1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012 |
- /*
- * NTP state machine interfaces and logic.
- *
- * This code was mainly moved from kernel/timer.c and kernel/time.c
- * Please see those files for relevant copyright info and historical
- * changelogs.
- */
- #include <linux/capability.h>
- #include <linux/clocksource.h>
- #include <linux/workqueue.h>
- #include <linux/hrtimer.h>
- #include <linux/jiffies.h>
- #include <linux/math64.h>
- #include <linux/timex.h>
- #include <linux/time.h>
- #include <linux/mm.h>
- #include <linux/module.h>
- #include "tick-internal.h"
- /*
- * NTP timekeeping variables:
- */
- DEFINE_SPINLOCK(ntp_lock);
- /* USER_HZ period (usecs): */
- unsigned long tick_usec = TICK_USEC;
- /* ACTHZ period (nsecs): */
- unsigned long tick_nsec;
- static u64 tick_length;
- static u64 tick_length_base;
- #define SECS_PER_DAY 86400
- #define MAX_TICKADJ 500LL /* usecs */
- #define MAX_TICKADJ_SCALED \
- (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
- /*
- * phase-lock loop variables
- */
- /*
- * clock synchronization status
- *
- * (TIME_ERROR prevents overwriting the CMOS clock)
- */
- static int time_state = TIME_OK;
- /* clock status bits: */
- static int time_status = STA_UNSYNC;
- /* TAI offset (secs): */
- static long time_tai;
- /* time adjustment (nsecs): */
- static s64 time_offset;
- /* pll time constant: */
- static long time_constant = 2;
- /* maximum error (usecs): */
- static long time_maxerror = NTP_PHASE_LIMIT;
- /* estimated error (usecs): */
- static long time_esterror = NTP_PHASE_LIMIT;
- /* frequency offset (scaled nsecs/secs): */
- static s64 time_freq;
- /* time at last adjustment (secs): */
- static long time_reftime;
- static long time_adjust;
- /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
- static s64 ntp_tick_adj;
- /* second value of the next pending leapsecond, or KTIME_MAX if no leap */
- static s64 ntp_next_leap_sec = KTIME_MAX;
- #ifdef CONFIG_NTP_PPS
- /*
- * The following variables are used when a pulse-per-second (PPS) signal
- * is available. They establish the engineering parameters of the clock
- * discipline loop when controlled by the PPS signal.
- */
- #define PPS_VALID 10 /* PPS signal watchdog max (s) */
- #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
- #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
- #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
- #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
- increase pps_shift or consecutive bad
- intervals to decrease it */
- #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
- static int pps_valid; /* signal watchdog counter */
- static long pps_tf[3]; /* phase median filter */
- static long pps_jitter; /* current jitter (ns) */
- static struct timespec pps_fbase; /* beginning of the last freq interval */
- static int pps_shift; /* current interval duration (s) (shift) */
- static int pps_intcnt; /* interval counter */
- static s64 pps_freq; /* frequency offset (scaled ns/s) */
- static long pps_stabil; /* current stability (scaled ns/s) */
- /*
- * PPS signal quality monitors
- */
- static long pps_calcnt; /* calibration intervals */
- static long pps_jitcnt; /* jitter limit exceeded */
- static long pps_stbcnt; /* stability limit exceeded */
- static long pps_errcnt; /* calibration errors */
- /* PPS kernel consumer compensates the whole phase error immediately.
- * Otherwise, reduce the offset by a fixed factor times the time constant.
- */
- static inline s64 ntp_offset_chunk(s64 offset)
- {
- if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
- return offset;
- else
- return shift_right(offset, SHIFT_PLL + time_constant);
- }
- static inline void pps_reset_freq_interval(void)
- {
- /* the PPS calibration interval may end
- surprisingly early */
- pps_shift = PPS_INTMIN;
- pps_intcnt = 0;
- }
- /**
- * pps_clear - Clears the PPS state variables
- *
- * Must be called while holding a write on the ntp_lock
- */
- static inline void pps_clear(void)
- {
- pps_reset_freq_interval();
- pps_tf[0] = 0;
- pps_tf[1] = 0;
- pps_tf[2] = 0;
- pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
- pps_freq = 0;
- }
- /* Decrease pps_valid to indicate that another second has passed since
- * the last PPS signal. When it reaches 0, indicate that PPS signal is
- * missing.
- *
- * Must be called while holding a write on the ntp_lock
- */
- static inline void pps_dec_valid(void)
- {
- if (pps_valid > 0)
- pps_valid--;
- else {
- time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
- STA_PPSWANDER | STA_PPSERROR);
- pps_clear();
- }
- }
- static inline void pps_set_freq(s64 freq)
- {
- pps_freq = freq;
- }
- static inline int is_error_status(int status)
- {
- return (time_status & (STA_UNSYNC|STA_CLOCKERR))
- /* PPS signal lost when either PPS time or
- * PPS frequency synchronization requested
- */
- || ((time_status & (STA_PPSFREQ|STA_PPSTIME))
- && !(time_status & STA_PPSSIGNAL))
- /* PPS jitter exceeded when
- * PPS time synchronization requested */
- || ((time_status & (STA_PPSTIME|STA_PPSJITTER))
- == (STA_PPSTIME|STA_PPSJITTER))
- /* PPS wander exceeded or calibration error when
- * PPS frequency synchronization requested
- */
- || ((time_status & STA_PPSFREQ)
- && (time_status & (STA_PPSWANDER|STA_PPSERROR)));
- }
- static inline void pps_fill_timex(struct timex *txc)
- {
- txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
- PPM_SCALE_INV, NTP_SCALE_SHIFT);
- txc->jitter = pps_jitter;
- if (!(time_status & STA_NANO))
- txc->jitter /= NSEC_PER_USEC;
- txc->shift = pps_shift;
- txc->stabil = pps_stabil;
- txc->jitcnt = pps_jitcnt;
- txc->calcnt = pps_calcnt;
- txc->errcnt = pps_errcnt;
- txc->stbcnt = pps_stbcnt;
- }
- #else /* !CONFIG_NTP_PPS */
- static inline s64 ntp_offset_chunk(s64 offset)
- {
- return shift_right(offset, SHIFT_PLL + time_constant);
- }
- static inline void pps_reset_freq_interval(void) {}
- static inline void pps_clear(void) {}
- static inline void pps_dec_valid(void) {}
- static inline void pps_set_freq(s64 freq) {}
- static inline int is_error_status(int status)
- {
- return status & (STA_UNSYNC|STA_CLOCKERR);
- }
- static inline void pps_fill_timex(struct timex *txc)
- {
- /* PPS is not implemented, so these are zero */
- txc->ppsfreq = 0;
- txc->jitter = 0;
- txc->shift = 0;
- txc->stabil = 0;
- txc->jitcnt = 0;
- txc->calcnt = 0;
- txc->errcnt = 0;
- txc->stbcnt = 0;
- }
- #endif /* CONFIG_NTP_PPS */
- /**
- * ntp_synced - Returns 1 if the NTP status is not UNSYNC
- *
- */
- static inline int ntp_synced(void)
- {
- return !(time_status & STA_UNSYNC);
- }
- /*
- * NTP methods:
- */
- /*
- * Update (tick_length, tick_length_base, tick_nsec), based
- * on (tick_usec, ntp_tick_adj, time_freq):
- */
- static void ntp_update_frequency(void)
- {
- u64 second_length;
- u64 new_base;
- second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
- << NTP_SCALE_SHIFT;
- second_length += ntp_tick_adj;
- second_length += time_freq;
- tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
- new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
- /*
- * Don't wait for the next second_overflow, apply
- * the change to the tick length immediately:
- */
- tick_length += new_base - tick_length_base;
- tick_length_base = new_base;
- }
- static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
- {
- time_status &= ~STA_MODE;
- if (secs < MINSEC)
- return 0;
- if (!(time_status & STA_FLL) && (secs <= MAXSEC))
- return 0;
- time_status |= STA_MODE;
- return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
- }
- static void ntp_update_offset(long offset)
- {
- s64 freq_adj;
- s64 offset64;
- long secs;
- if (!(time_status & STA_PLL))
- return;
- if (!(time_status & STA_NANO))
- offset *= NSEC_PER_USEC;
- /*
- * Scale the phase adjustment and
- * clamp to the operating range.
- */
- offset = min(offset, MAXPHASE);
- offset = max(offset, -MAXPHASE);
- /*
- * Select how the frequency is to be controlled
- * and in which mode (PLL or FLL).
- */
- secs = get_seconds() - time_reftime;
- if (unlikely(time_status & STA_FREQHOLD))
- secs = 0;
- time_reftime = get_seconds();
- offset64 = offset;
- freq_adj = ntp_update_offset_fll(offset64, secs);
- /*
- * Clamp update interval to reduce PLL gain with low
- * sampling rate (e.g. intermittent network connection)
- * to avoid instability.
- */
- if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
- secs = 1 << (SHIFT_PLL + 1 + time_constant);
- freq_adj += (offset64 * secs) <<
- (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
- freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
- time_freq = max(freq_adj, -MAXFREQ_SCALED);
- time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
- }
- /**
- * ntp_clear - Clears the NTP state variables
- */
- void ntp_clear(void)
- {
- unsigned long flags;
- spin_lock_irqsave(&ntp_lock, flags);
- time_adjust = 0; /* stop active adjtime() */
- time_status |= STA_UNSYNC;
- time_maxerror = NTP_PHASE_LIMIT;
- time_esterror = NTP_PHASE_LIMIT;
- ntp_next_leap_sec = KTIME_MAX;
- ntp_update_frequency();
- tick_length = tick_length_base;
- time_offset = 0;
- /* Clear PPS state variables */
- pps_clear();
- spin_unlock_irqrestore(&ntp_lock, flags);
- }
- u64 ntp_tick_length(void)
- {
- unsigned long flags;
- s64 ret;
- spin_lock_irqsave(&ntp_lock, flags);
- ret = tick_length;
- spin_unlock_irqrestore(&ntp_lock, flags);
- return ret;
- }
- /**
- * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
- *
- * Provides the time of the next leapsecond against CLOCK_REALTIME in
- * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
- */
- ktime_t ntp_get_next_leap(void)
- {
- ktime_t ret;
- if ((time_state == TIME_INS) && (time_status & STA_INS))
- return ktime_set(ntp_next_leap_sec, 0);
- ret.tv64 = KTIME_MAX;
- return ret;
- }
- /*
- * this routine handles the overflow of the microsecond field
- *
- * The tricky bits of code to handle the accurate clock support
- * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
- * They were originally developed for SUN and DEC kernels.
- * All the kudos should go to Dave for this stuff.
- *
- * Also handles leap second processing, and returns leap offset
- */
- int second_overflow(unsigned long secs)
- {
- s64 delta;
- int leap = 0;
- unsigned long flags;
- spin_lock_irqsave(&ntp_lock, flags);
- /*
- * Leap second processing. If in leap-insert state at the end of the
- * day, the system clock is set back one second; if in leap-delete
- * state, the system clock is set ahead one second.
- */
- switch (time_state) {
- case TIME_OK:
- if (time_status & STA_INS) {
- time_state = TIME_INS;
- ntp_next_leap_sec = secs + SECS_PER_DAY -
- (secs % SECS_PER_DAY);
- } else if (time_status & STA_DEL) {
- time_state = TIME_DEL;
- ntp_next_leap_sec = secs + SECS_PER_DAY -
- ((secs+1) % SECS_PER_DAY);
- }
- break;
- case TIME_INS:
- if (!(time_status & STA_INS)) {
- ntp_next_leap_sec = KTIME_MAX;
- time_state = TIME_OK;
- } else if (secs % SECS_PER_DAY == 0) {
- leap = -1;
- time_state = TIME_OOP;
- time_tai++;
- printk(KERN_NOTICE
- "Clock: inserting leap second 23:59:60 UTC\n");
- }
- break;
- case TIME_DEL:
- if (!(time_status & STA_DEL)) {
- ntp_next_leap_sec = KTIME_MAX;
- time_state = TIME_OK;
- } else if ((secs + 1) % SECS_PER_DAY == 0) {
- leap = 1;
- ntp_next_leap_sec = KTIME_MAX;
- time_tai--;
- time_state = TIME_WAIT;
- printk(KERN_NOTICE
- "Clock: deleting leap second 23:59:59 UTC\n");
- }
- break;
- case TIME_OOP:
- ntp_next_leap_sec = KTIME_MAX;
- time_state = TIME_WAIT;
- break;
- case TIME_WAIT:
- if (!(time_status & (STA_INS | STA_DEL)))
- time_state = TIME_OK;
- break;
- }
- /* Bump the maxerror field */
- time_maxerror += MAXFREQ / NSEC_PER_USEC;
- if (time_maxerror > NTP_PHASE_LIMIT) {
- time_maxerror = NTP_PHASE_LIMIT;
- time_status |= STA_UNSYNC;
- }
- /* Compute the phase adjustment for the next second */
- tick_length = tick_length_base;
- delta = ntp_offset_chunk(time_offset);
- time_offset -= delta;
- tick_length += delta;
- /* Check PPS signal */
- pps_dec_valid();
- if (!time_adjust)
- goto out;
- if (time_adjust > MAX_TICKADJ) {
- time_adjust -= MAX_TICKADJ;
- tick_length += MAX_TICKADJ_SCALED;
- goto out;
- }
- if (time_adjust < -MAX_TICKADJ) {
- time_adjust += MAX_TICKADJ;
- tick_length -= MAX_TICKADJ_SCALED;
- goto out;
- }
- tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
- << NTP_SCALE_SHIFT;
- time_adjust = 0;
- out:
- spin_unlock_irqrestore(&ntp_lock, flags);
- return leap;
- }
- #ifdef CONFIG_GENERIC_CMOS_UPDATE
- static void sync_cmos_clock(struct work_struct *work);
- static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
- static void sync_cmos_clock(struct work_struct *work)
- {
- struct timespec now, next;
- int fail = 1;
- /*
- * If we have an externally synchronized Linux clock, then update
- * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
- * called as close as possible to 500 ms before the new second starts.
- * This code is run on a timer. If the clock is set, that timer
- * may not expire at the correct time. Thus, we adjust...
- */
- if (!ntp_synced()) {
- /*
- * Not synced, exit, do not restart a timer (if one is
- * running, let it run out).
- */
- return;
- }
- getnstimeofday(&now);
- if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
- fail = update_persistent_clock(now);
- next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
- if (next.tv_nsec <= 0)
- next.tv_nsec += NSEC_PER_SEC;
- if (!fail)
- next.tv_sec = 659;
- else
- next.tv_sec = 0;
- if (next.tv_nsec >= NSEC_PER_SEC) {
- next.tv_sec++;
- next.tv_nsec -= NSEC_PER_SEC;
- }
- schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
- }
- static void notify_cmos_timer(void)
- {
- schedule_delayed_work(&sync_cmos_work, 0);
- }
- #else
- static inline void notify_cmos_timer(void) { }
- #endif
- /*
- * Propagate a new txc->status value into the NTP state:
- */
- static inline void process_adj_status(struct timex *txc, struct timespec *ts)
- {
- if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
- time_state = TIME_OK;
- time_status = STA_UNSYNC;
- ntp_next_leap_sec = KTIME_MAX;
- /* restart PPS frequency calibration */
- pps_reset_freq_interval();
- }
- /*
- * If we turn on PLL adjustments then reset the
- * reference time to current time.
- */
- if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
- time_reftime = get_seconds();
- /* only set allowed bits */
- time_status &= STA_RONLY;
- time_status |= txc->status & ~STA_RONLY;
- }
- /*
- * Called with the xtime lock held, so we can access and modify
- * all the global NTP state:
- */
- static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
- {
- if (txc->modes & ADJ_STATUS)
- process_adj_status(txc, ts);
- if (txc->modes & ADJ_NANO)
- time_status |= STA_NANO;
- if (txc->modes & ADJ_MICRO)
- time_status &= ~STA_NANO;
- if (txc->modes & ADJ_FREQUENCY) {
- time_freq = txc->freq * PPM_SCALE;
- time_freq = min(time_freq, MAXFREQ_SCALED);
- time_freq = max(time_freq, -MAXFREQ_SCALED);
- /* update pps_freq */
- pps_set_freq(time_freq);
- }
- if (txc->modes & ADJ_MAXERROR)
- time_maxerror = txc->maxerror;
- if (txc->modes & ADJ_ESTERROR)
- time_esterror = txc->esterror;
- if (txc->modes & ADJ_TIMECONST) {
- time_constant = txc->constant;
- if (!(time_status & STA_NANO))
- time_constant += 4;
- time_constant = min(time_constant, (long)MAXTC);
- time_constant = max(time_constant, 0l);
- }
- if (txc->modes & ADJ_TAI && txc->constant > 0)
- time_tai = txc->constant;
- if (txc->modes & ADJ_OFFSET)
- ntp_update_offset(txc->offset);
- if (txc->modes & ADJ_TICK)
- tick_usec = txc->tick;
- if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
- ntp_update_frequency();
- }
- /*
- * adjtimex mainly allows reading (and writing, if superuser) of
- * kernel time-keeping variables. used by xntpd.
- */
- int __do_adjtimex(struct timex *txc)
- {
- struct timespec ts;
- int result;
- /* Validate the data before disabling interrupts */
- if (txc->modes & ADJ_ADJTIME) {
- /* singleshot must not be used with any other mode bits */
- if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
- return -EINVAL;
- if (!(txc->modes & ADJ_OFFSET_READONLY) &&
- !capable(CAP_SYS_TIME))
- return -EPERM;
- } else {
- /* In order to modify anything, you gotta be super-user! */
- if (txc->modes && !capable(CAP_SYS_TIME))
- return -EPERM;
- /*
- * if the quartz is off by more than 10% then
- * something is VERY wrong!
- */
- if (txc->modes & ADJ_TICK &&
- (txc->tick < 900000/USER_HZ ||
- txc->tick > 1100000/USER_HZ))
- return -EINVAL;
- }
- if (txc->modes & ADJ_SETOFFSET) {
- struct timespec delta;
- delta.tv_sec = txc->time.tv_sec;
- delta.tv_nsec = txc->time.tv_usec;
- if (!capable(CAP_SYS_TIME))
- return -EPERM;
- if (!(txc->modes & ADJ_NANO))
- delta.tv_nsec *= 1000;
- result = timekeeping_inject_offset(&delta);
- if (result)
- return result;
- }
- /*
- * Check for potential multiplication overflows that can
- * only happen on 64-bit systems:
- */
- if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
- if (LLONG_MIN / PPM_SCALE > txc->freq)
- return -EINVAL;
- if (LLONG_MAX / PPM_SCALE < txc->freq)
- return -EINVAL;
- }
- getnstimeofday(&ts);
- spin_lock_irq(&ntp_lock);
- if (txc->modes & ADJ_ADJTIME) {
- long save_adjust = time_adjust;
- if (!(txc->modes & ADJ_OFFSET_READONLY)) {
- /* adjtime() is independent from ntp_adjtime() */
- time_adjust = txc->offset;
- ntp_update_frequency();
- }
- txc->offset = save_adjust;
- } else {
- /* If there are input parameters, then process them: */
- if (txc->modes)
- process_adjtimex_modes(txc, &ts);
- txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
- NTP_SCALE_SHIFT);
- if (!(time_status & STA_NANO))
- txc->offset /= NSEC_PER_USEC;
- }
- result = time_state; /* mostly `TIME_OK' */
- /* check for errors */
- if (is_error_status(time_status))
- result = TIME_ERROR;
- txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
- PPM_SCALE_INV, NTP_SCALE_SHIFT);
- txc->maxerror = time_maxerror;
- txc->esterror = time_esterror;
- txc->status = time_status;
- txc->constant = time_constant;
- txc->precision = 1;
- txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
- txc->tick = tick_usec;
- txc->tai = time_tai;
- /* fill PPS status fields */
- pps_fill_timex(txc);
- spin_unlock_irq(&ntp_lock);
- txc->time.tv_sec = ts.tv_sec;
- txc->time.tv_usec = ts.tv_nsec;
- if (!(time_status & STA_NANO))
- txc->time.tv_usec /= NSEC_PER_USEC;
- notify_cmos_timer();
- return result;
- }
- #ifdef CONFIG_NTP_PPS
- /* actually struct pps_normtime is good old struct timespec, but it is
- * semantically different (and it is the reason why it was invented):
- * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
- * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
- struct pps_normtime {
- __kernel_time_t sec; /* seconds */
- long nsec; /* nanoseconds */
- };
- /* normalize the timestamp so that nsec is in the
- ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
- static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
- {
- struct pps_normtime norm = {
- .sec = ts.tv_sec,
- .nsec = ts.tv_nsec
- };
- if (norm.nsec > (NSEC_PER_SEC >> 1)) {
- norm.nsec -= NSEC_PER_SEC;
- norm.sec++;
- }
- return norm;
- }
- /* get current phase correction and jitter */
- static inline long pps_phase_filter_get(long *jitter)
- {
- *jitter = pps_tf[0] - pps_tf[1];
- if (*jitter < 0)
- *jitter = -*jitter;
- /* TODO: test various filters */
- return pps_tf[0];
- }
- /* add the sample to the phase filter */
- static inline void pps_phase_filter_add(long err)
- {
- pps_tf[2] = pps_tf[1];
- pps_tf[1] = pps_tf[0];
- pps_tf[0] = err;
- }
- /* decrease frequency calibration interval length.
- * It is halved after four consecutive unstable intervals.
- */
- static inline void pps_dec_freq_interval(void)
- {
- if (--pps_intcnt <= -PPS_INTCOUNT) {
- pps_intcnt = -PPS_INTCOUNT;
- if (pps_shift > PPS_INTMIN) {
- pps_shift--;
- pps_intcnt = 0;
- }
- }
- }
- /* increase frequency calibration interval length.
- * It is doubled after four consecutive stable intervals.
- */
- static inline void pps_inc_freq_interval(void)
- {
- if (++pps_intcnt >= PPS_INTCOUNT) {
- pps_intcnt = PPS_INTCOUNT;
- if (pps_shift < PPS_INTMAX) {
- pps_shift++;
- pps_intcnt = 0;
- }
- }
- }
- /* update clock frequency based on MONOTONIC_RAW clock PPS signal
- * timestamps
- *
- * At the end of the calibration interval the difference between the
- * first and last MONOTONIC_RAW clock timestamps divided by the length
- * of the interval becomes the frequency update. If the interval was
- * too long, the data are discarded.
- * Returns the difference between old and new frequency values.
- */
- static long hardpps_update_freq(struct pps_normtime freq_norm)
- {
- long delta, delta_mod;
- s64 ftemp;
- /* check if the frequency interval was too long */
- if (freq_norm.sec > (2 << pps_shift)) {
- time_status |= STA_PPSERROR;
- pps_errcnt++;
- pps_dec_freq_interval();
- pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
- freq_norm.sec);
- return 0;
- }
- /* here the raw frequency offset and wander (stability) is
- * calculated. If the wander is less than the wander threshold
- * the interval is increased; otherwise it is decreased.
- */
- ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
- freq_norm.sec);
- delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
- pps_freq = ftemp;
- if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
- pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
- time_status |= STA_PPSWANDER;
- pps_stbcnt++;
- pps_dec_freq_interval();
- } else { /* good sample */
- pps_inc_freq_interval();
- }
- /* the stability metric is calculated as the average of recent
- * frequency changes, but is used only for performance
- * monitoring
- */
- delta_mod = delta;
- if (delta_mod < 0)
- delta_mod = -delta_mod;
- pps_stabil += (div_s64(((s64)delta_mod) <<
- (NTP_SCALE_SHIFT - SHIFT_USEC),
- NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
- /* if enabled, the system clock frequency is updated */
- if ((time_status & STA_PPSFREQ) != 0 &&
- (time_status & STA_FREQHOLD) == 0) {
- time_freq = pps_freq;
- ntp_update_frequency();
- }
- return delta;
- }
- /* correct REALTIME clock phase error against PPS signal */
- static void hardpps_update_phase(long error)
- {
- long correction = -error;
- long jitter;
- /* add the sample to the median filter */
- pps_phase_filter_add(correction);
- correction = pps_phase_filter_get(&jitter);
- /* Nominal jitter is due to PPS signal noise. If it exceeds the
- * threshold, the sample is discarded; otherwise, if so enabled,
- * the time offset is updated.
- */
- if (jitter > (pps_jitter << PPS_POPCORN)) {
- pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
- jitter, (pps_jitter << PPS_POPCORN));
- time_status |= STA_PPSJITTER;
- pps_jitcnt++;
- } else if (time_status & STA_PPSTIME) {
- /* correct the time using the phase offset */
- time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
- NTP_INTERVAL_FREQ);
- /* cancel running adjtime() */
- time_adjust = 0;
- }
- /* update jitter */
- pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
- }
- /*
- * hardpps() - discipline CPU clock oscillator to external PPS signal
- *
- * This routine is called at each PPS signal arrival in order to
- * discipline the CPU clock oscillator to the PPS signal. It takes two
- * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
- * is used to correct clock phase error and the latter is used to
- * correct the frequency.
- *
- * This code is based on David Mills's reference nanokernel
- * implementation. It was mostly rewritten but keeps the same idea.
- */
- void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
- {
- struct pps_normtime pts_norm, freq_norm;
- unsigned long flags;
- pts_norm = pps_normalize_ts(*phase_ts);
- spin_lock_irqsave(&ntp_lock, flags);
- /* clear the error bits, they will be set again if needed */
- time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
- /* indicate signal presence */
- time_status |= STA_PPSSIGNAL;
- pps_valid = PPS_VALID;
- /* when called for the first time,
- * just start the frequency interval */
- if (unlikely(pps_fbase.tv_sec == 0)) {
- pps_fbase = *raw_ts;
- spin_unlock_irqrestore(&ntp_lock, flags);
- return;
- }
- /* ok, now we have a base for frequency calculation */
- freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
- /* check that the signal is in the range
- * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
- if ((freq_norm.sec == 0) ||
- (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
- (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
- time_status |= STA_PPSJITTER;
- /* restart the frequency calibration interval */
- pps_fbase = *raw_ts;
- spin_unlock_irqrestore(&ntp_lock, flags);
- pr_err("hardpps: PPSJITTER: bad pulse\n");
- return;
- }
- /* signal is ok */
- /* check if the current frequency interval is finished */
- if (freq_norm.sec >= (1 << pps_shift)) {
- pps_calcnt++;
- /* restart the frequency calibration interval */
- pps_fbase = *raw_ts;
- hardpps_update_freq(freq_norm);
- }
- hardpps_update_phase(pts_norm.nsec);
- spin_unlock_irqrestore(&ntp_lock, flags);
- }
- EXPORT_SYMBOL(hardpps);
- #endif /* CONFIG_NTP_PPS */
- static int __init ntp_tick_adj_setup(char *str)
- {
- ntp_tick_adj = simple_strtol(str, NULL, 0);
- ntp_tick_adj <<= NTP_SCALE_SHIFT;
- return 1;
- }
- __setup("ntp_tick_adj=", ntp_tick_adj_setup);
- void __init ntp_init(void)
- {
- ntp_clear();
- }
|