINE_RWLOCK(vmlist_lock);
  1196. struct vm_struct *vmlist;
  1197. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1198. unsigned long flags, const void *caller)
  1199. {
  1200. vm->flags = flags;
  1201. vm->addr = (void *)va->va_start;
  1202. vm->size = va->va_end - va->va_start;
  1203. vm->caller = caller;
  1204. va->vm = vm;
  1205. va->flags |= VM_VM_AREA;
  1206. }
  1207. static void insert_vmalloc_vmlist(struct vm_struct *vm)
  1208. {
  1209. struct vm_struct *tmp, **p;
  1210. vm->flags &= ~VM_UNLIST;
  1211. write_lock(&vmlist_lock);
  1212. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1213. if (tmp->addr >= vm->addr)
  1214. break;
  1215. }
  1216. vm->next = *p;
  1217. *p = vm;
  1218. write_unlock(&vmlist_lock);
  1219. }
  1220. static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1221. unsigned long flags, const void *caller)
  1222. {
  1223. setup_vmalloc_vm(vm, va, flags, caller);
  1224. insert_vmalloc_vmlist(vm);
  1225. }
  1226. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1227. unsigned long align, unsigned long flags, unsigned long start,
  1228. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1229. {
  1230. struct vmap_area *va;
  1231. struct vm_struct *area;
  1232. BUG_ON(in_interrupt());
  1233. if (flags & VM_IOREMAP) {
  1234. int bit = fls(size);
  1235. if (bit > IOREMAP_MAX_ORDER)
  1236. bit = IOREMAP_MAX_ORDER;
  1237. else if (bit < PAGE_SHIFT)
  1238. bit = PAGE_SHIFT;
  1239. align = 1ul << bit;
  1240. }
  1241. size = PAGE_ALIGN(size);
  1242. if (unlikely(!size))
  1243. return NULL;
  1244. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1245. if (unlikely(!area))
  1246. return NULL;
  1247. /*
  1248. * We always allocate a guard page.
  1249. */
  1250. size += PAGE_SIZE;
  1251. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1252. if (IS_ERR(va)) {
  1253. kfree(area);
  1254. return NULL;
  1255. }
  1256. /*
  1257. * When this function is called from __vmalloc_node_range,
  1258. * we do not add vm_struct to vmlist here to avoid
  1259. * accessing uninitialized members of vm_struct such as
  1260. * pages and nr_pages fields. They will be set later.
  1261. * To distinguish it from others, we use a VM_UNLIST flag.
  1262. */
  1263. if (flags & VM_UNLIST)
  1264. setup_vmalloc_vm(area, va, flags, caller);
  1265. else
  1266. insert_vmalloc_vm(area, va, flags, caller);
  1267. return area;
  1268. }
  1269. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1270. unsigned long start, unsigned long end)
  1271. {
  1272. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1273. __builtin_return_address(0));
  1274. }
  1275. EXPORT_SYMBOL_GPL(__get_vm_area);
  1276. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1277. unsigned long start, unsigned long end,
  1278. const void *caller)
  1279. {
  1280. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1281. caller);
  1282. }
  1283. /**
  1284. * get_vm_area - reserve a contiguous kernel virtual area
  1285. * @size: size of the area
  1286. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1287. *
  1288. * Search an area of @size in the kernel virtual mapping area,
  1289. * and reserved it for out purposes. Returns the area descriptor
  1290. * on success or %NULL on failure.
  1291. */
  1292. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1293. {
  1294. #ifdef CONFIG_ENABLE_VMALLOC_SAVING
  1295. return __get_vm_area_node(size, 1, flags, PAGE_OFFSET, VMALLOC_END,
  1296. -1, GFP_KERNEL, __builtin_return_address(0));
  1297. #else
  1298. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1299. -1, GFP_KERNEL, __builtin_return_address(0));
  1300. #endif
  1301. }
  1302. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1303. const void *caller)
  1304. {
  1305. #ifdef CONFIG_ENABLE_VMALLOC_SAVING
  1306. return __get_vm_area_node(size, 1, flags, PAGE_OFFSET, VMALLOC_END,
  1307. -1, GFP_KERNEL, caller);
  1308. #else
  1309. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1310. -1, GFP_KERNEL, __builtin_return_address(0));
  1311. #endif
  1312. }
  1313. /**
  1314. * find_vm_area - find a continuous kernel virtual area
  1315. * @addr: base address
  1316. *
  1317. * Search for the kernel VM area starting at @addr, and return it.
  1318. * It is up to the caller to do all required locking to keep the returned
  1319. * pointer valid.
  1320. */
  1321. struct vm_struct *find_vm_area(const void *addr)
  1322. {
  1323. struct vmap_area *va;
  1324. va = find_vmap_area((unsigned long)addr);
  1325. if (va && va->flags & VM_VM_AREA)
  1326. return va->vm;
  1327. return NULL;
  1328. }
  1329. /**
  1330. * remove_vm_area - find and remove a continuous kernel virtual area
  1331. * @addr: base address
  1332. *
  1333. * Search for the kernel VM area starting at @addr, and remove it.
  1334. * This function returns the found VM area, but using it is NOT safe
  1335. * on SMP machines, except for its size or flags.
  1336. */
  1337. struct vm_struct *remove_vm_area(const void *addr)
  1338. {
  1339. struct vmap_area *va;
  1340. va = find_vmap_area((unsigned long)addr);
  1341. if (va && va->flags & VM_VM_AREA) {
  1342. struct vm_struct *vm = va->vm;
  1343. if (!(vm->flags & VM_UNLIST)) {
  1344. struct vm_struct *tmp, **p;
  1345. /*
  1346. * remove from list and disallow access to
  1347. * this vm_struct before unmap. (address range
  1348. * confliction is maintained by vmap.)
  1349. */
  1350. write_lock(&vmlist_lock);
  1351. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1352. ;
  1353. *p = tmp->next;
  1354. write_unlock(&vmlist_lock);
  1355. }
  1356. vmap_debug_free_range(va->va_start, va->va_end);
  1357. free_unmap_vmap_area(va);
  1358. vm->size -= PAGE_SIZE;
  1359. return vm;
  1360. }
  1361. return NULL;
  1362. }
  1363. static void __vunmap(const void *addr, int deallocate_pages)
  1364. {
  1365. struct vm_struct *area;
  1366. if (!addr)
  1367. return;
  1368. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1369. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1370. return;
  1371. }
  1372. area = remove_vm_area(addr);
  1373. if (unlikely(!area)) {
  1374. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1375. addr);
  1376. return;
  1377. }
  1378. debug_check_no_locks_freed(addr, area->size);
  1379. debug_check_no_obj_freed(addr, area->size);
  1380. if (deallocate_pages) {
  1381. int i;
  1382. for (i = 0; i < area->nr_pages; i++) {
  1383. struct page *page = area->pages[i];
  1384. BUG_ON(!page);
  1385. __free_page(page);
  1386. }
  1387. if (area->flags & VM_VPAGES)
  1388. vfree(area->pages);
  1389. else
  1390. kfree(area->pages);
  1391. }
  1392. kfree(area);
  1393. return;
  1394. }
  1395. /**
  1396. * vfree - release memory allocated by vmalloc()
  1397. * @addr: memory base address
  1398. *
  1399. * Free the virtually continuous memory area starting at @addr, as
  1400. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1401. * NULL, no operation is performed.
  1402. *
  1403. * Must not be called in interrupt context.
  1404. */
  1405. void vfree(const void *addr)
  1406. {
  1407. BUG_ON(in_interrupt());
  1408. kmemleak_free(addr);
  1409. __vunmap(addr, 1);
  1410. }
  1411. EXPORT_SYMBOL(vfree);
  1412. /**
  1413. * vunmap - release virtual mapping obtained by vmap()
  1414. * @addr: memory base address
  1415. *
  1416. * Free the virtually contiguous memory area starting at @addr,
  1417. * which was created from the page array passed to vmap().
  1418. *
  1419. * Must not be called in interrupt context.
  1420. */
  1421. void vunmap(const void *addr)
  1422. {
  1423. BUG_ON(in_interrupt());
  1424. might_sleep();
  1425. __vunmap(addr, 0);
  1426. }
  1427. EXPORT_SYMBOL(vunmap);
  1428. /**
  1429. * vmap - map an array of pages into virtually contiguous space
  1430. * @pages: array of page pointers
  1431. * @count: number of pages to map
  1432. * @flags: vm_area->flags
  1433. * @prot: page protection for the mapping
  1434. *
  1435. * Maps @count pages from @pages into contiguous kernel virtual
  1436. * space.
  1437. */
  1438. void *vmap(struct page **pages, unsigned int count,
  1439. unsigned long flags, pgprot_t prot)
  1440. {
  1441. struct vm_struct *area;
  1442. might_sleep();
  1443. if (count > totalram_pages)
  1444. return NULL;
  1445. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1446. __builtin_return_address(0));
  1447. if (!area)
  1448. return NULL;
  1449. if (map_vm_area(area, prot, &pages)) {
  1450. vunmap(area->addr);
  1451. return NULL;
  1452. }
  1453. return area->addr;
  1454. }
  1455. EXPORT_SYMBOL(vmap);
  1456. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1457. gfp_t gfp_mask, pgprot_t prot,
  1458. int node, const void *caller);
  1459. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1460. pgprot_t prot, int node, const void *caller)
  1461. {
  1462. const int order = 0;
  1463. struct page **pages;
  1464. unsigned int nr_pages, array_size, i;
  1465. gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1466. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1467. array_size = (nr_pages * sizeof(struct page *));
  1468. area->nr_pages = nr_pages;
  1469. /* Please note that the recursion is strictly bounded. */
  1470. if (array_size > PAGE_SIZE) {
  1471. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1472. PAGE_KERNEL, node, caller);
  1473. area->flags |= VM_VPAGES;
  1474. } else {
  1475. pages = kmalloc_node(array_size, nested_gfp, node);
  1476. }
  1477. area->pages = pages;
  1478. area->caller = caller;
  1479. if (!area->pages) {
  1480. remove_vm_area(area->addr);
  1481. kfree(area);
  1482. return NULL;
  1483. }
  1484. for (i = 0; i < area->nr_pages; i++) {
  1485. struct page *page;
  1486. gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
  1487. if (node < 0)
  1488. page = alloc_page(tmp_mask);
  1489. else
  1490. page = alloc_pages_node(node, tmp_mask, order);
  1491. if (unlikely(!page)) {
  1492. /* Successfully allocated i pages, free them in __vunmap() */
  1493. area->nr_pages = i;
  1494. goto fail;
  1495. }
  1496. area->pages[i] = page;
  1497. }
  1498. if (map_vm_area(area, prot, &pages))
  1499. goto fail;
  1500. return area->addr;
  1501. fail:
  1502. warn_alloc_failed(gfp_mask, order,
  1503. "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
  1504. (area->nr_pages*PAGE_SIZE), area->size);
  1505. vfree(area->addr);
  1506. return NULL;
  1507. }
  1508. /**
  1509. * __vmalloc_node_range - allocate virtually contiguous memory
  1510. * @size: allocation size
  1511. * @align: desired alignment
  1512. * @start: vm area range start
  1513. * @end: vm area range end
  1514. * @gfp_mask: flags for the page level allocator
  1515. * @prot: protection mask for the allocated pages
  1516. * @node: node to use for allocation or -1
  1517. * @caller: caller's return address
  1518. *
  1519. * Allocate enough pages to cover @size from the page level
  1520. * allocator with @gfp_mask flags. Map them into contiguous
  1521. * kernel virtual space, using a pagetable protection of @prot.
  1522. */
  1523. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1524. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1525. pgprot_t prot, int node, const void *caller)
  1526. {
  1527. struct vm_struct *area;
  1528. void *addr;
  1529. unsigned long real_size = size;
  1530. #ifdef CONFIG_FIX_MOVABLE_ZONE
  1531. unsigned long total_pages = total_unmovable_pages;
  1532. #else
  1533. unsigned long total_pages = totalram_pages;
  1534. #endif
  1535. size = PAGE_ALIGN(size);
  1536. if (!size || (size >> PAGE_SHIFT) > total_pages)
  1537. goto fail;
  1538. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
  1539. start, end, node, gfp_mask, caller);
  1540. if (!area)
  1541. goto fail;
  1542. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1543. if (!addr)
  1544. return NULL;
  1545. /*
  1546. * In this function, newly allocated vm_struct is not added
  1547. * to vmlist at __get_vm_area_node(). so, it is added here.
  1548. */
  1549. insert_vmalloc_vmlist(area);
  1550. /*
  1551. * A ref_count = 2 is needed because vm_struct allocated in
  1552. * __get_vm_area_node() contains a reference to the virtual address of
  1553. * the vmalloc'ed block.
  1554. */
  1555. kmemleak_alloc(addr, real_size, 2, gfp_mask);
  1556. return addr;
  1557. fail:
  1558. warn_alloc_failed(gfp_mask, 0,
  1559. "vmalloc: allocation failure: %lu bytes\n",
  1560. real_size);
  1561. return NULL;
  1562. }
  1563. /**
  1564. * __vmalloc_node - allocate virtually contiguous memory
  1565. * @size: allocation size
  1566. * @align: desired alignment
  1567. * @gfp_mask: flags for the page level allocator
  1568. * @prot: protection mask for the allocated pages
  1569. * @node: node to use for allocation or -1
  1570. * @caller: caller's return address
  1571. *
  1572. * Allocate enough pages to cover @size from the page level
  1573. * allocator with @gfp_mask flags. Map them into contiguous
  1574. * kernel virtual space, using a pagetable protection of @prot.
  1575. */
  1576. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1577. gfp_t gfp_mask, pgprot_t prot,
  1578. int node, const void *caller)
  1579. {
  1580. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1581. gfp_mask, prot, node, caller);
  1582. }
  1583. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1584. {
  1585. return __vmalloc_node(size, 1, gfp_mask, prot, -1,
  1586. __builtin_return_address(0));
  1587. }
  1588. EXPORT_SYMBOL(__vmalloc);
  1589. static inline void *__vmalloc_node_flags(unsigned long size,
  1590. int node, gfp_t flags)
  1591. {
  1592. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1593. node, __builtin_return_address(0));
  1594. }
  1595. /**
  1596. * vmalloc - allocate virtually contiguous memory
  1597. * @size: allocation size
  1598. * Allocate enough pages to cover @size from the page level
  1599. * allocator and map them into contiguous kernel virtual space.
  1600. *
  1601. * For tight control over page level allocator and protection flags
  1602. * use __vmalloc() instead.
  1603. */
  1604. void *vmalloc(unsigned long size)
  1605. {
  1606. return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
  1607. }
  1608. EXPORT_SYMBOL(vmalloc);
  1609. /**
  1610. * vzalloc - allocate virtually contiguous memory with zero fill
  1611. * @size: allocation size
  1612. * Allocate enough pages to cover @size from the page level
  1613. * allocator and map them into contiguous kernel virtual space.
  1614. * The memory allocated is set to zero.
  1615. *
  1616. * For tight control over page level allocator and protection flags
  1617. * use __vmalloc() instead.
  1618. */
  1619. void *vzalloc(unsigned long size)
  1620. {
  1621. return __vmalloc_node_flags(size, -1,
  1622. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1623. }
  1624. EXPORT_SYMBOL(vzalloc);
  1625. /**
  1626. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1627. * @size: allocation size
  1628. *
  1629. * The resulting memory area is zeroed so it can be mapped to userspace
  1630. * without leaking data.
  1631. */
  1632. void *vmalloc_user(unsigned long size)
  1633. {
  1634. struct vm_struct *area;
  1635. void *ret;
  1636. ret = __vmalloc_node(size, SHMLBA,
  1637. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1638. PAGE_KERNEL, -1, __builtin_return_address(0));
  1639. if (ret) {
  1640. area = find_vm_area(ret);
  1641. area->flags |= VM_USERMAP;
  1642. }
  1643. return ret;
  1644. }
  1645. EXPORT_SYMBOL(vmalloc_user);
  1646. /**
  1647. * vmalloc_node - allocate memory on a specific node
  1648. * @size: allocation size
  1649. * @node: numa node
  1650. *
  1651. * Allocate enough pages to cover @size from the page level
  1652. * allocator and map them into contiguous kernel virtual space.
  1653. *
  1654. * For tight control over page level allocator and protection flags
  1655. * use __vmalloc() instead.
  1656. */
  1657. void *vmalloc_node(unsigned long size, int node)
  1658. {
  1659. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1660. node, __builtin_return_address(0));
  1661. }
  1662. EXPORT_SYMBOL(vmalloc_node);
  1663. /**
  1664. * vzalloc_node - allocate memory on a specific node with zero fill
  1665. * @size: allocation size
  1666. * @node: numa node
  1667. *
  1668. * Allocate enough pages to cover @size from the page level
  1669. * allocator and map them into contiguous kernel virtual space.
  1670. * The memory allocated is set to zero.
  1671. *
  1672. * For tight control over page level allocator and protection flags
  1673. * use __vmalloc_node() instead.
  1674. */
  1675. void *vzalloc_node(unsigned long size, int node)
  1676. {
  1677. return __vmalloc_node_flags(size, node,
  1678. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1679. }
  1680. EXPORT_SYMBOL(vzalloc_node);
  1681. #ifndef PAGE_KERNEL_EXEC
  1682. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1683. #endif
  1684. /**
  1685. * vmalloc_exec - allocate virtually contiguous, executable memory
  1686. * @size: allocation size
  1687. *
  1688. * Kernel-internal function to allocate enough pages to cover @size
  1689. * the page level allocator and map them into contiguous and
  1690. * executable kernel virtual space.
  1691. *
  1692. * For tight control over page level allocator and protection flags
  1693. * use __vmalloc() instead.
  1694. */
  1695. void *vmalloc_exec(unsigned long size)
  1696. {
  1697. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1698. -1, __builtin_return_address(0));
  1699. }
  1700. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1701. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1702. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1703. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1704. #else
  1705. #define GFP_VMALLOC32 GFP_KERNEL
  1706. #endif
  1707. /**
  1708. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1709. * @size: allocation size
  1710. *
  1711. * Allocate enough 32bit PA addressable pages to cover @size from the
  1712. * page level allocator and map them into contiguous kernel virtual space.
  1713. */
  1714. void *vmalloc_32(unsigned long size)
  1715. {
  1716. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1717. -1, __builtin_return_address(0));
  1718. }
  1719. EXPORT_SYMBOL(vmalloc_32);
  1720. /**
  1721. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1722. * @size: allocation size
  1723. *
  1724. * The resulting memory area is 32bit addressable and zeroed so it can be
  1725. * mapped to userspace without leaking data.
  1726. */
  1727. void *vmalloc_32_user(unsigned long size)
  1728. {
  1729. struct vm_struct *area;
  1730. void *ret;
  1731. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1732. -1, __builtin_return_address(0));
  1733. if (ret) {
  1734. area = find_vm_area(ret);
  1735. area->flags |= VM_USERMAP;
  1736. }
  1737. return ret;
  1738. }
  1739. EXPORT_SYMBOL(vmalloc_32_user);
  1740. /*
  1741. * small helper routine , copy contents to buf from addr.
  1742. * If the page is not present, fill zero.
  1743. */
  1744. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1745. {
  1746. struct page *p;
  1747. int copied = 0;
  1748. while (count) {
  1749. unsigned long offset, length;
  1750. offset = (unsigned long)addr & ~PAGE_MASK;
  1751. length = PAGE_SIZE - offset;
  1752. if (length > count)
  1753. length = count;
  1754. p = vmalloc_to_page(addr);
  1755. /*
  1756. * To do safe access to this _mapped_ area, we need
  1757. * lock. But adding lock here means that we need to add
  1758. * overhead of vmalloc()/vfree() calles for this _debug_
  1759. * interface, rarely used. Instead of that, we'll use
  1760. * kmap() and get small overhead in this access function.
  1761. */
  1762. if (p) {
  1763. /*
  1764. * we can expect USER0 is not used (see vread/vwrite's
  1765. * function description)
  1766. */
  1767. void *map = kmap_atomic(p);
  1768. memcpy(buf, map + offset, length);
  1769. kunmap_atomic(map);
  1770. } else
  1771. memset(buf, 0, length);
  1772. addr += length;
  1773. buf += length;
  1774. copied += length;
  1775. count -= length;
  1776. }
  1777. return copied;
  1778. }
  1779. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1780. {
  1781. struct page *p;
  1782. int copied = 0;
  1783. while (count) {
  1784. unsigned long offset, length;
  1785. offset = (unsigned long)addr & ~PAGE_MASK;
  1786. length = PAGE_SIZE - offset;
  1787. if (length > count)
  1788. length = count;
  1789. p = vmalloc_to_page(addr);
  1790. /*
  1791. * To do safe access to this _mapped_ area, we need
  1792. * lock. But adding lock here means that we need to add
  1793. * overhead of vmalloc()/vfree() calles for this _debug_
  1794. * interface, rarely used. Instead of that, we'll use
  1795. * kmap() and get small overhead in this access function.
  1796. */
  1797. if (p) {
  1798. /*
  1799. * we can expect USER0 is not used (see vread/vwrite's
  1800. * function description)
  1801. */
  1802. void *map = kmap_atomic(p);
  1803. memcpy(map + offset, buf, length);
  1804. kunmap_atomic(map);
  1805. }
  1806. addr += length;
  1807. buf += length;
  1808. copied += length;
  1809. count -= length;
  1810. }
  1811. return copied;
  1812. }
  1813. /**
  1814. * vread() - read vmalloc area in a safe way.
  1815. * @buf: buffer for reading data
  1816. * @addr: vm address.
  1817. * @count: number of bytes to be read.
  1818. *
  1819. * Returns # of bytes which addr and buf should be increased.
  1820. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1821. * includes any intersect with alive vmalloc area.
  1822. *
  1823. * This function checks that addr is a valid vmalloc'ed area, and
  1824. * copy data from that area to a given buffer. If the given memory range
  1825. * of [addr...addr+count) includes some valid address, data is copied to
  1826. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1827. * IOREMAP area is treated as memory hole and no copy is done.
  1828. *
  1829. * If [addr...addr+count) doesn't includes any intersects with alive
  1830. * vm_struct area, returns 0.
  1831. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1832. * the caller should guarantee KM_USER0 is not used.
  1833. *
  1834. * Note: In usual ops, vread() is never necessary because the caller
  1835. * should know vmalloc() area is valid and can use memcpy().
  1836. * This is for routines which have to access vmalloc area without
  1837. * any informaion, as /dev/kmem.
  1838. *
  1839. */
  1840. long vread(char *buf, char *addr, unsigned long count)
  1841. {
  1842. struct vm_struct *tmp;
  1843. char *vaddr, *buf_start = buf;
  1844. unsigned long buflen = count;
  1845. unsigned long n;
  1846. /* Don't allow overflow */
  1847. if ((unsigned long) addr + count < count)
  1848. count = -(unsigned long) addr;
  1849. read_lock(&vmlist_lock);
  1850. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1851. vaddr = (char *) tmp->addr;
  1852. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1853. continue;
  1854. while (addr < vaddr) {
  1855. if (count == 0)
  1856. goto finished;
  1857. *buf = '\0';
  1858. buf++;
  1859. addr++;
  1860. count--;
  1861. }
  1862. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1863. if (n > count)
  1864. n = count;
  1865. if (!(tmp->flags & VM_IOREMAP))
  1866. aligned_vread(buf, addr, n);
  1867. else /* IOREMAP area is treated as memory hole */
  1868. memset(buf, 0, n);
  1869. buf += n;
  1870. addr += n;
  1871. count -= n;
  1872. }
  1873. finished:
  1874. read_unlock(&vmlist_lock);
  1875. if (buf == buf_start)
  1876. return 0;
  1877. /* zero-fill memory holes */
  1878. if (buf != buf_start + buflen)
  1879. memset(buf, 0, buflen - (buf - buf_start));
  1880. return buflen;
  1881. }
  1882. /**
  1883. * vwrite() - write vmalloc area in a safe way.
  1884. * @buf: buffer for source data
  1885. * @addr: vm address.
  1886. * @count: number of bytes to be read.
  1887. *
  1888. * Returns # of bytes which addr and buf should be incresed.
  1889. * (same number to @count).
  1890. * If [addr...addr+count) doesn't includes any intersect with valid
  1891. * vmalloc area, returns 0.
  1892. *
  1893. * This function checks that addr is a valid vmalloc'ed area, and
  1894. * copy data from a buffer to the given addr. If specified range of
  1895. * [addr...addr+count) includes some valid address, data is copied from
  1896. * proper area of @buf. If there are memory holes, no copy to hole.
  1897. * IOREMAP area is treated as memory hole and no copy is done.
  1898. *
  1899. * If [addr...addr+count) doesn't includes any intersects with alive
  1900. * vm_struct area, returns 0.
  1901. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1902. * the caller should guarantee KM_USER0 is not used.
  1903. *
  1904. * Note: In usual ops, vwrite() is never necessary because the caller
  1905. * should know vmalloc() area is valid and can use memcpy().
  1906. * This is for routines which have to access vmalloc area without
  1907. * any informaion, as /dev/kmem.
  1908. */
  1909. long vwrite(char *buf, char *addr, unsigned long count)
  1910. {
  1911. struct vm_struct *tmp;
  1912. char *vaddr;
  1913. unsigned long n, buflen;
  1914. int copied = 0;
  1915. /* Don't allow overflow */
  1916. if ((unsigned long) addr + count < count)
  1917. count = -(unsigned long) addr;
  1918. buflen = count;
  1919. read_lock(&vmlist_lock);
  1920. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1921. vaddr = (char *) tmp->addr;
  1922. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1923. continue;
  1924. while (addr < vaddr) {
  1925. if (count == 0)
  1926. goto finished;
  1927. buf++;
  1928. addr++;
  1929. count--;
  1930. }
  1931. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1932. if (n > count)
  1933. n = count;
  1934. if (!(tmp->flags & VM_IOREMAP)) {
  1935. aligned_vwrite(buf, addr, n);
  1936. copied++;
  1937. }
  1938. buf += n;
  1939. addr += n;
  1940. count -= n;
  1941. }
  1942. finished:
  1943. read_unlock(&vmlist_lock);
  1944. if (!copied)
  1945. return 0;
  1946. return buflen;
  1947. }
  1948. /**
  1949. * remap_vmalloc_range - map vmalloc pages to userspace
  1950. * @vma: vma to cover (map full range of vma)
  1951. * @addr: vmalloc memory
  1952. * @pgoff: number of pages into addr before first page to map
  1953. *
  1954. * Returns: 0 for success, -Exxx on failure
  1955. *
  1956. * This function checks that addr is a valid vmalloc'ed area, and
  1957. * that it is big enough to cover the vma. Will return failure if
  1958. * that criteria isn't met.
  1959. *
  1960. * Similar to remap_pfn_range() (see mm/memory.c)
  1961. */
  1962. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1963. unsigned long pgoff)
  1964. {
  1965. struct vm_struct *area;
  1966. unsigned long uaddr = vma->vm_start;
  1967. unsigned long usize = vma->vm_end - vma->vm_start;
  1968. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1969. return -EINVAL;
  1970. area = find_vm_area(addr);
  1971. if (!area)
  1972. return -EINVAL;
  1973. if (!(area->flags & VM_USERMAP))
  1974. return -EINVAL;
  1975. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1976. return -EINVAL;
  1977. addr += pgoff << PAGE_SHIFT;
  1978. do {
  1979. struct page *page = vmalloc_to_page(addr);
  1980. int ret;
  1981. ret = vm_insert_page(vma, uaddr, page);
  1982. if (ret)
  1983. return ret;
  1984. uaddr += PAGE_SIZE;
  1985. addr += PAGE_SIZE;
  1986. usize -= PAGE_SIZE;
  1987. } while (usize > 0);
  1988. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1989. vma->vm_flags |= VM_RESERVED;
  1990. return 0;
  1991. }
  1992. EXPORT_SYMBOL(remap_vmalloc_range);
  1993. /*
  1994. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1995. * have one.
  1996. */
  1997. void __attribute__((weak)) vmalloc_sync_all(void)
  1998. {
  1999. }
  2000. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  2001. {
  2002. pte_t ***p = data;
  2003. if (p) {
  2004. *(*p) = pte;
  2005. (*p)++;
  2006. }
  2007. return 0;
  2008. }
  2009. /**
  2010. * alloc_vm_area - allocate a range of kernel address space
  2011. * @size: size of the area
  2012. * @ptes: returns the PTEs for the address space
  2013. *
  2014. * Returns: NULL on failure, vm_struct on success
  2015. *
  2016. * This function reserves a range of kernel address space, and
  2017. * allocates pagetables to map that range. No actual mappings
  2018. * are created.
  2019. *
  2020. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  2021. * allocated for the VM area are returned.
  2022. */
  2023. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  2024. {
  2025. struct vm_struct *area;
  2026. area = get_vm_area_caller(size, VM_IOREMAP,
  2027. __builtin_return_address(0));
  2028. if (area == NULL)
  2029. return NULL;
  2030. /*
  2031. * This ensures that page tables are constructed for this region
  2032. * of kernel virtual address space and mapped into init_mm.
  2033. */
  2034. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  2035. size, f, ptes ? &ptes : NULL)) {
  2036. free_vm_area(area);
  2037. return NULL;
  2038. }
  2039. /*
  2040. * If the allocated address space is passed to a hypercall
  2041. * before being used then we cannot rely on a page fault to
  2042. * trigger an update of the page tables. So sync all the page
  2043. * tables here.
  2044. */
  2045. vmalloc_sync_all();
  2046. return area;
  2047. }
  2048. EXPORT_SYMBOL_GPL(alloc_vm_area);
  2049. void free_vm_area(struct vm_struct *area)
  2050. {
  2051. struct vm_struct *ret;
  2052. ret = remove_vm_area(area->addr);
  2053. BUG_ON(ret != area);
  2054. kfree(area);
  2055. }
  2056. EXPORT_SYMBOL_GPL(free_vm_area);
  2057. #ifdef CONFIG_SMP
  2058. static struct vmap_area *node_to_va(struct rb_node *n)
  2059. {
  2060. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  2061. }
  2062. /**
  2063. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  2064. * @end: target address
  2065. * @pnext: out arg for the next vmap_area
  2066. * @pprev: out arg for the previous vmap_area
  2067. *
  2068. * Returns: %true if either or both of next and prev are found,
  2069. * %false if no vmap_area exists
  2070. *
  2071. * Find vmap_areas end addresses of which enclose @end. ie. if not
  2072. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  2073. */
  2074. static bool pvm_find_next_prev(unsigned long end,
  2075. struct vmap_area **pnext,
  2076. struct vmap_area **pprev)
  2077. {
  2078. struct rb_node *n = vmap_area_root.rb_node;
  2079. struct vmap_area *va = NULL;
  2080. while (n) {
  2081. va = rb_entry(n, struct vmap_area, rb_node);
  2082. if (end < va->va_end)
  2083. n = n->rb_left;
  2084. else if (end > va->va_end)
  2085. n = n->rb_right;
  2086. else
  2087. break;
  2088. }
  2089. if (!va)
  2090. return false;
  2091. if (va->va_end > end) {
  2092. *pnext = va;
  2093. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2094. } else {
  2095. *pprev = va;
  2096. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  2097. }
  2098. return true;
  2099. }
  2100. /**
  2101. * pvm_determine_end - find the highest aligned address between two vmap_areas
  2102. * @pnext: in/out arg for the next vmap_area
  2103. * @pprev: in/out arg for the previous vmap_area
  2104. * @align: alignment
  2105. *
  2106. * Returns: determined end address
  2107. *
  2108. * Find the highest aligned address between *@pnext and *@pprev below
  2109. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  2110. * down address is between the end addresses of the two vmap_areas.
  2111. *
  2112. * Please note that the address returned by this function may fall
  2113. * inside *@pnext vmap_area. The caller is responsible for checking
  2114. * that.
  2115. */
  2116. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  2117. struct vmap_area **pprev,
  2118. unsigned long align)
  2119. {
  2120. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2121. unsigned long addr;
  2122. if (*pnext)
  2123. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2124. else
  2125. addr = vmalloc_end;
  2126. while (*pprev && (*pprev)->va_end > addr) {
  2127. *pnext = *pprev;
  2128. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2129. }
  2130. return addr;
  2131. }
  2132. /**
  2133. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2134. * @offsets: array containing offset of each area
  2135. * @sizes: array containing size of each area
  2136. * @nr_vms: the number of areas to allocate
  2137. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2138. *
  2139. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2140. * vm_structs on success, %NULL on failure
  2141. *
  2142. * Percpu allocator wants to use congruent vm areas so that it can
  2143. * maintain the offsets among percpu areas. This function allocates
  2144. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2145. * be scattered pretty far, distance between two areas easily going up
  2146. * to gigabytes. To avoid interacting with regular vmallocs, these
  2147. * areas are allocated from top.
  2148. *
  2149. * Despite its complicated look, this allocator is rather simple. It
  2150. * does everything top-down and scans areas from the end looking for
  2151. * matching slot. While scanning, if any of the areas overlaps with
  2152. * existing vmap_area, the base address is pulled down to fit the
  2153. * area. Scanning is repeated till all the areas fit and then all
  2154. * necessary data structres are inserted and the result is returned.
  2155. */
  2156. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2157. const size_t *sizes, int nr_vms,
  2158. size_t align)
  2159. {
  2160. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2161. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2162. struct vmap_area **vas, *prev, *next;
  2163. struct vm_struct **vms;
  2164. int area, area2, last_area, term_area;
  2165. unsigned long base, start, end, last_end;
  2166. bool purged = false;
  2167. /* verify parameters and allocate data structures */
  2168. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  2169. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2170. start = offsets[area];
  2171. end = start + sizes[area];
  2172. /* is everything aligned properly? */
  2173. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2174. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2175. /* detect the area with the highest address */
  2176. if (start > offsets[last_area])
  2177. last_area = area;
  2178. for (area2 = 0; area2 < nr_vms; area2++) {
  2179. unsigned long start2 = offsets[area2];
  2180. unsigned long end2 = start2 + sizes[area2];
  2181. if (area2 == area)
  2182. continue;
  2183. BUG_ON(start2 >= start && start2 < end);
  2184. BUG_ON(end2 <= end && end2 > start);
  2185. }
  2186. }
  2187. last_end = offsets[last_area] + sizes[last_area];
  2188. if (vmalloc_end - vmalloc_start < last_end) {
  2189. WARN_ON(true);
  2190. return NULL;
  2191. }
  2192. vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
  2193. vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
  2194. if (!vas || !vms)
  2195. goto err_free2;
  2196. for (area = 0; area < nr_vms; area++) {
  2197. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2198. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2199. if (!vas[area] || !vms[area])
  2200. goto err_free;
  2201. }
  2202. retry:
  2203. spin_lock(&vmap_area_lock);
  2204. /* start scanning - we scan from the top, begin with the last area */
  2205. area = term_area = last_area;
  2206. start = offsets[area];
  2207. end = start + sizes[area];
  2208. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2209. base = vmalloc_end - last_end;
  2210. goto found;
  2211. }
  2212. base = pvm_determine_end(&next, &prev, align) - end;
  2213. while (true) {
  2214. BUG_ON(next && next->va_end <= base + end);
  2215. BUG_ON(prev && prev->va_end > base + end);
  2216. /*
  2217. * base might have underflowed, add last_end before
  2218. * comparing.
  2219. */
  2220. if (base + last_end < vmalloc_start + last_end) {
  2221. spin_unlock(&vmap_area_lock);
  2222. if (!purged) {
  2223. purge_vmap_area_lazy();
  2224. purged = true;
  2225. goto retry;
  2226. }
  2227. goto err_free;
  2228. }
  2229. /*
  2230. * If next overlaps, move base downwards so that it's
  2231. * right below next and then recheck.
  2232. */
  2233. if (next && next->va_start < base + end) {
  2234. base = pvm_determine_end(&next, &prev, align) - end;
  2235. term_area = area;
  2236. continue;
  2237. }
  2238. /*
  2239. * If prev overlaps, shift down next and prev and move
  2240. * base so that it's right below new next and then
  2241. * recheck.
  2242. */
  2243. if (prev && prev->va_end > base + start) {
  2244. next = prev;
  2245. prev = node_to_va(rb_prev(&next->rb_node));
  2246. base = pvm_determine_end(&next, &prev, align) - end;
  2247. term_area = area;
  2248. continue;
  2249. }
  2250. /*
  2251. * This area fits, move on to the previous one. If
  2252. * the previous one is the terminal one, we're done.
  2253. */
  2254. area = (area + nr_vms - 1) % nr_vms;
  2255. if (area == term_area)
  2256. break;
  2257. start = offsets[area];
  2258. end = start + sizes[area];
  2259. pvm_find_next_prev(base + end, &next, &prev);
  2260. }
  2261. found:
  2262. /* we've found a fitting base, insert all va's */
  2263. for (area = 0; area < nr_vms; area++) {
  2264. struct vmap_area *va = vas[area];
  2265. va->va_start = base + offsets[area];
  2266. va->va_end = va->va_start + sizes[area];
  2267. __insert_vmap_area(va);
  2268. }
  2269. vmap_area_pcpu_hole = base + offsets[last_area];
  2270. spin_unlock(&vmap_area_lock);
  2271. /* insert all vm's */
  2272. for (area = 0; area < nr_vms; area++)
  2273. insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2274. pcpu_get_vm_areas);
  2275. kfree(vas);
  2276. return vms;
  2277. err_free:
  2278. for (area = 0; area < nr_vms; area++) {
  2279. kfree(vas[area]);
  2280. kfree(vms[area]);
  2281. }
  2282. err_free2:
  2283. kfree(vas);
  2284. kfree(vms);
  2285. return NULL;
  2286. }
  2287. /**
  2288. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2289. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2290. * @nr_vms: the number of allocated areas
  2291. *
  2292. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2293. */
  2294. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2295. {
  2296. int i;
  2297. for (i = 0; i < nr_vms; i++)
  2298. free_vm_area(vms[i]);
  2299. kfree(vms);
  2300. }
  2301. #endif /* CONFIG_SMP */
  2302. #ifdef CONFIG_PROC_FS
  2303. static void *s_start(struct seq_file *m, loff_t *pos)
  2304. __acquires(&vmlist_lock)
  2305. {
  2306. loff_t n = *pos;
  2307. struct vm_struct *v;
  2308. read_lock(&vmlist_lock);
  2309. v = vmlist;
  2310. while (n > 0 && v) {
  2311. n--;
  2312. v = v->next;
  2313. }
  2314. if (!n)
  2315. return v;
  2316. return NULL;
  2317. }
  2318. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2319. {
  2320. struct vm_struct *v = p;
  2321. ++*pos;
  2322. return v->next;
  2323. }
  2324. static void s_stop(struct seq_file *m, void *p)
  2325. __releases(&vmlist_lock)
  2326. {
  2327. read_unlock(&vmlist_lock);
  2328. }
  2329. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2330. {
  2331. if (NUMA_BUILD) {
  2332. unsigned int nr, *counters = m->private;
  2333. if (!counters)
  2334. return;
  2335. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2336. for (nr = 0; nr < v->nr_pages; nr++)
  2337. counters[page_to_nid(v->pages[nr])]++;
  2338. for_each_node_state(nr, N_HIGH_MEMORY)
  2339. if (counters[nr])
  2340. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2341. }
  2342. }
  2343. static int s_show(struct seq_file *m, void *p)
  2344. {
  2345. struct vm_struct *v = p;
  2346. seq_printf(m, "0x%p-0x%p %7ld",
  2347. v->addr, v->addr + v->size, v->size);
  2348. if (v->caller)
  2349. seq_printf(m, " %pS", v->caller);
  2350. if (v->nr_pages)
  2351. seq_printf(m, " pages=%d", v->nr_pages);
  2352. if (v->phys_addr)
  2353. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2354. if (v->flags & VM_IOREMAP)
  2355. seq_printf(m, " ioremap");
  2356. if (v->flags & VM_ALLOC)
  2357. seq_printf(m, " vmalloc");
  2358. if (v->flags & VM_MAP)
  2359. seq_printf(m, " vmap");
  2360. if (v->flags & VM_USERMAP)
  2361. seq_printf(m, " user");
  2362. if (v->flags & VM_VPAGES)
  2363. seq_printf(m, " vpages");
  2364. if (v->flags & VM_LOWMEM)
  2365. seq_printf(m, " lowmem");
  2366. show_numa_info(m, v);
  2367. seq_putc(m, '\n');
  2368. return 0;
  2369. }
  2370. static const struct seq_operations vmalloc_op = {
  2371. .start = s_start,
  2372. .next = s_next,
  2373. .stop = s_stop,
  2374. .show = s_show,
  2375. };
  2376. static int vmalloc_open(struct inode *inode, struct file *file)
  2377. {
  2378. unsigned int *ptr = NULL;
  2379. int ret;
  2380. if (NUMA_BUILD) {
  2381. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2382. if (ptr == NULL)
  2383. return -ENOMEM;
  2384. }
  2385. ret = seq_open(file, &vmalloc_op);
  2386. if (!ret) {
  2387. struct seq_file *m = file->private_data;
  2388. m->private = ptr;
  2389. } else
  2390. kfree(ptr);
  2391. return ret;
  2392. }
  2393. static const struct file_operations proc_vmalloc_operations = {
  2394. .open = vmalloc_open,
  2395. .read = seq_read,
  2396. .llseek = seq_lseek,
  2397. .release = seq_release_private,
  2398. };
  2399. static int __init proc_vmalloc_init(void)
  2400. {
  2401. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2402. return 0;
  2403. }
  2404. module_init(proc_vmalloc_init);
  2405. #endif