page-writeback.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35. #include <linux/pagevec.h>
  36. #include <linux/mm_inline.h>
  37. #include <trace/events/writeback.h>
  38. #include "internal.h"
  39. /*
  40. * Sleep at most 200ms at a time in balance_dirty_pages().
  41. */
  42. #define MAX_PAUSE max(HZ/5, 1)
  43. /*
  44. * Try to keep balance_dirty_pages() call intervals higher than this many pages
  45. * by raising pause time to max_pause when falls below it.
  46. */
  47. #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
  48. /*
  49. * Estimate write bandwidth at 200ms intervals.
  50. */
  51. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  52. #define RATELIMIT_CALC_SHIFT 10
  53. /*
  54. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  55. * will look to see if it needs to force writeback or throttling.
  56. */
  57. static long ratelimit_pages = 32;
  58. /* The following parameters are exported via /proc/sys/vm */
  59. /*
  60. * Start background writeback (via writeback threads) at this percentage
  61. */
  62. int dirty_background_ratio = 10;
  63. /*
  64. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  65. * dirty_background_ratio * the amount of dirtyable memory
  66. */
  67. unsigned long dirty_background_bytes;
  68. /*
  69. * free highmem will not be subtracted from the total free memory
  70. * for calculating free ratios if vm_highmem_is_dirtyable is true
  71. */
  72. int vm_highmem_is_dirtyable;
  73. /*
  74. * The generator of dirty data starts writeback at this percentage
  75. */
  76. int vm_dirty_ratio = 20;
  77. /*
  78. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  79. * vm_dirty_ratio * the amount of dirtyable memory
  80. */
  81. unsigned long vm_dirty_bytes;
  82. /*
  83. * The interval between `kupdate'-style writebacks
  84. */
  85. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  86. EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  87. /*
  88. * The longest time for which data is allowed to remain dirty
  89. */
  90. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  91. /*
  92. * Flag that makes the machine dump writes/reads and block dirtyings.
  93. */
  94. int block_dump;
  95. /*
  96. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  97. * a full sync is triggered after this time elapses without any disk activity.
  98. */
  99. int laptop_mode;
  100. EXPORT_SYMBOL(laptop_mode);
  101. /* End of sysctl-exported parameters */
  102. unsigned long global_dirty_limit;
  103. /*
  104. * Scale the writeback cache size proportional to the relative writeout speeds.
  105. *
  106. * We do this by keeping a floating proportion between BDIs, based on page
  107. * writeback completions [end_page_writeback()]. Those devices that write out
  108. * pages fastest will get the larger share, while the slower will get a smaller
  109. * share.
  110. *
  111. * We use page writeout completions because we are interested in getting rid of
  112. * dirty pages. Having them written out is the primary goal.
  113. *
  114. * We introduce a concept of time, a period over which we measure these events,
  115. * because demand can/will vary over time. The length of this period itself is
  116. * measured in page writeback completions.
  117. *
  118. */
  119. static struct prop_descriptor vm_completions;
  120. /*
  121. * Work out the current dirty-memory clamping and background writeout
  122. * thresholds.
  123. *
  124. * The main aim here is to lower them aggressively if there is a lot of mapped
  125. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  126. * pages. It is better to clamp down on writers than to start swapping, and
  127. * performing lots of scanning.
  128. *
  129. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  130. *
  131. * We don't permit the clamping level to fall below 5% - that is getting rather
  132. * excessive.
  133. *
  134. * We make sure that the background writeout level is below the adjusted
  135. * clamping level.
  136. */
  137. /*
  138. * In a memory zone, there is a certain amount of pages we consider
  139. * available for the page cache, which is essentially the number of
  140. * free and reclaimable pages, minus some zone reserves to protect
  141. * lowmem and the ability to uphold the zone's watermarks without
  142. * requiring writeback.
  143. *
  144. * This number of dirtyable pages is the base value of which the
  145. * user-configurable dirty ratio is the effictive number of pages that
  146. * are allowed to be actually dirtied. Per individual zone, or
  147. * globally by using the sum of dirtyable pages over all zones.
  148. *
  149. * Because the user is allowed to specify the dirty limit globally as
  150. * absolute number of bytes, calculating the per-zone dirty limit can
  151. * require translating the configured limit into a percentage of
  152. * global dirtyable memory first.
  153. */
  154. /**
  155. * zone_dirtyable_memory - number of dirtyable pages in a zone
  156. * @zone: the zone
  157. *
  158. * Returns the zone's number of pages potentially available for dirty
  159. * page cache. This is the base value for the per-zone dirty limits.
  160. */
  161. static unsigned long zone_dirtyable_memory(struct zone *zone)
  162. {
  163. unsigned long nr_pages;
  164. nr_pages = zone_page_state(zone, NR_FREE_PAGES);
  165. nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
  166. nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
  167. nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
  168. return nr_pages;
  169. }
  170. static unsigned long highmem_dirtyable_memory(unsigned long total)
  171. {
  172. #ifdef CONFIG_HIGHMEM
  173. int node;
  174. unsigned long x = 0;
  175. for_each_node_state(node, N_HIGH_MEMORY) {
  176. struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  177. x += zone_dirtyable_memory(z);
  178. }
  179. /*
  180. * Unreclaimable memory (kernel memory or anonymous memory
  181. * without swap) can bring down the dirtyable pages below
  182. * the zone's dirty balance reserve and the above calculation
  183. * will underflow. However we still want to add in nodes
  184. * which are below threshold (negative values) to get a more
  185. * accurate calculation but make sure that the total never
  186. * underflows.
  187. */
  188. if ((long)x < 0)
  189. x = 0;
  190. /*
  191. * Make sure that the number of highmem pages is never larger
  192. * than the number of the total dirtyable memory. This can only
  193. * occur in very strange VM situations but we want to make sure
  194. * that this does not occur.
  195. */
  196. return min(x, total);
  197. #else
  198. return 0;
  199. #endif
  200. }
  201. /**
  202. * global_dirtyable_memory - number of globally dirtyable pages
  203. *
  204. * Returns the global number of pages potentially available for dirty
  205. * page cache. This is the base value for the global dirty limits.
  206. */
  207. unsigned long global_dirtyable_memory(void)
  208. {
  209. unsigned long x;
  210. x = global_page_state(NR_FREE_PAGES);
  211. x -= min(x, dirty_balance_reserve);
  212. x += global_page_state(NR_INACTIVE_FILE);
  213. x += global_page_state(NR_ACTIVE_FILE);
  214. if (!vm_highmem_is_dirtyable)
  215. x -= highmem_dirtyable_memory(x);
  216. return x + 1; /* Ensure that we never return 0 */
  217. }
  218. /*
  219. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  220. *
  221. * Calculate the dirty thresholds based on sysctl parameters
  222. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  223. * - vm.dirty_ratio or vm.dirty_bytes
  224. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  225. * real-time tasks.
  226. */
  227. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  228. {
  229. unsigned long background;
  230. unsigned long dirty;
  231. unsigned long uninitialized_var(available_memory);
  232. struct task_struct *tsk;
  233. if (!vm_dirty_bytes || !dirty_background_bytes)
  234. available_memory = global_dirtyable_memory();
  235. if (vm_dirty_bytes)
  236. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  237. else
  238. dirty = (vm_dirty_ratio * available_memory) / 100;
  239. if (dirty_background_bytes)
  240. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  241. else
  242. background = (dirty_background_ratio * available_memory) / 100;
  243. #if defined(CONFIG_MIN_DIRTY_THRESH_PAGES) && CONFIG_MIN_DIRTY_THRESH_PAGES > 0
  244. if (!vm_dirty_bytes && dirty < CONFIG_MIN_DIRTY_THRESH_PAGES) {
  245. dirty = CONFIG_MIN_DIRTY_THRESH_PAGES;
  246. if (!dirty_background_bytes) {
  247. unsigned long min_background;
  248. min_background = dirty * dirty_background_ratio * 100 /
  249. vm_dirty_ratio / 100;
  250. if (background < min_background)
  251. background = min_background;
  252. }
  253. }
  254. #endif
  255. if (background >= dirty)
  256. background = dirty / 2;
  257. tsk = current;
  258. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  259. background += background / 4;
  260. dirty += dirty / 4;
  261. }
  262. *pbackground = background;
  263. *pdirty = dirty;
  264. trace_global_dirty_state(background, dirty);
  265. }
  266. /**
  267. * zone_dirty_limit - maximum number of dirty pages allowed in a zone
  268. * @zone: the zone
  269. *
  270. * Returns the maximum number of dirty pages allowed in a zone, based
  271. * on the zone's dirtyable memory.
  272. */
  273. static unsigned long zone_dirty_limit(struct zone *zone)
  274. {
  275. unsigned long zone_memory = zone_dirtyable_memory(zone);
  276. struct task_struct *tsk = current;
  277. unsigned long dirty;
  278. if (vm_dirty_bytes)
  279. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
  280. zone_memory / global_dirtyable_memory();
  281. else
  282. dirty = vm_dirty_ratio * zone_memory / 100;
  283. #if defined(CONFIG_MIN_DIRTY_THRESH_PAGES) && CONFIG_MIN_DIRTY_THRESH_PAGES > 0
  284. if (!vm_dirty_bytes) {
  285. unsigned long min_zone_dirty;
  286. min_zone_dirty = CONFIG_MIN_DIRTY_THRESH_PAGES *
  287. zone_memory / global_dirtyable_memory();
  288. if (dirty < min_zone_dirty)
  289. dirty = min_zone_dirty;
  290. }
  291. #endif
  292. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
  293. dirty += dirty / 4;
  294. return dirty;
  295. }
  296. /**
  297. * zone_dirty_ok - tells whether a zone is within its dirty limits
  298. * @zone: the zone to check
  299. *
  300. * Returns %true when the dirty pages in @zone are within the zone's
  301. * dirty limit, %false if the limit is exceeded.
  302. */
  303. bool zone_dirty_ok(struct zone *zone)
  304. {
  305. unsigned long limit = zone_dirty_limit(zone);
  306. return zone_page_state(zone, NR_FILE_DIRTY) +
  307. zone_page_state(zone, NR_UNSTABLE_NFS) +
  308. zone_page_state(zone, NR_WRITEBACK) <= limit;
  309. }
  310. /*
  311. * couple the period to the dirty_ratio:
  312. *
  313. * period/2 ~ roundup_pow_of_two(dirty limit)
  314. */
  315. static int calc_period_shift(void)
  316. {
  317. unsigned long dirty_total;
  318. if (vm_dirty_bytes)
  319. dirty_total = vm_dirty_bytes / PAGE_SIZE;
  320. else
  321. dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
  322. 100;
  323. #if defined(CONFIG_MIN_DIRTY_THRESH_PAGES) && CONFIG_MIN_DIRTY_THRESH_PAGES > 0
  324. if (!vm_dirty_bytes && dirty_total < CONFIG_MIN_DIRTY_THRESH_PAGES)
  325. dirty_total = CONFIG_MIN_DIRTY_THRESH_PAGES;
  326. #endif
  327. return 2 + ilog2(dirty_total - 1);
  328. }
  329. /*
  330. * update the period when the dirty threshold changes.
  331. */
  332. static void update_completion_period(void)
  333. {
  334. int shift = calc_period_shift();
  335. prop_change_shift(&vm_completions, shift);
  336. writeback_set_ratelimit();
  337. }
  338. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  339. void __user *buffer, size_t *lenp,
  340. loff_t *ppos)
  341. {
  342. int ret;
  343. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  344. if (ret == 0 && write)
  345. dirty_background_bytes = 0;
  346. return ret;
  347. }
  348. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  349. void __user *buffer, size_t *lenp,
  350. loff_t *ppos)
  351. {
  352. int ret;
  353. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  354. if (ret == 0 && write)
  355. dirty_background_ratio = 0;
  356. return ret;
  357. }
  358. int dirty_ratio_handler(struct ctl_table *table, int write,
  359. void __user *buffer, size_t *lenp,
  360. loff_t *ppos)
  361. {
  362. int old_ratio = vm_dirty_ratio;
  363. int ret;
  364. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  365. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  366. update_completion_period();
  367. vm_dirty_bytes = 0;
  368. }
  369. return ret;
  370. }
  371. int dirty_bytes_handler(struct ctl_table *table, int write,
  372. void __user *buffer, size_t *lenp,
  373. loff_t *ppos)
  374. {
  375. unsigned long old_bytes = vm_dirty_bytes;
  376. int ret;
  377. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  378. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  379. update_completion_period();
  380. vm_dirty_ratio = 0;
  381. }
  382. return ret;
  383. }
  384. /*
  385. * Increment the BDI's writeout completion count and the global writeout
  386. * completion count. Called from test_clear_page_writeback().
  387. */
  388. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  389. {
  390. __inc_bdi_stat(bdi, BDI_WRITTEN);
  391. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  392. bdi->max_prop_frac);
  393. }
  394. void bdi_writeout_inc(struct backing_dev_info *bdi)
  395. {
  396. unsigned long flags;
  397. local_irq_save(flags);
  398. __bdi_writeout_inc(bdi);
  399. local_irq_restore(flags);
  400. }
  401. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  402. /*
  403. * Obtain an accurate fraction of the BDI's portion.
  404. */
  405. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  406. long *numerator, long *denominator)
  407. {
  408. prop_fraction_percpu(&vm_completions, &bdi->completions,
  409. numerator, denominator);
  410. }
  411. /*
  412. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  413. * registered backing devices, which, for obvious reasons, can not
  414. * exceed 100%.
  415. */
  416. static unsigned int bdi_min_ratio;
  417. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  418. {
  419. int ret = 0;
  420. spin_lock_bh(&bdi_lock);
  421. if (min_ratio > bdi->max_ratio) {
  422. ret = -EINVAL;
  423. } else {
  424. min_ratio -= bdi->min_ratio;
  425. if (bdi_min_ratio + min_ratio < 100) {
  426. bdi_min_ratio += min_ratio;
  427. bdi->min_ratio += min_ratio;
  428. } else {
  429. ret = -EINVAL;
  430. }
  431. }
  432. spin_unlock_bh(&bdi_lock);
  433. return ret;
  434. }
  435. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  436. {
  437. int ret = 0;
  438. if (max_ratio > 100)
  439. return -EINVAL;
  440. spin_lock_bh(&bdi_lock);
  441. if (bdi->min_ratio > max_ratio) {
  442. ret = -EINVAL;
  443. } else {
  444. bdi->max_ratio = max_ratio;
  445. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  446. }
  447. spin_unlock_bh(&bdi_lock);
  448. return ret;
  449. }
  450. EXPORT_SYMBOL(bdi_set_max_ratio);
  451. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  452. unsigned long bg_thresh)
  453. {
  454. return (thresh + bg_thresh) / 2;
  455. }
  456. static unsigned long hard_dirty_limit(unsigned long thresh)
  457. {
  458. return max(thresh, global_dirty_limit);
  459. }
  460. /**
  461. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  462. * @bdi: the backing_dev_info to query
  463. * @dirty: global dirty limit in pages
  464. *
  465. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  466. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  467. *
  468. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  469. * when sleeping max_pause per page is not enough to keep the dirty pages under
  470. * control. For example, when the device is completely stalled due to some error
  471. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  472. * In the other normal situations, it acts more gently by throttling the tasks
  473. * more (rather than completely block them) when the bdi dirty pages go high.
  474. *
  475. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  476. * - starving fast devices
  477. * - piling up dirty pages (that will take long time to sync) on slow devices
  478. *
  479. * The bdi's share of dirty limit will be adapting to its throughput and
  480. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  481. */
  482. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  483. {
  484. u64 bdi_dirty;
  485. long numerator, denominator;
  486. /*
  487. * Calculate this BDI's share of the dirty ratio.
  488. */
  489. bdi_writeout_fraction(bdi, &numerator, &denominator);
  490. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  491. bdi_dirty *= numerator;
  492. do_div(bdi_dirty, denominator);
  493. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  494. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  495. bdi_dirty = dirty * bdi->max_ratio / 100;
  496. return bdi_dirty;
  497. }
  498. /*
  499. * Dirty position control.
  500. *
  501. * (o) global/bdi setpoints
  502. *
  503. * We want the dirty pages be balanced around the global/bdi setpoints.
  504. * When the number of dirty pages is higher/lower than the setpoint, the
  505. * dirty position control ratio (and hence task dirty ratelimit) will be
  506. * decreased/increased to bring the dirty pages back to the setpoint.
  507. *
  508. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  509. *
  510. * if (dirty < setpoint) scale up pos_ratio
  511. * if (dirty > setpoint) scale down pos_ratio
  512. *
  513. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  514. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  515. *
  516. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  517. *
  518. * (o) global control line
  519. *
  520. * ^ pos_ratio
  521. * |
  522. * | |<===== global dirty control scope ======>|
  523. * 2.0 .............*
  524. * | .*
  525. * | . *
  526. * | . *
  527. * | . *
  528. * | . *
  529. * | . *
  530. * 1.0 ................................*
  531. * | . . *
  532. * | . . *
  533. * | . . *
  534. * | . . *
  535. * | . . *
  536. * 0 +------------.------------------.----------------------*------------->
  537. * freerun^ setpoint^ limit^ dirty pages
  538. *
  539. * (o) bdi control line
  540. *
  541. * ^ pos_ratio
  542. * |
  543. * | *
  544. * | *
  545. * | *
  546. * | *
  547. * | * |<=========== span ============>|
  548. * 1.0 .......................*
  549. * | . *
  550. * | . *
  551. * | . *
  552. * | . *
  553. * | . *
  554. * | . *
  555. * | . *
  556. * | . *
  557. * | . *
  558. * | . *
  559. * | . *
  560. * 1/4 ...............................................* * * * * * * * * * * *
  561. * | . .
  562. * | . .
  563. * | . .
  564. * 0 +----------------------.-------------------------------.------------->
  565. * bdi_setpoint^ x_intercept^
  566. *
  567. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  568. * be smoothly throttled down to normal if it starts high in situations like
  569. * - start writing to a slow SD card and a fast disk at the same time. The SD
  570. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  571. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  572. */
  573. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  574. unsigned long thresh,
  575. unsigned long bg_thresh,
  576. unsigned long dirty,
  577. unsigned long bdi_thresh,
  578. unsigned long bdi_dirty)
  579. {
  580. unsigned long write_bw = bdi->avg_write_bandwidth;
  581. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  582. unsigned long limit = hard_dirty_limit(thresh);
  583. unsigned long x_intercept;
  584. unsigned long setpoint; /* dirty pages' target balance point */
  585. unsigned long bdi_setpoint;
  586. unsigned long span;
  587. long long pos_ratio; /* for scaling up/down the rate limit */
  588. long x;
  589. if (unlikely(dirty >= limit))
  590. return 0;
  591. /*
  592. * global setpoint
  593. *
  594. * setpoint - dirty 3
  595. * f(dirty) := 1.0 + (----------------)
  596. * limit - setpoint
  597. *
  598. * it's a 3rd order polynomial that subjects to
  599. *
  600. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  601. * (2) f(setpoint) = 1.0 => the balance point
  602. * (3) f(limit) = 0 => the hard limit
  603. * (4) df/dx <= 0 => negative feedback control
  604. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  605. * => fast response on large errors; small oscillation near setpoint
  606. */
  607. setpoint = (freerun + limit) / 2;
  608. x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
  609. limit - setpoint + 1);
  610. pos_ratio = x;
  611. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  612. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  613. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  614. /*
  615. * We have computed basic pos_ratio above based on global situation. If
  616. * the bdi is over/under its share of dirty pages, we want to scale
  617. * pos_ratio further down/up. That is done by the following mechanism.
  618. */
  619. /*
  620. * bdi setpoint
  621. *
  622. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  623. *
  624. * x_intercept - bdi_dirty
  625. * := --------------------------
  626. * x_intercept - bdi_setpoint
  627. *
  628. * The main bdi control line is a linear function that subjects to
  629. *
  630. * (1) f(bdi_setpoint) = 1.0
  631. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  632. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  633. *
  634. * For single bdi case, the dirty pages are observed to fluctuate
  635. * regularly within range
  636. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  637. * for various filesystems, where (2) can yield in a reasonable 12.5%
  638. * fluctuation range for pos_ratio.
  639. *
  640. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  641. * own size, so move the slope over accordingly and choose a slope that
  642. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  643. */
  644. if (unlikely(bdi_thresh > thresh))
  645. bdi_thresh = thresh;
  646. /*
  647. * It's very possible that bdi_thresh is close to 0 not because the
  648. * device is slow, but that it has remained inactive for long time.
  649. * Honour such devices a reasonable good (hopefully IO efficient)
  650. * threshold, so that the occasional writes won't be blocked and active
  651. * writes can rampup the threshold quickly.
  652. */
  653. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  654. /*
  655. * scale global setpoint to bdi's:
  656. * bdi_setpoint = setpoint * bdi_thresh / thresh
  657. */
  658. x = div_u64((u64)bdi_thresh << 16, thresh | 1);
  659. bdi_setpoint = setpoint * (u64)x >> 16;
  660. /*
  661. * Use span=(8*write_bw) in single bdi case as indicated by
  662. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  663. *
  664. * bdi_thresh thresh - bdi_thresh
  665. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  666. * thresh thresh
  667. */
  668. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  669. x_intercept = bdi_setpoint + span;
  670. if (bdi_dirty < x_intercept - span / 4) {
  671. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  672. x_intercept - bdi_setpoint + 1);
  673. } else
  674. pos_ratio /= 4;
  675. /*
  676. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  677. * It may push the desired control point of global dirty pages higher
  678. * than setpoint.
  679. */
  680. x_intercept = bdi_thresh / 2;
  681. if (bdi_dirty < x_intercept) {
  682. if (bdi_dirty > x_intercept / 8)
  683. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  684. else
  685. pos_ratio *= 8;
  686. }
  687. return pos_ratio;
  688. }
  689. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  690. unsigned long elapsed,
  691. unsigned long written)
  692. {
  693. const unsigned long period = roundup_pow_of_two(3 * HZ);
  694. unsigned long avg = bdi->avg_write_bandwidth;
  695. unsigned long old = bdi->write_bandwidth;
  696. u64 bw;
  697. /*
  698. * bw = written * HZ / elapsed
  699. *
  700. * bw * elapsed + write_bandwidth * (period - elapsed)
  701. * write_bandwidth = ---------------------------------------------------
  702. * period
  703. *
  704. * @written may have decreased due to account_page_redirty().
  705. * Avoid underflowing @bw calculation.
  706. */
  707. bw = written - min(written, bdi->written_stamp);
  708. bw *= HZ;
  709. if (unlikely(elapsed > period)) {
  710. do_div(bw, elapsed);
  711. avg = bw;
  712. goto out;
  713. }
  714. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  715. bw >>= ilog2(period);
  716. /*
  717. * one more level of smoothing, for filtering out sudden spikes
  718. */
  719. if (avg > old && old >= (unsigned long)bw)
  720. avg -= (avg - old) >> 3;
  721. if (avg < old && old <= (unsigned long)bw)
  722. avg += (old - avg) >> 3;
  723. out:
  724. bdi->write_bandwidth = bw;
  725. bdi->avg_write_bandwidth = avg;
  726. }
  727. /*
  728. * The global dirtyable memory and dirty threshold could be suddenly knocked
  729. * down by a large amount (eg. on the startup of KVM in a swapless system).
  730. * This may throw the system into deep dirty exceeded state and throttle
  731. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  732. * global_dirty_limit for tracking slowly down to the knocked down dirty
  733. * threshold.
  734. */
  735. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  736. {
  737. unsigned long limit = global_dirty_limit;
  738. /*
  739. * Follow up in one step.
  740. */
  741. if (limit < thresh) {
  742. limit = thresh;
  743. goto update;
  744. }
  745. /*
  746. * Follow down slowly. Use the higher one as the target, because thresh
  747. * may drop below dirty. This is exactly the reason to introduce
  748. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  749. */
  750. thresh = max(thresh, dirty);
  751. if (limit > thresh) {
  752. limit -= (limit - thresh) >> 5;
  753. goto update;
  754. }
  755. return;
  756. update:
  757. global_dirty_limit = limit;
  758. }
  759. static void global_update_bandwidth(unsigned long thresh,
  760. unsigned long dirty,
  761. unsigned long now)
  762. {
  763. static DEFINE_SPINLOCK(dirty_lock);
  764. static unsigned long update_time = INITIAL_JIFFIES;
  765. /*
  766. * check locklessly first to optimize away locking for the most time
  767. */
  768. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  769. return;
  770. spin_lock(&dirty_lock);
  771. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  772. update_dirty_limit(thresh, dirty);
  773. update_time = now;
  774. }
  775. spin_unlock(&dirty_lock);
  776. }
  777. /*
  778. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  779. *
  780. * Normal bdi tasks will be curbed at or below it in long term.
  781. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  782. */
  783. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  784. unsigned long thresh,
  785. unsigned long bg_thresh,
  786. unsigned long dirty,
  787. unsigned long bdi_thresh,
  788. unsigned long bdi_dirty,
  789. unsigned long dirtied,
  790. unsigned long elapsed)
  791. {
  792. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  793. unsigned long limit = hard_dirty_limit(thresh);
  794. unsigned long setpoint = (freerun + limit) / 2;
  795. unsigned long write_bw = bdi->avg_write_bandwidth;
  796. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  797. unsigned long dirty_rate;
  798. unsigned long task_ratelimit;
  799. unsigned long balanced_dirty_ratelimit;
  800. unsigned long pos_ratio;
  801. unsigned long step;
  802. unsigned long x;
  803. /*
  804. * The dirty rate will match the writeout rate in long term, except
  805. * when dirty pages are truncated by userspace or re-dirtied by FS.
  806. */
  807. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  808. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  809. bdi_thresh, bdi_dirty);
  810. /*
  811. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  812. */
  813. task_ratelimit = (u64)dirty_ratelimit *
  814. pos_ratio >> RATELIMIT_CALC_SHIFT;
  815. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  816. /*
  817. * A linear estimation of the "balanced" throttle rate. The theory is,
  818. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  819. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  820. * formula will yield the balanced rate limit (write_bw / N).
  821. *
  822. * Note that the expanded form is not a pure rate feedback:
  823. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  824. * but also takes pos_ratio into account:
  825. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  826. *
  827. * (1) is not realistic because pos_ratio also takes part in balancing
  828. * the dirty rate. Consider the state
  829. * pos_ratio = 0.5 (3)
  830. * rate = 2 * (write_bw / N) (4)
  831. * If (1) is used, it will stuck in that state! Because each dd will
  832. * be throttled at
  833. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  834. * yielding
  835. * dirty_rate = N * task_ratelimit = write_bw (6)
  836. * put (6) into (1) we get
  837. * rate_(i+1) = rate_(i) (7)
  838. *
  839. * So we end up using (2) to always keep
  840. * rate_(i+1) ~= (write_bw / N) (8)
  841. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  842. * pos_ratio is able to drive itself to 1.0, which is not only where
  843. * the dirty count meet the setpoint, but also where the slope of
  844. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  845. */
  846. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  847. dirty_rate | 1);
  848. /*
  849. * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
  850. */
  851. if (unlikely(balanced_dirty_ratelimit > write_bw))
  852. balanced_dirty_ratelimit = write_bw;
  853. /*
  854. * We could safely do this and return immediately:
  855. *
  856. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  857. *
  858. * However to get a more stable dirty_ratelimit, the below elaborated
  859. * code makes use of task_ratelimit to filter out sigular points and
  860. * limit the step size.
  861. *
  862. * The below code essentially only uses the relative value of
  863. *
  864. * task_ratelimit - dirty_ratelimit
  865. * = (pos_ratio - 1) * dirty_ratelimit
  866. *
  867. * which reflects the direction and size of dirty position error.
  868. */
  869. /*
  870. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  871. * task_ratelimit is on the same side of dirty_ratelimit, too.
  872. * For example, when
  873. * - dirty_ratelimit > balanced_dirty_ratelimit
  874. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  875. * lowering dirty_ratelimit will help meet both the position and rate
  876. * control targets. Otherwise, don't update dirty_ratelimit if it will
  877. * only help meet the rate target. After all, what the users ultimately
  878. * feel and care are stable dirty rate and small position error.
  879. *
  880. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  881. * and filter out the sigular points of balanced_dirty_ratelimit. Which
  882. * keeps jumping around randomly and can even leap far away at times
  883. * due to the small 200ms estimation period of dirty_rate (we want to
  884. * keep that period small to reduce time lags).
  885. */
  886. step = 0;
  887. if (dirty < setpoint) {
  888. x = min(bdi->balanced_dirty_ratelimit,
  889. min(balanced_dirty_ratelimit, task_ratelimit));
  890. if (dirty_ratelimit < x)
  891. step = x - dirty_ratelimit;
  892. } else {
  893. x = max(bdi->balanced_dirty_ratelimit,
  894. max(balanced_dirty_ratelimit, task_ratelimit));
  895. if (dirty_ratelimit > x)
  896. step = dirty_ratelimit - x;
  897. }
  898. /*
  899. * Don't pursue 100% rate matching. It's impossible since the balanced
  900. * rate itself is constantly fluctuating. So decrease the track speed
  901. * when it gets close to the target. Helps eliminate pointless tremors.
  902. */
  903. step >>= dirty_ratelimit / (2 * step + 1);
  904. /*
  905. * Limit the tracking speed to avoid overshooting.
  906. */
  907. step = (step + 7) / 8;
  908. if (dirty_ratelimit < balanced_dirty_ratelimit)
  909. dirty_ratelimit += step;
  910. else
  911. dirty_ratelimit -= step;
  912. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  913. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  914. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  915. }
  916. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  917. unsigned long thresh,
  918. unsigned long bg_thresh,
  919. unsigned long dirty,
  920. unsigned long bdi_thresh,
  921. unsigned long bdi_dirty,
  922. unsigned long start_time)
  923. {
  924. unsigned long now = jiffies;
  925. unsigned long elapsed = now - bdi->bw_time_stamp;
  926. unsigned long dirtied;
  927. unsigned long written;
  928. /*
  929. * rate-limit, only update once every 200ms.
  930. */
  931. if (elapsed < BANDWIDTH_INTERVAL)
  932. return;
  933. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  934. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  935. /*
  936. * Skip quiet periods when disk bandwidth is under-utilized.
  937. * (at least 1s idle time between two flusher runs)
  938. */
  939. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  940. goto snapshot;
  941. if (thresh) {
  942. global_update_bandwidth(thresh, dirty, now);
  943. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  944. bdi_thresh, bdi_dirty,
  945. dirtied, elapsed);
  946. }
  947. bdi_update_write_bandwidth(bdi, elapsed, written);
  948. snapshot:
  949. bdi->dirtied_stamp = dirtied;
  950. bdi->written_stamp = written;
  951. bdi->bw_time_stamp = now;
  952. }
  953. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  954. unsigned long thresh,
  955. unsigned long bg_thresh,
  956. unsigned long dirty,
  957. unsigned long bdi_thresh,
  958. unsigned long bdi_dirty,
  959. unsigned long start_time)
  960. {
  961. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  962. return;
  963. spin_lock(&bdi->wb.list_lock);
  964. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  965. bdi_thresh, bdi_dirty, start_time);
  966. spin_unlock(&bdi->wb.list_lock);
  967. }
  968. /*
  969. * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
  970. * will look to see if it needs to start dirty throttling.
  971. *
  972. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  973. * global_page_state() too often. So scale it near-sqrt to the safety margin
  974. * (the number of pages we may dirty without exceeding the dirty limits).
  975. */
  976. static unsigned long dirty_poll_interval(unsigned long dirty,
  977. unsigned long thresh)
  978. {
  979. if (thresh > dirty)
  980. return 1UL << (ilog2(thresh - dirty) >> 1);
  981. return 1;
  982. }
  983. static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
  984. unsigned long bdi_dirty)
  985. {
  986. unsigned long bw = bdi->avg_write_bandwidth;
  987. unsigned long t;
  988. /*
  989. * Limit pause time for small memory systems. If sleeping for too long
  990. * time, a small pool of dirty/writeback pages may go empty and disk go
  991. * idle.
  992. *
  993. * 8 serves as the safety ratio.
  994. */
  995. t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
  996. t++;
  997. return min_t(unsigned long, t, MAX_PAUSE);
  998. }
  999. static long bdi_min_pause(struct backing_dev_info *bdi,
  1000. long max_pause,
  1001. unsigned long task_ratelimit,
  1002. unsigned long dirty_ratelimit,
  1003. int *nr_dirtied_pause)
  1004. {
  1005. long hi = ilog2(bdi->avg_write_bandwidth);
  1006. long lo = ilog2(bdi->dirty_ratelimit);
  1007. long t; /* target pause */
  1008. long pause; /* estimated next pause */
  1009. int pages; /* target nr_dirtied_pause */
  1010. /* target for 10ms pause on 1-dd case */
  1011. t = max(1, HZ / 100);
  1012. /*
  1013. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  1014. * overheads.
  1015. *
  1016. * (N * 10ms) on 2^N concurrent tasks.
  1017. */
  1018. if (hi > lo)
  1019. t += (hi - lo) * (10 * HZ) / 1024;
  1020. /*
  1021. * This is a bit convoluted. We try to base the next nr_dirtied_pause
  1022. * on the much more stable dirty_ratelimit. However the next pause time
  1023. * will be computed based on task_ratelimit and the two rate limits may
  1024. * depart considerably at some time. Especially if task_ratelimit goes
  1025. * below dirty_ratelimit/2 and the target pause is max_pause, the next
  1026. * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
  1027. * result task_ratelimit won't be executed faithfully, which could
  1028. * eventually bring down dirty_ratelimit.
  1029. *
  1030. * We apply two rules to fix it up:
  1031. * 1) try to estimate the next pause time and if necessary, use a lower
  1032. * nr_dirtied_pause so as not to exceed max_pause. When this happens,
  1033. * nr_dirtied_pause will be "dancing" with task_ratelimit.
  1034. * 2) limit the target pause time to max_pause/2, so that the normal
  1035. * small fluctuations of task_ratelimit won't trigger rule (1) and
  1036. * nr_dirtied_pause will remain as stable as dirty_ratelimit.
  1037. */
  1038. t = min(t, 1 + max_pause / 2);
  1039. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1040. /*
  1041. * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
  1042. * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
  1043. * When the 16 consecutive reads are often interrupted by some dirty
  1044. * throttling pause during the async writes, cfq will go into idles
  1045. * (deadline is fine). So push nr_dirtied_pause as high as possible
  1046. * until reaches DIRTY_POLL_THRESH=32 pages.
  1047. */
  1048. if (pages < DIRTY_POLL_THRESH) {
  1049. t = max_pause;
  1050. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1051. if (pages > DIRTY_POLL_THRESH) {
  1052. pages = DIRTY_POLL_THRESH;
  1053. t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
  1054. }
  1055. }
  1056. pause = HZ * pages / (task_ratelimit + 1);
  1057. if (pause > max_pause) {
  1058. t = max_pause;
  1059. pages = task_ratelimit * t / roundup_pow_of_two(HZ);
  1060. }
  1061. *nr_dirtied_pause = pages;
  1062. /*
  1063. * The minimal pause time will normally be half the target pause time.
  1064. */
  1065. return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
  1066. }
  1067. /*
  1068. * balance_dirty_pages() must be called by processes which are generating dirty
  1069. * data. It looks at the number of dirty pages in the machine and will force
  1070. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  1071. * If we're over `background_thresh' then the writeback threads are woken to
  1072. * perform some writeout.
  1073. */
  1074. static void balance_dirty_pages(struct address_space *mapping,
  1075. unsigned long pages_dirtied)
  1076. {
  1077. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  1078. unsigned long bdi_reclaimable;
  1079. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  1080. unsigned long bdi_dirty;
  1081. unsigned long freerun;
  1082. unsigned long background_thresh;
  1083. unsigned long dirty_thresh;
  1084. unsigned long bdi_thresh;
  1085. long period;
  1086. long pause;
  1087. long max_pause;
  1088. long min_pause;
  1089. int nr_dirtied_pause;
  1090. bool dirty_exceeded = false;
  1091. unsigned long task_ratelimit;
  1092. unsigned long dirty_ratelimit;
  1093. unsigned long pos_ratio;
  1094. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1095. unsigned long start_time = jiffies;
  1096. for (;;) {
  1097. unsigned long now = jiffies;
  1098. /*
  1099. * Unstable writes are a feature of certain networked
  1100. * filesystems (i.e. NFS) in which data may have been
  1101. * written to the server's write cache, but has not yet
  1102. * been flushed to permanent storage.
  1103. */
  1104. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  1105. global_page_state(NR_UNSTABLE_NFS);
  1106. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  1107. global_dirty_limits(&background_thresh, &dirty_thresh);
  1108. /*
  1109. * Throttle it only when the background writeback cannot
  1110. * catch-up. This avoids (excessively) small writeouts
  1111. * when the bdi limits are ramping up.
  1112. */
  1113. freerun = dirty_freerun_ceiling(dirty_thresh,
  1114. background_thresh);
  1115. if (nr_dirty <= freerun) {
  1116. current->dirty_paused_when = now;
  1117. current->nr_dirtied = 0;
  1118. current->nr_dirtied_pause =
  1119. dirty_poll_interval(nr_dirty, dirty_thresh);
  1120. break;
  1121. }
  1122. if (unlikely(!writeback_in_progress(bdi)))
  1123. bdi_start_background_writeback(bdi);
  1124. /*
  1125. * bdi_thresh is not treated as some limiting factor as
  1126. * dirty_thresh, due to reasons
  1127. * - in JBOD setup, bdi_thresh can fluctuate a lot
  1128. * - in a system with HDD and USB key, the USB key may somehow
  1129. * go into state (bdi_dirty >> bdi_thresh) either because
  1130. * bdi_dirty starts high, or because bdi_thresh drops low.
  1131. * In this case we don't want to hard throttle the USB key
  1132. * dirtiers for 100 seconds until bdi_dirty drops under
  1133. * bdi_thresh. Instead the auxiliary bdi control line in
  1134. * bdi_position_ratio() will let the dirtier task progress
  1135. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  1136. */
  1137. bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  1138. /*
  1139. * In order to avoid the stacked BDI deadlock we need
  1140. * to ensure we accurately count the 'dirty' pages when
  1141. * the threshold is low.
  1142. *
  1143. * Otherwise it would be possible to get thresh+n pages
  1144. * reported dirty, even though there are thresh-m pages
  1145. * actually dirty; with m+n sitting in the percpu
  1146. * deltas.
  1147. */
  1148. if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
  1149. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  1150. bdi_dirty = bdi_reclaimable +
  1151. bdi_stat_sum(bdi, BDI_WRITEBACK);
  1152. } else {
  1153. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  1154. bdi_dirty = bdi_reclaimable +
  1155. bdi_stat(bdi, BDI_WRITEBACK);
  1156. }
  1157. dirty_exceeded = (bdi_dirty > bdi_thresh) &&
  1158. (nr_dirty > dirty_thresh);
  1159. if (dirty_exceeded && !bdi->dirty_exceeded)
  1160. bdi->dirty_exceeded = 1;
  1161. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  1162. nr_dirty, bdi_thresh, bdi_dirty,
  1163. start_time);
  1164. dirty_ratelimit = bdi->dirty_ratelimit;
  1165. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  1166. background_thresh, nr_dirty,
  1167. bdi_thresh, bdi_dirty);
  1168. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  1169. RATELIMIT_CALC_SHIFT;
  1170. max_pause = bdi_max_pause(bdi, bdi_dirty);
  1171. min_pause = bdi_min_pause(bdi, max_pause,
  1172. task_ratelimit, dirty_ratelimit,
  1173. &nr_dirtied_pause);
  1174. if (unlikely(task_ratelimit == 0)) {
  1175. period = max_pause;
  1176. pause = max_pause;
  1177. goto pause;
  1178. }
  1179. period = HZ * pages_dirtied / task_ratelimit;
  1180. pause = period;
  1181. if (current->dirty_paused_when)
  1182. pause -= now - current->dirty_paused_when;
  1183. /*
  1184. * For less than 1s think time (ext3/4 may block the dirtier
  1185. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1186. * however at much less frequency), try to compensate it in
  1187. * future periods by updating the virtual time; otherwise just
  1188. * do a reset, as it may be a light dirtier.
  1189. */
  1190. if (pause < min_pause) {
  1191. trace_balance_dirty_pages(bdi,
  1192. dirty_thresh,
  1193. background_thresh,
  1194. nr_dirty,
  1195. bdi_thresh,
  1196. bdi_dirty,
  1197. dirty_ratelimit,
  1198. task_ratelimit,
  1199. pages_dirtied,
  1200. period,
  1201. min(pause, 0L),
  1202. start_time);
  1203. if (pause < -HZ) {
  1204. current->dirty_paused_when = now;
  1205. current->nr_dirtied = 0;
  1206. } else if (period) {
  1207. current->dirty_paused_when += period;
  1208. current->nr_dirtied = 0;
  1209. } else if (current->nr_dirtied_pause <= pages_dirtied)
  1210. current->nr_dirtied_pause += pages_dirtied;
  1211. break;
  1212. }
  1213. if (unlikely(pause > max_pause)) {
  1214. /* for occasional dropped task_ratelimit */
  1215. now += min(pause - max_pause, max_pause);
  1216. pause = max_pause;
  1217. }
  1218. pause:
  1219. trace_balance_dirty_pages(bdi,
  1220. dirty_thresh,
  1221. background_thresh,
  1222. nr_dirty,
  1223. bdi_thresh,
  1224. bdi_dirty,
  1225. dirty_ratelimit,
  1226. task_ratelimit,
  1227. pages_dirtied,
  1228. period,
  1229. pause,
  1230. start_time);
  1231. __set_current_state(TASK_KILLABLE);
  1232. io_schedule_timeout(pause);
  1233. current->dirty_paused_when = now + pause;
  1234. current->nr_dirtied = 0;
  1235. current->nr_dirtied_pause = nr_dirtied_pause;
  1236. /*
  1237. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1238. * also keep "1000+ dd on a slow USB stick" under control.
  1239. */
  1240. if (task_ratelimit)
  1241. break;
  1242. /*
  1243. * In the case of an unresponding NFS server and the NFS dirty
  1244. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1245. * to go through, so that tasks on them still remain responsive.
  1246. *
  1247. * In theory 1 page is enough to keep the comsumer-producer
  1248. * pipe going: the flusher cleans 1 page => the task dirties 1
  1249. * more page. However bdi_dirty has accounting errors. So use
  1250. * the larger and more IO friendly bdi_stat_error.
  1251. */
  1252. if (bdi_dirty <= bdi_stat_error(bdi))
  1253. break;
  1254. if (fatal_signal_pending(current))
  1255. break;
  1256. }
  1257. if (!dirty_exceeded && bdi->dirty_exceeded)
  1258. bdi->dirty_exceeded = 0;
  1259. if (writeback_in_progress(bdi))
  1260. return;
  1261. /*
  1262. * In laptop mode, we wait until hitting the higher threshold before
  1263. * starting background writeout, and then write out all the way down
  1264. * to the lower threshold. So slow writers cause minimal disk activity.
  1265. *
  1266. * In normal mode, we start background writeout at the lower
  1267. * background_thresh, to keep the amount of dirty memory low.
  1268. */
  1269. if (laptop_mode)
  1270. return;
  1271. if (nr_reclaimable > background_thresh)
  1272. bdi_start_background_writeback(bdi);
  1273. }
  1274. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1275. /*
  1276. * Normal tasks are throttled by
  1277. * loop {
  1278. * dirty tsk->nr_dirtied_pause pages;
  1279. * take a snap in balance_dirty_pages();
  1280. * }
  1281. * However there is a worst case. If every task exit immediately when dirtied
  1282. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1283. * called to throttle the page dirties. The solution is to save the not yet
  1284. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1285. * randomly into the running tasks. This works well for the above worst case,
  1286. * as the new task will pick up and accumulate the old task's leaked dirty
  1287. * count and eventually get throttled.
  1288. */
  1289. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1290. /**
  1291. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  1292. * @mapping: address_space which was dirtied
  1293. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  1294. *
  1295. * Processes which are dirtying memory should call in here once for each page
  1296. * which was newly dirtied. The function will periodically check the system's
  1297. * dirty state and will initiate writeback if needed.
  1298. *
  1299. * On really big machines, get_writeback_state is expensive, so try to avoid
  1300. * calling it too often (ratelimiting). But once we're over the dirty memory
  1301. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1302. * from overshooting the limit by (ratelimit_pages) each.
  1303. */
  1304. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  1305. unsigned long nr_pages_dirtied)
  1306. {
  1307. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1308. int ratelimit;
  1309. int *p;
  1310. if (!bdi_cap_account_dirty(bdi))
  1311. return;
  1312. ratelimit = current->nr_dirtied_pause;
  1313. if (bdi->dirty_exceeded)
  1314. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1315. preempt_disable();
  1316. /*
  1317. * This prevents one CPU to accumulate too many dirtied pages without
  1318. * calling into balance_dirty_pages(), which can happen when there are
  1319. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1320. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1321. */
  1322. p = &__get_cpu_var(bdp_ratelimits);
  1323. if (unlikely(current->nr_dirtied >= ratelimit))
  1324. *p = 0;
  1325. else if (unlikely(*p >= ratelimit_pages)) {
  1326. *p = 0;
  1327. ratelimit = 0;
  1328. }
  1329. /*
  1330. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1331. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1332. * the dirty throttling and livelock other long-run dirtiers.
  1333. */
  1334. p = &__get_cpu_var(dirty_throttle_leaks);
  1335. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1336. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1337. *p -= nr_pages_dirtied;
  1338. current->nr_dirtied += nr_pages_dirtied;
  1339. }
  1340. preempt_enable();
  1341. if (unlikely(current->nr_dirtied >= ratelimit))
  1342. balance_dirty_pages(mapping, current->nr_dirtied);
  1343. }
  1344. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  1345. void throttle_vm_writeout(gfp_t gfp_mask)
  1346. {
  1347. unsigned long background_thresh;
  1348. unsigned long dirty_thresh;
  1349. for ( ; ; ) {
  1350. global_dirty_limits(&background_thresh, &dirty_thresh);
  1351. dirty_thresh = hard_dirty_limit(dirty_thresh);
  1352. /*
  1353. * Boost the allowable dirty threshold a bit for page
  1354. * allocators so they don't get DoS'ed by heavy writers
  1355. */
  1356. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1357. if (global_page_state(NR_UNSTABLE_NFS) +
  1358. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1359. break;
  1360. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1361. /*
  1362. * The caller might hold locks which can prevent IO completion
  1363. * or progress in the filesystem. So we cannot just sit here
  1364. * waiting for IO to complete.
  1365. */
  1366. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1367. break;
  1368. }
  1369. }
  1370. /*
  1371. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1372. */
  1373. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1374. void __user *buffer, size_t *length, loff_t *ppos)
  1375. {
  1376. proc_dointvec(table, write, buffer, length, ppos);
  1377. bdi_arm_supers_timer();
  1378. return 0;
  1379. }
  1380. #ifdef CONFIG_BLOCK
  1381. void laptop_mode_timer_fn(unsigned long data)
  1382. {
  1383. struct request_queue *q = (struct request_queue *)data;
  1384. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1385. global_page_state(NR_UNSTABLE_NFS);
  1386. /*
  1387. * We want to write everything out, not just down to the dirty
  1388. * threshold
  1389. */
  1390. if (bdi_has_dirty_io(&q->backing_dev_info))
  1391. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1392. WB_REASON_LAPTOP_TIMER);
  1393. }
  1394. /*
  1395. * We've spun up the disk and we're in laptop mode: schedule writeback
  1396. * of all dirty data a few seconds from now. If the flush is already scheduled
  1397. * then push it back - the user is still using the disk.
  1398. */
  1399. void laptop_io_completion(struct backing_dev_info *info)
  1400. {
  1401. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1402. }
  1403. /*
  1404. * We're in laptop mode and we've just synced. The sync's writes will have
  1405. * caused another writeback to be scheduled by laptop_io_completion.
  1406. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1407. */
  1408. void laptop_sync_completion(void)
  1409. {
  1410. struct backing_dev_info *bdi;
  1411. rcu_read_lock();
  1412. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1413. del_timer(&bdi->laptop_mode_wb_timer);
  1414. rcu_read_unlock();
  1415. }
  1416. #endif
  1417. /*
  1418. * If ratelimit_pages is too high then we can get into dirty-data overload
  1419. * if a large number of processes all perform writes at the same time.
  1420. * If it is too low then SMP machines will call the (expensive)
  1421. * get_writeback_state too often.
  1422. *
  1423. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1424. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1425. * thresholds.
  1426. */
  1427. void writeback_set_ratelimit(void)
  1428. {
  1429. unsigned long background_thresh;
  1430. unsigned long dirty_thresh;
  1431. global_dirty_limits(&background_thresh, &dirty_thresh);
  1432. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1433. if (ratelimit_pages < 16)
  1434. ratelimit_pages = 16;
  1435. }
  1436. static int __cpuinit
  1437. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  1438. {
  1439. writeback_set_ratelimit();
  1440. return NOTIFY_DONE;
  1441. }
  1442. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1443. .notifier_call = ratelimit_handler,
  1444. .next = NULL,
  1445. };
  1446. /*
  1447. * Called early on to tune the page writeback dirty limits.
  1448. *
  1449. * We used to scale dirty pages according to how total memory
  1450. * related to pages that could be allocated for buffers (by
  1451. * comparing nr_free_buffer_pages() to vm_total_pages.
  1452. *
  1453. * However, that was when we used "dirty_ratio" to scale with
  1454. * all memory, and we don't do that any more. "dirty_ratio"
  1455. * is now applied to total non-HIGHPAGE memory (by subtracting
  1456. * totalhigh_pages from vm_total_pages), and as such we can't
  1457. * get into the old insane situation any more where we had
  1458. * large amounts of dirty pages compared to a small amount of
  1459. * non-HIGHMEM memory.
  1460. *
  1461. * But we might still want to scale the dirty_ratio by how
  1462. * much memory the box has..
  1463. */
  1464. void __init page_writeback_init(void)
  1465. {
  1466. int shift;
  1467. writeback_set_ratelimit();
  1468. register_cpu_notifier(&ratelimit_nb);
  1469. shift = calc_period_shift();
  1470. prop_descriptor_init(&vm_completions, shift);
  1471. }
  1472. /**
  1473. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1474. * @mapping: address space structure to write
  1475. * @start: starting page index
  1476. * @end: ending page index (inclusive)
  1477. *
  1478. * This function scans the page range from @start to @end (inclusive) and tags
  1479. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1480. * that write_cache_pages (or whoever calls this function) will then use
  1481. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1482. * used to avoid livelocking of writeback by a process steadily creating new
  1483. * dirty pages in the file (thus it is important for this function to be quick
  1484. * so that it can tag pages faster than a dirtying process can create them).
  1485. */
  1486. /*
  1487. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1488. */
  1489. void tag_pages_for_writeback(struct address_space *mapping,
  1490. pgoff_t start, pgoff_t end)
  1491. {
  1492. #define WRITEBACK_TAG_BATCH 4096
  1493. unsigned long tagged;
  1494. do {
  1495. spin_lock_irq(&mapping->tree_lock);
  1496. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1497. &start, end, WRITEBACK_TAG_BATCH,
  1498. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1499. spin_unlock_irq(&mapping->tree_lock);
  1500. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1501. cond_resched();
  1502. /* We check 'start' to handle wrapping when end == ~0UL */
  1503. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1504. }
  1505. EXPORT_SYMBOL(tag_pages_for_writeback);
  1506. /**
  1507. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1508. * @mapping: address space structure to write
  1509. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1510. * @writepage: function called for each page
  1511. * @data: data passed to writepage function
  1512. *
  1513. * If a page is already under I/O, write_cache_pages() skips it, even
  1514. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1515. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1516. * and msync() need to guarantee that all the data which was dirty at the time
  1517. * the call was made get new I/O started against them. If wbc->sync_mode is
  1518. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1519. * existing IO to complete.
  1520. *
  1521. * To avoid livelocks (when other process dirties new pages), we first tag
  1522. * pages which should be written back with TOWRITE tag and only then start
  1523. * writing them. For data-integrity sync we have to be careful so that we do
  1524. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1525. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1526. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1527. */
  1528. int write_cache_pages(struct address_space *mapping,
  1529. struct writeback_control *wbc, writepage_t writepage,
  1530. void *data)
  1531. {
  1532. int ret = 0;
  1533. int done = 0;
  1534. struct pagevec pvec;
  1535. int nr_pages;
  1536. pgoff_t uninitialized_var(writeback_index);
  1537. pgoff_t index;
  1538. pgoff_t end; /* Inclusive */
  1539. pgoff_t done_index;
  1540. int cycled;
  1541. int range_whole = 0;
  1542. int tag;
  1543. pagevec_init(&pvec, 0);
  1544. if (wbc->range_cyclic) {
  1545. writeback_index = mapping->writeback_index; /* prev offset */
  1546. index = writeback_index;
  1547. if (index == 0)
  1548. cycled = 1;
  1549. else
  1550. cycled = 0;
  1551. end = -1;
  1552. } else {
  1553. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1554. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1555. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1556. range_whole = 1;
  1557. cycled = 1; /* ignore range_cyclic tests */
  1558. }
  1559. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1560. tag = PAGECACHE_TAG_TOWRITE;
  1561. else
  1562. tag = PAGECACHE_TAG_DIRTY;
  1563. retry:
  1564. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1565. tag_pages_for_writeback(mapping, index, end);
  1566. done_index = index;
  1567. while (!done && (index <= end)) {
  1568. int i;
  1569. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1570. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1571. if (nr_pages == 0)
  1572. break;
  1573. for (i = 0; i < nr_pages; i++) {
  1574. struct page *page = pvec.pages[i];
  1575. /*
  1576. * At this point, the page may be truncated or
  1577. * invalidated (changing page->mapping to NULL), or
  1578. * even swizzled back from swapper_space to tmpfs file
  1579. * mapping. However, page->index will not change
  1580. * because we have a reference on the page.
  1581. */
  1582. if (page->index > end) {
  1583. /*
  1584. * can't be range_cyclic (1st pass) because
  1585. * end == -1 in that case.
  1586. */
  1587. done = 1;
  1588. break;
  1589. }
  1590. done_index = page->index;
  1591. lock_page(page);
  1592. /*
  1593. * Page truncated or invalidated. We can freely skip it
  1594. * then, even for data integrity operations: the page
  1595. * has disappeared concurrently, so there could be no
  1596. * real expectation of this data interity operation
  1597. * even if there is now a new, dirty page at the same
  1598. * pagecache address.
  1599. */
  1600. if (unlikely(page->mapping != mapping)) {
  1601. continue_unlock:
  1602. unlock_page(page);
  1603. continue;
  1604. }
  1605. if (!PageDirty(page)) {
  1606. /* someone wrote it for us */
  1607. goto continue_unlock;
  1608. }
  1609. if (PageWriteback(page)) {
  1610. if (wbc->sync_mode != WB_SYNC_NONE)
  1611. wait_on_page_writeback(page);
  1612. else
  1613. goto continue_unlock;
  1614. }
  1615. BUG_ON(PageWriteback(page));
  1616. if (!clear_page_dirty_for_io(page))
  1617. goto continue_unlock;
  1618. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1619. ret = (*writepage)(page, wbc, data);
  1620. if (unlikely(ret)) {
  1621. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1622. unlock_page(page);
  1623. ret = 0;
  1624. } else {
  1625. /*
  1626. * done_index is set past this page,
  1627. * so media errors will not choke
  1628. * background writeout for the entire
  1629. * file. This has consequences for
  1630. * range_cyclic semantics (ie. it may
  1631. * not be suitable for data integrity
  1632. * writeout).
  1633. */
  1634. done_index = page->index + 1;
  1635. done = 1;
  1636. break;
  1637. }
  1638. }
  1639. /*
  1640. * We stop writing back only if we are not doing
  1641. * integrity sync. In case of integrity sync we have to
  1642. * keep going until we have written all the pages
  1643. * we tagged for writeback prior to entering this loop.
  1644. */
  1645. if (--wbc->nr_to_write <= 0 &&
  1646. wbc->sync_mode == WB_SYNC_NONE) {
  1647. done = 1;
  1648. break;
  1649. }
  1650. }
  1651. pagevec_release(&pvec);
  1652. cond_resched();
  1653. }
  1654. if (!cycled && !done) {
  1655. /*
  1656. * range_cyclic:
  1657. * We hit the last page and there is more work to be done: wrap
  1658. * back to the start of the file
  1659. */
  1660. cycled = 1;
  1661. index = 0;
  1662. end = writeback_index - 1;
  1663. goto retry;
  1664. }
  1665. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1666. mapping->writeback_index = done_index;
  1667. return ret;
  1668. }
  1669. EXPORT_SYMBOL(write_cache_pages);
  1670. /*
  1671. * Function used by generic_writepages to call the real writepage
  1672. * function and set the mapping flags on error
  1673. */
  1674. static int __writepage(struct page *page, struct writeback_control *wbc,
  1675. void *data)
  1676. {
  1677. struct address_space *mapping = data;
  1678. int ret = mapping->a_ops->writepage(page, wbc);
  1679. mapping_set_error(mapping, ret);
  1680. return ret;
  1681. }
  1682. /**
  1683. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1684. * @mapping: address space structure to write
  1685. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1686. *
  1687. * This is a library function, which implements the writepages()
  1688. * address_space_operation.
  1689. */
  1690. int generic_writepages(struct address_space *mapping,
  1691. struct writeback_control *wbc)
  1692. {
  1693. struct blk_plug plug;
  1694. int ret;
  1695. /* deal with chardevs and other special file */
  1696. if (!mapping->a_ops->writepage)
  1697. return 0;
  1698. blk_start_plug(&plug);
  1699. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1700. blk_finish_plug(&plug);
  1701. return ret;
  1702. }
  1703. EXPORT_SYMBOL(generic_writepages);
  1704. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1705. {
  1706. int ret;
  1707. if (wbc->nr_to_write <= 0)
  1708. return 0;
  1709. if (mapping->a_ops->writepages)
  1710. ret = mapping->a_ops->writepages(mapping, wbc);
  1711. else
  1712. ret = generic_writepages(mapping, wbc);
  1713. return ret;
  1714. }
  1715. /**
  1716. * write_one_page - write out a single page and optionally wait on I/O
  1717. * @page: the page to write
  1718. * @wait: if true, wait on writeout
  1719. *
  1720. * The page must be locked by the caller and will be unlocked upon return.
  1721. *
  1722. * write_one_page() returns a negative error code if I/O failed.
  1723. */
  1724. int write_one_page(struct page *page, int wait)
  1725. {
  1726. struct address_space *mapping = page->mapping;
  1727. int ret = 0;
  1728. struct writeback_control wbc = {
  1729. .sync_mode = WB_SYNC_ALL,
  1730. .nr_to_write = 1,
  1731. };
  1732. BUG_ON(!PageLocked(page));
  1733. if (wait)
  1734. wait_on_page_writeback(page);
  1735. if (clear_page_dirty_for_io(page)) {
  1736. page_cache_get(page);
  1737. ret = mapping->a_ops->writepage(page, &wbc);
  1738. if (ret == 0 && wait) {
  1739. wait_on_page_writeback(page);
  1740. if (PageError(page))
  1741. ret = -EIO;
  1742. }
  1743. page_cache_release(page);
  1744. } else {
  1745. unlock_page(page);
  1746. }
  1747. return ret;
  1748. }
  1749. EXPORT_SYMBOL(write_one_page);
  1750. /*
  1751. * For address_spaces which do not use buffers nor write back.
  1752. */
  1753. int __set_page_dirty_no_writeback(struct page *page)
  1754. {
  1755. if (!PageDirty(page))
  1756. return !TestSetPageDirty(page);
  1757. return 0;
  1758. }
  1759. /*
  1760. * Helper function for set_page_dirty family.
  1761. * NOTE: This relies on being atomic wrt interrupts.
  1762. */
  1763. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1764. {
  1765. if (mapping_cap_account_dirty(mapping)) {
  1766. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1767. __inc_zone_page_state(page, NR_DIRTIED);
  1768. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1769. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1770. task_io_account_write(PAGE_CACHE_SIZE);
  1771. current->nr_dirtied++;
  1772. this_cpu_inc(bdp_ratelimits);
  1773. }
  1774. }
  1775. EXPORT_SYMBOL(account_page_dirtied);
  1776. /*
  1777. * Helper function for set_page_writeback family.
  1778. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1779. * wrt interrupts.
  1780. */
  1781. void account_page_writeback(struct page *page)
  1782. {
  1783. inc_zone_page_state(page, NR_WRITEBACK);
  1784. }
  1785. EXPORT_SYMBOL(account_page_writeback);
  1786. /*
  1787. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1788. * its radix tree.
  1789. *
  1790. * This is also used when a single buffer is being dirtied: we want to set the
  1791. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1792. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1793. *
  1794. * The caller must ensure this doesn't race with truncation. Most will simply
  1795. * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
  1796. * the pte lock held, which also locks out truncat
  1797. */
  1798. int __set_page_dirty_nobuffers(struct page *page)
  1799. {
  1800. if (!TestSetPageDirty(page)) {
  1801. struct address_space *mapping = page_mapping(page);
  1802. unsigned long flags;
  1803. if (!mapping)
  1804. return 1;
  1805. spin_lock_irqsave(&mapping->tree_lock, flags);
  1806. BUG_ON(page_mapping(page) != mapping);
  1807. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1808. account_page_dirtied(page, mapping);
  1809. radix_tree_tag_set(&mapping->page_tree, page_index(page),
  1810. PAGECACHE_TAG_DIRTY);
  1811. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1812. if (mapping->host) {
  1813. /* !PageAnon && !swapper_space */
  1814. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1815. }
  1816. return 1;
  1817. }
  1818. return 0;
  1819. }
  1820. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1821. /*
  1822. * Call this whenever redirtying a page, to de-account the dirty counters
  1823. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  1824. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  1825. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  1826. * control.
  1827. */
  1828. void account_page_redirty(struct page *page)
  1829. {
  1830. struct address_space *mapping = page->mapping;
  1831. if (mapping && mapping_cap_account_dirty(mapping)) {
  1832. current->nr_dirtied--;
  1833. dec_zone_page_state(page, NR_DIRTIED);
  1834. dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1835. }
  1836. }
  1837. EXPORT_SYMBOL(account_page_redirty);
  1838. /*
  1839. * When a writepage implementation decides that it doesn't want to write this
  1840. * page for some reason, it should redirty the locked page via
  1841. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1842. */
  1843. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1844. {
  1845. wbc->pages_skipped++;
  1846. account_page_redirty(page);
  1847. return __set_page_dirty_nobuffers(page);
  1848. }
  1849. EXPORT_SYMBOL(redirty_page_for_writepage);
  1850. /*
  1851. * Dirty a page.
  1852. *
  1853. * For pages with a mapping this should be done under the page lock
  1854. * for the benefit of asynchronous memory errors who prefer a consistent
  1855. * dirty state. This rule can be broken in some special cases,
  1856. * but should be better not to.
  1857. *
  1858. * If the mapping doesn't provide a set_page_dirty a_op, then
  1859. * just fall through and assume that it wants buffer_heads.
  1860. */
  1861. int set_page_dirty(struct page *page)
  1862. {
  1863. struct address_space *mapping = page_mapping(page);
  1864. if (likely(mapping)) {
  1865. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1866. /*
  1867. * readahead/lru_deactivate_page could remain
  1868. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1869. * About readahead, if the page is written, the flags would be
  1870. * reset. So no problem.
  1871. * About lru_deactivate_page, if the page is redirty, the flag
  1872. * will be reset. So no problem. but if the page is used by readahead
  1873. * it will confuse readahead and make it restart the size rampup
  1874. * process. But it's a trivial problem.
  1875. */
  1876. ClearPageReclaim(page);
  1877. #ifdef CONFIG_BLOCK
  1878. if (!spd)
  1879. spd = __set_page_dirty_buffers;
  1880. #endif
  1881. return (*spd)(page);
  1882. }
  1883. if (!PageDirty(page)) {
  1884. if (!TestSetPageDirty(page))
  1885. return 1;
  1886. }
  1887. return 0;
  1888. }
  1889. EXPORT_SYMBOL(set_page_dirty);
  1890. /*
  1891. * set_page_dirty() is racy if the caller has no reference against
  1892. * page->mapping->host, and if the page is unlocked. This is because another
  1893. * CPU could truncate the page off the mapping and then free the mapping.
  1894. *
  1895. * Usually, the page _is_ locked, or the caller is a user-space process which
  1896. * holds a reference on the inode by having an open file.
  1897. *
  1898. * In other cases, the page should be locked before running set_page_dirty().
  1899. */
  1900. int set_page_dirty_lock(struct page *page)
  1901. {
  1902. int ret;
  1903. lock_page(page);
  1904. ret = set_page_dirty(page);
  1905. unlock_page(page);
  1906. return ret;
  1907. }
  1908. EXPORT_SYMBOL(set_page_dirty_lock);
  1909. /*
  1910. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1911. * Returns true if the page was previously dirty.
  1912. *
  1913. * This is for preparing to put the page under writeout. We leave the page
  1914. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1915. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1916. * implementation will run either set_page_writeback() or set_page_dirty(),
  1917. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1918. * back into sync.
  1919. *
  1920. * This incoherency between the page's dirty flag and radix-tree tag is
  1921. * unfortunate, but it only exists while the page is locked.
  1922. */
  1923. int clear_page_dirty_for_io(struct page *page)
  1924. {
  1925. struct address_space *mapping = page_mapping(page);
  1926. BUG_ON(!PageLocked(page));
  1927. if (mapping && mapping_cap_account_dirty(mapping)) {
  1928. /*
  1929. * Yes, Virginia, this is indeed insane.
  1930. *
  1931. * We use this sequence to make sure that
  1932. * (a) we account for dirty stats properly
  1933. * (b) we tell the low-level filesystem to
  1934. * mark the whole page dirty if it was
  1935. * dirty in a pagetable. Only to then
  1936. * (c) clean the page again and return 1 to
  1937. * cause the writeback.
  1938. *
  1939. * This way we avoid all nasty races with the
  1940. * dirty bit in multiple places and clearing
  1941. * them concurrently from different threads.
  1942. *
  1943. * Note! Normally the "set_page_dirty(page)"
  1944. * has no effect on the actual dirty bit - since
  1945. * that will already usually be set. But we
  1946. * need the side effects, and it can help us
  1947. * avoid races.
  1948. *
  1949. * We basically use the page "master dirty bit"
  1950. * as a serialization point for all the different
  1951. * threads doing their things.
  1952. */
  1953. if (page_mkclean(page))
  1954. set_page_dirty(page);
  1955. /*
  1956. * We carefully synchronise fault handlers against
  1957. * installing a dirty pte and marking the page dirty
  1958. * at this point. We do this by having them hold the
  1959. * page lock while dirtying the page, and pages are
  1960. * always locked coming in here, so we get the desired
  1961. * exclusion.
  1962. */
  1963. if (TestClearPageDirty(page)) {
  1964. dec_zone_page_state(page, NR_FILE_DIRTY);
  1965. dec_bdi_stat(mapping->backing_dev_info,
  1966. BDI_RECLAIMABLE);
  1967. return 1;
  1968. }
  1969. return 0;
  1970. }
  1971. return TestClearPageDirty(page);
  1972. }
  1973. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1974. int test_clear_page_writeback(struct page *page)
  1975. {
  1976. struct address_space *mapping = page_mapping(page);
  1977. int ret;
  1978. if (mapping) {
  1979. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1980. unsigned long flags;
  1981. spin_lock_irqsave(&mapping->tree_lock, flags);
  1982. ret = TestClearPageWriteback(page);
  1983. if (ret) {
  1984. radix_tree_tag_clear(&mapping->page_tree,
  1985. page_index(page),
  1986. PAGECACHE_TAG_WRITEBACK);
  1987. if (bdi_cap_account_writeback(bdi)) {
  1988. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1989. __bdi_writeout_inc(bdi);
  1990. }
  1991. }
  1992. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1993. } else {
  1994. ret = TestClearPageWriteback(page);
  1995. }
  1996. if (ret) {
  1997. dec_zone_page_state(page, NR_WRITEBACK);
  1998. inc_zone_page_state(page, NR_WRITTEN);
  1999. }
  2000. return ret;
  2001. }
  2002. int test_set_page_writeback(struct page *page)
  2003. {
  2004. struct address_space *mapping = page_mapping(page);
  2005. int ret;
  2006. if (mapping) {
  2007. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2008. unsigned long flags;
  2009. spin_lock_irqsave(&mapping->tree_lock, flags);
  2010. ret = TestSetPageWriteback(page);
  2011. if (!ret) {
  2012. radix_tree_tag_set(&mapping->page_tree,
  2013. page_index(page),
  2014. PAGECACHE_TAG_WRITEBACK);
  2015. if (bdi_cap_account_writeback(bdi))
  2016. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  2017. }
  2018. if (!PageDirty(page))
  2019. radix_tree_tag_clear(&mapping->page_tree,
  2020. page_index(page),
  2021. PAGECACHE_TAG_DIRTY);
  2022. radix_tree_tag_clear(&mapping->page_tree,
  2023. page_index(page),
  2024. PAGECACHE_TAG_TOWRITE);
  2025. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2026. } else {
  2027. ret = TestSetPageWriteback(page);
  2028. }
  2029. if (!ret)
  2030. account_page_writeback(page);
  2031. return ret;
  2032. }
  2033. EXPORT_SYMBOL(test_set_page_writeback);
  2034. /*
  2035. * Return true if any of the pages in the mapping are marked with the
  2036. * passed tag.
  2037. */
  2038. int mapping_tagged(struct address_space *mapping, int tag)
  2039. {
  2040. return radix_tree_tagged(&mapping->page_tree, tag);
  2041. }
  2042. EXPORT_SYMBOL(mapping_tagged);