task_mmu.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448
  1. #include <linux/mm.h>
  2. #include <linux/hugetlb.h>
  3. #include <linux/huge_mm.h>
  4. #include <linux/mount.h>
  5. #include <linux/seq_file.h>
  6. #include <linux/highmem.h>
  7. #include <linux/ptrace.h>
  8. #include <linux/slab.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/mempolicy.h>
  11. #include <linux/rmap.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <asm/elf.h>
  15. #include <asm/uaccess.h>
  16. #include <asm/tlbflush.h>
  17. #include "internal.h"
  18. void task_mem(struct seq_file *m, struct mm_struct *mm)
  19. {
  20. unsigned long data, text, lib, swap;
  21. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  22. /*
  23. * Note: to minimize their overhead, mm maintains hiwater_vm and
  24. * hiwater_rss only when about to *lower* total_vm or rss. Any
  25. * collector of these hiwater stats must therefore get total_vm
  26. * and rss too, which will usually be the higher. Barriers? not
  27. * worth the effort, such snapshots can always be inconsistent.
  28. */
  29. hiwater_vm = total_vm = mm->total_vm;
  30. if (hiwater_vm < mm->hiwater_vm)
  31. hiwater_vm = mm->hiwater_vm;
  32. hiwater_rss = total_rss = get_mm_rss(mm);
  33. if (hiwater_rss < mm->hiwater_rss)
  34. hiwater_rss = mm->hiwater_rss;
  35. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  36. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  37. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  38. swap = get_mm_counter(mm, MM_SWAPENTS);
  39. seq_printf(m,
  40. "VmPeak:\t%8lu kB\n"
  41. "VmSize:\t%8lu kB\n"
  42. "VmLck:\t%8lu kB\n"
  43. "VmPin:\t%8lu kB\n"
  44. "VmHWM:\t%8lu kB\n"
  45. "VmRSS:\t%8lu kB\n"
  46. "VmData:\t%8lu kB\n"
  47. "VmStk:\t%8lu kB\n"
  48. "VmExe:\t%8lu kB\n"
  49. "VmLib:\t%8lu kB\n"
  50. "VmPTE:\t%8lu kB\n"
  51. "VmSwap:\t%8lu kB\n",
  52. hiwater_vm << (PAGE_SHIFT-10),
  53. (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
  54. mm->locked_vm << (PAGE_SHIFT-10),
  55. mm->pinned_vm << (PAGE_SHIFT-10),
  56. hiwater_rss << (PAGE_SHIFT-10),
  57. total_rss << (PAGE_SHIFT-10),
  58. data << (PAGE_SHIFT-10),
  59. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  60. (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  61. swap << (PAGE_SHIFT-10));
  62. }
  63. unsigned long task_vsize(struct mm_struct *mm)
  64. {
  65. return PAGE_SIZE * mm->total_vm;
  66. }
  67. unsigned long task_statm(struct mm_struct *mm,
  68. unsigned long *shared, unsigned long *text,
  69. unsigned long *data, unsigned long *resident)
  70. {
  71. *shared = get_mm_counter(mm, MM_FILEPAGES);
  72. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  73. >> PAGE_SHIFT;
  74. *data = mm->total_vm - mm->shared_vm;
  75. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  76. return mm->total_vm;
  77. }
  78. static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
  79. {
  80. const char __user *name = vma_get_anon_name(vma);
  81. struct mm_struct *mm = vma->vm_mm;
  82. unsigned long page_start_vaddr;
  83. unsigned long page_offset;
  84. unsigned long num_pages;
  85. unsigned long max_len = NAME_MAX;
  86. int i;
  87. page_start_vaddr = (unsigned long)name & PAGE_MASK;
  88. page_offset = (unsigned long)name - page_start_vaddr;
  89. num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
  90. seq_puts(m, "[anon:");
  91. for (i = 0; i < num_pages; i++) {
  92. int len;
  93. int write_len;
  94. const char *kaddr;
  95. long pages_pinned;
  96. struct page *page;
  97. pages_pinned = get_user_pages(current, mm, page_start_vaddr,
  98. 1, 0, 0, &page, NULL);
  99. if (pages_pinned < 1) {
  100. seq_puts(m, "<fault>]");
  101. return;
  102. }
  103. kaddr = (const char *)kmap(page);
  104. len = min(max_len, PAGE_SIZE - page_offset);
  105. write_len = strnlen(kaddr + page_offset, len);
  106. seq_write(m, kaddr + page_offset, write_len);
  107. kunmap(page);
  108. put_page(page);
  109. /* if strnlen hit a null terminator then we're done */
  110. if (write_len != len)
  111. break;
  112. max_len -= len;
  113. page_offset = 0;
  114. page_start_vaddr += PAGE_SIZE;
  115. }
  116. seq_putc(m, ']');
  117. }
  118. static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  119. {
  120. if (vma && vma != priv->tail_vma) {
  121. struct mm_struct *mm = vma->vm_mm;
  122. up_read(&mm->mmap_sem);
  123. mmput(mm);
  124. }
  125. }
  126. static void *m_start(struct seq_file *m, loff_t *pos)
  127. {
  128. struct proc_maps_private *priv = m->private;
  129. unsigned long last_addr = m->version;
  130. struct mm_struct *mm;
  131. struct vm_area_struct *vma, *tail_vma = NULL;
  132. loff_t l = *pos;
  133. /* Clear the per syscall fields in priv */
  134. priv->task = NULL;
  135. priv->tail_vma = NULL;
  136. /*
  137. * We remember last_addr rather than next_addr to hit with
  138. * mmap_cache most of the time. We have zero last_addr at
  139. * the beginning and also after lseek. We will have -1 last_addr
  140. * after the end of the vmas.
  141. */
  142. if (last_addr == -1UL)
  143. return NULL;
  144. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  145. if (!priv->task)
  146. return ERR_PTR(-ESRCH);
  147. mm = mm_for_maps(priv->task);
  148. if (!mm || IS_ERR(mm))
  149. return mm;
  150. down_read(&mm->mmap_sem);
  151. tail_vma = get_gate_vma(priv->task->mm);
  152. priv->tail_vma = tail_vma;
  153. /* Start with last addr hint */
  154. vma = find_vma(mm, last_addr);
  155. if (last_addr && vma) {
  156. vma = vma->vm_next;
  157. goto out;
  158. }
  159. /*
  160. * Check the vma index is within the range and do
  161. * sequential scan until m_index.
  162. */
  163. vma = NULL;
  164. if ((unsigned long)l < mm->map_count) {
  165. vma = mm->mmap;
  166. while (l-- && vma)
  167. vma = vma->vm_next;
  168. goto out;
  169. }
  170. if (l != mm->map_count)
  171. tail_vma = NULL; /* After gate vma */
  172. out:
  173. if (vma)
  174. return vma;
  175. /* End of vmas has been reached */
  176. m->version = (tail_vma != NULL)? 0: -1UL;
  177. up_read(&mm->mmap_sem);
  178. mmput(mm);
  179. return tail_vma;
  180. }
  181. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  182. {
  183. struct proc_maps_private *priv = m->private;
  184. struct vm_area_struct *vma = v;
  185. struct vm_area_struct *tail_vma = priv->tail_vma;
  186. (*pos)++;
  187. if (vma && (vma != tail_vma) && vma->vm_next)
  188. return vma->vm_next;
  189. vma_stop(priv, vma);
  190. return (vma != tail_vma)? tail_vma: NULL;
  191. }
  192. static void m_stop(struct seq_file *m, void *v)
  193. {
  194. struct proc_maps_private *priv = m->private;
  195. struct vm_area_struct *vma = v;
  196. if (!IS_ERR(vma))
  197. vma_stop(priv, vma);
  198. if (priv->task)
  199. put_task_struct(priv->task);
  200. }
  201. static int do_maps_open(struct inode *inode, struct file *file,
  202. const struct seq_operations *ops)
  203. {
  204. struct proc_maps_private *priv;
  205. int ret = -ENOMEM;
  206. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  207. if (priv) {
  208. priv->pid = proc_pid(inode);
  209. ret = seq_open(file, ops);
  210. if (!ret) {
  211. struct seq_file *m = file->private_data;
  212. m->private = priv;
  213. } else {
  214. kfree(priv);
  215. }
  216. }
  217. return ret;
  218. }
  219. static void
  220. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  221. {
  222. struct mm_struct *mm = vma->vm_mm;
  223. struct file *file = vma->vm_file;
  224. struct proc_maps_private *priv = m->private;
  225. struct task_struct *task = priv->task;
  226. vm_flags_t flags = vma->vm_flags;
  227. unsigned long ino = 0;
  228. unsigned long long pgoff = 0;
  229. unsigned long start, end;
  230. dev_t dev = 0;
  231. const char *name = NULL;
  232. if (file) {
  233. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  234. dev = inode->i_sb->s_dev;
  235. ino = inode->i_ino;
  236. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  237. }
  238. /* We don't show the stack guard page in /proc/maps */
  239. start = vma->vm_start;
  240. end = vma->vm_end;
  241. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  242. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  243. start,
  244. end,
  245. flags & VM_READ ? 'r' : '-',
  246. flags & VM_WRITE ? 'w' : '-',
  247. flags & VM_EXEC ? 'x' : '-',
  248. flags & VM_MAYSHARE ? 's' : 'p',
  249. pgoff,
  250. MAJOR(dev), MINOR(dev), ino);
  251. /*
  252. * Print the dentry name for named mappings, and a
  253. * special [heap] marker for the heap:
  254. */
  255. if (file) {
  256. seq_pad(m, ' ');
  257. seq_path(m, &file->f_path, "\n");
  258. goto done;
  259. }
  260. name = arch_vma_name(vma);
  261. if (!name) {
  262. pid_t tid;
  263. if (!mm) {
  264. name = "[vdso]";
  265. goto done;
  266. }
  267. if (vma->vm_start <= mm->brk &&
  268. vma->vm_end >= mm->start_brk) {
  269. name = "[heap]";
  270. goto done;
  271. }
  272. tid = vm_is_stack(task, vma, is_pid);
  273. if (tid != 0) {
  274. /*
  275. * Thread stack in /proc/PID/task/TID/maps or
  276. * the main process stack.
  277. */
  278. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  279. vma->vm_end >= mm->start_stack)) {
  280. name = "[stack]";
  281. } else {
  282. /* Thread stack in /proc/PID/maps */
  283. seq_pad(m, ' ');
  284. seq_printf(m, "[stack:%d]", tid);
  285. }
  286. goto done;
  287. }
  288. if (vma_get_anon_name(vma)) {
  289. seq_pad(m, ' ');
  290. seq_print_vma_name(m, vma);
  291. }
  292. }
  293. done:
  294. if (name) {
  295. seq_pad(m, ' ');
  296. seq_puts(m, name);
  297. }
  298. seq_putc(m, '\n');
  299. }
  300. static int show_map(struct seq_file *m, void *v, int is_pid)
  301. {
  302. struct vm_area_struct *vma = v;
  303. struct proc_maps_private *priv = m->private;
  304. struct task_struct *task = priv->task;
  305. show_map_vma(m, vma, is_pid);
  306. if (m->count < m->size) /* vma is copied successfully */
  307. m->version = (vma != get_gate_vma(task->mm))
  308. ? vma->vm_start : 0;
  309. return 0;
  310. }
  311. static int show_pid_map(struct seq_file *m, void *v)
  312. {
  313. return show_map(m, v, 1);
  314. }
  315. static int show_tid_map(struct seq_file *m, void *v)
  316. {
  317. return show_map(m, v, 0);
  318. }
  319. static const struct seq_operations proc_pid_maps_op = {
  320. .start = m_start,
  321. .next = m_next,
  322. .stop = m_stop,
  323. .show = show_pid_map
  324. };
  325. static const struct seq_operations proc_tid_maps_op = {
  326. .start = m_start,
  327. .next = m_next,
  328. .stop = m_stop,
  329. .show = show_tid_map
  330. };
  331. static int pid_maps_open(struct inode *inode, struct file *file)
  332. {
  333. return do_maps_open(inode, file, &proc_pid_maps_op);
  334. }
  335. static int tid_maps_open(struct inode *inode, struct file *file)
  336. {
  337. return do_maps_open(inode, file, &proc_tid_maps_op);
  338. }
  339. const struct file_operations proc_pid_maps_operations = {
  340. .open = pid_maps_open,
  341. .read = seq_read,
  342. .llseek = seq_lseek,
  343. .release = seq_release_private,
  344. };
  345. const struct file_operations proc_tid_maps_operations = {
  346. .open = tid_maps_open,
  347. .read = seq_read,
  348. .llseek = seq_lseek,
  349. .release = seq_release_private,
  350. };
  351. /*
  352. * Proportional Set Size(PSS): my share of RSS.
  353. *
  354. * PSS of a process is the count of pages it has in memory, where each
  355. * page is divided by the number of processes sharing it. So if a
  356. * process has 1000 pages all to itself, and 1000 shared with one other
  357. * process, its PSS will be 1500.
  358. *
  359. * To keep (accumulated) division errors low, we adopt a 64bit
  360. * fixed-point pss counter to minimize division errors. So (pss >>
  361. * PSS_SHIFT) would be the real byte count.
  362. *
  363. * A shift of 12 before division means (assuming 4K page size):
  364. * - 1M 3-user-pages add up to 8KB errors;
  365. * - supports mapcount up to 2^24, or 16M;
  366. * - supports PSS up to 2^52 bytes, or 4PB.
  367. */
  368. #define PSS_SHIFT 12
  369. #ifdef CONFIG_PROC_PAGE_MONITOR
  370. struct mem_size_stats {
  371. struct vm_area_struct *vma;
  372. unsigned long resident;
  373. unsigned long shared_clean;
  374. unsigned long shared_dirty;
  375. unsigned long private_clean;
  376. unsigned long private_dirty;
  377. unsigned long referenced;
  378. unsigned long anonymous;
  379. unsigned long anonymous_thp;
  380. unsigned long swap;
  381. u64 pss;
  382. u64 swap_pss;
  383. };
  384. static void smaps_pte_entry(pte_t ptent, unsigned long addr,
  385. unsigned long ptent_size, struct mm_walk *walk)
  386. {
  387. struct mem_size_stats *mss = walk->private;
  388. struct vm_area_struct *vma = mss->vma;
  389. struct page *page = NULL;
  390. int mapcount;
  391. if (pte_present(ptent)) {
  392. page = vm_normal_page(vma, addr, ptent);
  393. } else if (is_swap_pte(ptent)) {
  394. swp_entry_t swpent = pte_to_swp_entry(ptent);
  395. if (!non_swap_entry(swpent)) {
  396. int mapcount;
  397. mss->swap += ptent_size;
  398. mapcount = swp_swapcount(swpent);
  399. if (mapcount >= 2) {
  400. u64 pss_delta = (u64)ptent_size << PSS_SHIFT;
  401. do_div(pss_delta, mapcount);
  402. mss->swap_pss += pss_delta;
  403. } else {
  404. mss->swap_pss += (u64)ptent_size << PSS_SHIFT;
  405. }
  406. } else if (is_migration_entry(swpent))
  407. page = migration_entry_to_page(swpent);
  408. }
  409. if (!page)
  410. return;
  411. if (PageAnon(page))
  412. mss->anonymous += ptent_size;
  413. mss->resident += ptent_size;
  414. /* Accumulate the size in pages that have been accessed. */
  415. if (pte_young(ptent) || PageReferenced(page))
  416. mss->referenced += ptent_size;
  417. mapcount = page_mapcount(page);
  418. if (mapcount >= 2) {
  419. if (pte_dirty(ptent) || PageDirty(page))
  420. mss->shared_dirty += ptent_size;
  421. else
  422. mss->shared_clean += ptent_size;
  423. mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
  424. } else {
  425. if (pte_dirty(ptent) || PageDirty(page))
  426. mss->private_dirty += ptent_size;
  427. else
  428. mss->private_clean += ptent_size;
  429. mss->pss += (ptent_size << PSS_SHIFT);
  430. }
  431. }
  432. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  433. struct mm_walk *walk)
  434. {
  435. struct mem_size_stats *mss = walk->private;
  436. struct vm_area_struct *vma = mss->vma;
  437. pte_t *pte;
  438. spinlock_t *ptl;
  439. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  440. smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
  441. spin_unlock(&walk->mm->page_table_lock);
  442. mss->anonymous_thp += HPAGE_PMD_SIZE;
  443. return 0;
  444. }
  445. if (pmd_trans_unstable(pmd))
  446. return 0;
  447. /*
  448. * The mmap_sem held all the way back in m_start() is what
  449. * keeps khugepaged out of here and from collapsing things
  450. * in here.
  451. */
  452. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  453. for (; addr != end; pte++, addr += PAGE_SIZE)
  454. smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
  455. pte_unmap_unlock(pte - 1, ptl);
  456. cond_resched();
  457. return 0;
  458. }
  459. static int show_smap(struct seq_file *m, void *v, int is_pid)
  460. {
  461. struct proc_maps_private *priv = m->private;
  462. struct task_struct *task = priv->task;
  463. struct vm_area_struct *vma = v;
  464. struct mem_size_stats mss;
  465. struct mm_walk smaps_walk = {
  466. .pmd_entry = smaps_pte_range,
  467. .mm = vma->vm_mm,
  468. .private = &mss,
  469. };
  470. memset(&mss, 0, sizeof mss);
  471. mss.vma = vma;
  472. /* mmap_sem is held in m_start */
  473. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  474. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  475. show_map_vma(m, vma, is_pid);
  476. seq_printf(m,
  477. "Size: %8lu kB\n"
  478. "Rss: %8lu kB\n"
  479. "Pss: %8lu kB\n"
  480. "Shared_Clean: %8lu kB\n"
  481. "Shared_Dirty: %8lu kB\n"
  482. "Private_Clean: %8lu kB\n"
  483. "Private_Dirty: %8lu kB\n"
  484. "Referenced: %8lu kB\n"
  485. "Anonymous: %8lu kB\n"
  486. "AnonHugePages: %8lu kB\n"
  487. "Swap: %8lu kB\n"
  488. "SwapPss: %8lu kB\n"
  489. "KernelPageSize: %8lu kB\n"
  490. "MMUPageSize: %8lu kB\n"
  491. "Locked: %8lu kB\n",
  492. (vma->vm_end - vma->vm_start) >> 10,
  493. mss.resident >> 10,
  494. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  495. mss.shared_clean >> 10,
  496. mss.shared_dirty >> 10,
  497. mss.private_clean >> 10,
  498. mss.private_dirty >> 10,
  499. mss.referenced >> 10,
  500. mss.anonymous >> 10,
  501. mss.anonymous_thp >> 10,
  502. mss.swap >> 10,
  503. (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
  504. vma_kernel_pagesize(vma) >> 10,
  505. vma_mmu_pagesize(vma) >> 10,
  506. (vma->vm_flags & VM_LOCKED) ?
  507. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  508. if (vma_get_anon_name(vma)) {
  509. seq_puts(m, "Name: ");
  510. seq_print_vma_name(m, vma);
  511. seq_putc(m, '\n');
  512. }
  513. if (m->count < m->size) /* vma is copied successfully */
  514. m->version = (vma != get_gate_vma(task->mm))
  515. ? vma->vm_start : 0;
  516. return 0;
  517. }
  518. static int show_pid_smap(struct seq_file *m, void *v)
  519. {
  520. return show_smap(m, v, 1);
  521. }
  522. static int show_tid_smap(struct seq_file *m, void *v)
  523. {
  524. return show_smap(m, v, 0);
  525. }
  526. static const struct seq_operations proc_pid_smaps_op = {
  527. .start = m_start,
  528. .next = m_next,
  529. .stop = m_stop,
  530. .show = show_pid_smap
  531. };
  532. static const struct seq_operations proc_tid_smaps_op = {
  533. .start = m_start,
  534. .next = m_next,
  535. .stop = m_stop,
  536. .show = show_tid_smap
  537. };
  538. static int pid_smaps_open(struct inode *inode, struct file *file)
  539. {
  540. return do_maps_open(inode, file, &proc_pid_smaps_op);
  541. }
  542. static int tid_smaps_open(struct inode *inode, struct file *file)
  543. {
  544. return do_maps_open(inode, file, &proc_tid_smaps_op);
  545. }
  546. const struct file_operations proc_pid_smaps_operations = {
  547. .open = pid_smaps_open,
  548. .read = seq_read,
  549. .llseek = seq_lseek,
  550. .release = seq_release_private,
  551. };
  552. static int proc_pid_smaps_simple_show(struct seq_file *m, void *v)
  553. {
  554. struct pid *pid = (struct pid *)m->private;
  555. struct task_struct *task;
  556. struct mm_struct *mm;
  557. struct vm_area_struct *vma;
  558. struct mem_size_stats mss_total;
  559. struct mem_size_stats mss;
  560. int ret = 0;
  561. struct mm_walk smaps_walk = {
  562. .pmd_entry = smaps_pte_range,
  563. .private = &mss,
  564. };
  565. task = get_pid_task(pid, PIDTYPE_PID);
  566. if (!task) {
  567. ret = -1;
  568. goto error_task;
  569. }
  570. mm = mm_access(task, PTRACE_MODE_READ);
  571. if (!mm || IS_ERR(mm)) {
  572. ret = -2;
  573. goto error_mm;
  574. }
  575. memset(&mss_total, 0, sizeof mss_total);
  576. down_read(&mm->mmap_sem);
  577. vma = mm->mmap;
  578. while (vma) {
  579. memset(&mss, 0, sizeof mss);
  580. mss.vma = vma;
  581. smaps_walk.mm = vma->vm_mm;
  582. if (vma->vm_mm && !is_vm_hugetlb_page(vma)) {
  583. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  584. mss_total.pss += mss.pss;
  585. mss_total.swap_pss += mss.swap_pss;
  586. }
  587. vma = vma->vm_next;
  588. }
  589. up_read(&mm->mmap_sem);
  590. mmput(mm);
  591. seq_printf(m,
  592. "Pss: %8lu kB\n"
  593. "SwapPss: %8lu kB\n",
  594. (unsigned long)(mss_total.pss >> (10 + PSS_SHIFT)),
  595. (unsigned long)(mss_total.swap_pss >> (10 + PSS_SHIFT)));
  596. error_mm:
  597. put_task_struct(task);
  598. error_task:
  599. return 0;
  600. }
  601. static int proc_pid_smaps_simple_open(struct inode *inode, struct file *file)
  602. {
  603. return single_open(file, proc_pid_smaps_simple_show, proc_pid(inode));
  604. }
  605. const struct file_operations proc_pid_smaps_simple_operations = {
  606. .open = proc_pid_smaps_simple_open,
  607. .read = seq_read,
  608. .llseek = seq_lseek,
  609. .release = single_release,
  610. };
  611. const struct file_operations proc_tid_smaps_operations = {
  612. .open = tid_smaps_open,
  613. .read = seq_read,
  614. .llseek = seq_lseek,
  615. .release = seq_release_private,
  616. };
  617. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  618. unsigned long end, struct mm_walk *walk)
  619. {
  620. struct vm_area_struct *vma = walk->private;
  621. pte_t *pte, ptent;
  622. spinlock_t *ptl;
  623. struct page *page;
  624. split_huge_page_pmd(walk->mm, pmd);
  625. if (pmd_trans_unstable(pmd))
  626. return 0;
  627. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  628. for (; addr != end; pte++, addr += PAGE_SIZE) {
  629. ptent = *pte;
  630. if (!pte_present(ptent))
  631. continue;
  632. page = vm_normal_page(vma, addr, ptent);
  633. if (!page)
  634. continue;
  635. /* Clear accessed and referenced bits. */
  636. ptep_test_and_clear_young(vma, addr, pte);
  637. ClearPageReferenced(page);
  638. }
  639. pte_unmap_unlock(pte - 1, ptl);
  640. cond_resched();
  641. return 0;
  642. }
  643. #define CLEAR_REFS_ALL 1
  644. #define CLEAR_REFS_ANON 2
  645. #define CLEAR_REFS_MAPPED 3
  646. #define CLEAR_REFS_MM_HIWATER_RSS 5
  647. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  648. size_t count, loff_t *ppos)
  649. {
  650. struct task_struct *task;
  651. char buffer[PROC_NUMBUF];
  652. struct mm_struct *mm;
  653. struct vm_area_struct *vma;
  654. int type;
  655. int rv;
  656. memset(buffer, 0, sizeof(buffer));
  657. if (count > sizeof(buffer) - 1)
  658. count = sizeof(buffer) - 1;
  659. if (copy_from_user(buffer, buf, count))
  660. return -EFAULT;
  661. rv = kstrtoint(strstrip(buffer), 10, &type);
  662. if (rv < 0)
  663. return rv;
  664. if ((type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED) &&
  665. type != CLEAR_REFS_MM_HIWATER_RSS)
  666. return -EINVAL;
  667. task = get_proc_task(file->f_path.dentry->d_inode);
  668. if (!task)
  669. return -ESRCH;
  670. mm = get_task_mm(task);
  671. if (mm) {
  672. struct mm_walk clear_refs_walk = {
  673. .pmd_entry = clear_refs_pte_range,
  674. .mm = mm,
  675. };
  676. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  677. /*
  678. * Writing 5 to /proc/pid/clear_refs resets the peak
  679. * resident set size to this mm's current rss value.
  680. */
  681. down_write(&mm->mmap_sem);
  682. reset_mm_hiwater_rss(mm);
  683. up_write(&mm->mmap_sem);
  684. goto out_mm;
  685. }
  686. down_read(&mm->mmap_sem);
  687. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  688. clear_refs_walk.private = vma;
  689. if (is_vm_hugetlb_page(vma))
  690. continue;
  691. /*
  692. * Writing 1 to /proc/pid/clear_refs affects all pages.
  693. *
  694. * Writing 2 to /proc/pid/clear_refs only affects
  695. * Anonymous pages.
  696. *
  697. * Writing 3 to /proc/pid/clear_refs only affects file
  698. * mapped pages.
  699. */
  700. if (type == CLEAR_REFS_ANON && vma->vm_file)
  701. continue;
  702. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  703. continue;
  704. walk_page_range(vma->vm_start, vma->vm_end,
  705. &clear_refs_walk);
  706. }
  707. flush_tlb_mm(mm);
  708. up_read(&mm->mmap_sem);
  709. out_mm:
  710. mmput(mm);
  711. }
  712. put_task_struct(task);
  713. return count;
  714. }
  715. const struct file_operations proc_clear_refs_operations = {
  716. .write = clear_refs_write,
  717. .llseek = noop_llseek,
  718. };
  719. typedef struct {
  720. u64 pme;
  721. } pagemap_entry_t;
  722. struct pagemapread {
  723. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  724. pagemap_entry_t *buffer;
  725. };
  726. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  727. #define PAGEMAP_WALK_MASK (PMD_MASK)
  728. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  729. #define PM_STATUS_BITS 3
  730. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  731. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  732. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  733. #define PM_PSHIFT_BITS 6
  734. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  735. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  736. #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  737. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  738. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  739. #define PM_PRESENT PM_STATUS(4LL)
  740. #define PM_SWAP PM_STATUS(2LL)
  741. #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
  742. #define PM_END_OF_BUFFER 1
  743. static inline pagemap_entry_t make_pme(u64 val)
  744. {
  745. return (pagemap_entry_t) { .pme = val };
  746. }
  747. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  748. struct pagemapread *pm)
  749. {
  750. pm->buffer[pm->pos++] = *pme;
  751. if (pm->pos >= pm->len)
  752. return PM_END_OF_BUFFER;
  753. return 0;
  754. }
  755. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  756. struct mm_walk *walk)
  757. {
  758. struct pagemapread *pm = walk->private;
  759. unsigned long addr;
  760. int err = 0;
  761. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
  762. for (addr = start; addr < end; addr += PAGE_SIZE) {
  763. err = add_to_pagemap(addr, &pme, pm);
  764. if (err)
  765. break;
  766. }
  767. return err;
  768. }
  769. static u64 swap_pte_to_pagemap_entry(pte_t pte)
  770. {
  771. swp_entry_t e = pte_to_swp_entry(pte);
  772. return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
  773. }
  774. static void pte_to_pagemap_entry(pagemap_entry_t *pme, pte_t pte)
  775. {
  776. if (is_swap_pte(pte))
  777. *pme = make_pme(PM_PFRAME(swap_pte_to_pagemap_entry(pte))
  778. | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP);
  779. else if (pte_present(pte))
  780. *pme = make_pme(PM_PFRAME(pte_pfn(pte))
  781. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
  782. else
  783. *pme = make_pme(PM_NOT_PRESENT);
  784. }
  785. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  786. static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
  787. pmd_t pmd, int offset)
  788. {
  789. /*
  790. * Currently pmd for thp is always present because thp can not be
  791. * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
  792. * This if-check is just to prepare for future implementation.
  793. */
  794. if (pmd_present(pmd))
  795. *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
  796. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
  797. else
  798. *pme = make_pme(PM_NOT_PRESENT);
  799. }
  800. #else
  801. static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
  802. pmd_t pmd, int offset)
  803. {
  804. }
  805. #endif
  806. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  807. struct mm_walk *walk)
  808. {
  809. struct vm_area_struct *vma;
  810. struct pagemapread *pm = walk->private;
  811. pte_t *pte;
  812. int err = 0;
  813. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
  814. /* find the first VMA at or above 'addr' */
  815. vma = find_vma(walk->mm, addr);
  816. if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
  817. for (; addr != end; addr += PAGE_SIZE) {
  818. unsigned long offset;
  819. offset = (addr & ~PAGEMAP_WALK_MASK) >>
  820. PAGE_SHIFT;
  821. thp_pmd_to_pagemap_entry(&pme, *pmd, offset);
  822. err = add_to_pagemap(addr, &pme, pm);
  823. if (err)
  824. break;
  825. }
  826. spin_unlock(&walk->mm->page_table_lock);
  827. return err;
  828. }
  829. if (pmd_trans_unstable(pmd))
  830. return 0;
  831. for (; addr != end; addr += PAGE_SIZE) {
  832. /* check to see if we've left 'vma' behind
  833. * and need a new, higher one */
  834. if (vma && (addr >= vma->vm_end)) {
  835. vma = find_vma(walk->mm, addr);
  836. pme = make_pme(PM_NOT_PRESENT);
  837. }
  838. /* check that 'vma' actually covers this address,
  839. * and that it isn't a huge page vma */
  840. if (vma && (vma->vm_start <= addr) &&
  841. !is_vm_hugetlb_page(vma)) {
  842. pte = pte_offset_map(pmd, addr);
  843. pte_to_pagemap_entry(&pme, *pte);
  844. /* unmap before userspace copy */
  845. pte_unmap(pte);
  846. }
  847. err = add_to_pagemap(addr, &pme, pm);
  848. if (err)
  849. return err;
  850. }
  851. cond_resched();
  852. return err;
  853. }
  854. #ifdef CONFIG_HUGETLB_PAGE
  855. static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme,
  856. pte_t pte, int offset)
  857. {
  858. if (pte_present(pte))
  859. *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)
  860. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
  861. else
  862. *pme = make_pme(PM_NOT_PRESENT);
  863. }
  864. /* This function walks within one hugetlb entry in the single call */
  865. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  866. unsigned long addr, unsigned long end,
  867. struct mm_walk *walk)
  868. {
  869. struct pagemapread *pm = walk->private;
  870. int err = 0;
  871. pagemap_entry_t pme;
  872. for (; addr != end; addr += PAGE_SIZE) {
  873. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  874. huge_pte_to_pagemap_entry(&pme, *pte, offset);
  875. err = add_to_pagemap(addr, &pme, pm);
  876. if (err)
  877. return err;
  878. }
  879. cond_resched();
  880. return err;
  881. }
  882. #endif /* HUGETLB_PAGE */
  883. /*
  884. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  885. *
  886. * For each page in the address space, this file contains one 64-bit entry
  887. * consisting of the following:
  888. *
  889. * Bits 0-55 page frame number (PFN) if present
  890. * Bits 0-4 swap type if swapped
  891. * Bits 5-55 swap offset if swapped
  892. * Bits 55-60 page shift (page size = 1<<page shift)
  893. * Bit 61 reserved for future use
  894. * Bit 62 page swapped
  895. * Bit 63 page present
  896. *
  897. * If the page is not present but in swap, then the PFN contains an
  898. * encoding of the swap file number and the page's offset into the
  899. * swap. Unmapped pages return a null PFN. This allows determining
  900. * precisely which pages are mapped (or in swap) and comparing mapped
  901. * pages between processes.
  902. *
  903. * Efficient users of this interface will use /proc/pid/maps to
  904. * determine which areas of memory are actually mapped and llseek to
  905. * skip over unmapped regions.
  906. */
  907. static ssize_t pagemap_read(struct file *file, char __user *buf,
  908. size_t count, loff_t *ppos)
  909. {
  910. struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
  911. struct mm_struct *mm;
  912. struct pagemapread pm;
  913. int ret = -ESRCH;
  914. struct mm_walk pagemap_walk = {};
  915. unsigned long src;
  916. unsigned long svpfn;
  917. unsigned long start_vaddr;
  918. unsigned long end_vaddr;
  919. int copied = 0;
  920. if (!task)
  921. goto out;
  922. ret = -EINVAL;
  923. /* file position must be aligned */
  924. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  925. goto out_task;
  926. ret = 0;
  927. if (!count)
  928. goto out_task;
  929. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  930. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
  931. ret = -ENOMEM;
  932. if (!pm.buffer)
  933. goto out_task;
  934. mm = mm_for_maps(task);
  935. ret = PTR_ERR(mm);
  936. if (!mm || IS_ERR(mm))
  937. goto out_free;
  938. pagemap_walk.pmd_entry = pagemap_pte_range;
  939. pagemap_walk.pte_hole = pagemap_pte_hole;
  940. #ifdef CONFIG_HUGETLB_PAGE
  941. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  942. #endif
  943. pagemap_walk.mm = mm;
  944. pagemap_walk.private = &pm;
  945. src = *ppos;
  946. svpfn = src / PM_ENTRY_BYTES;
  947. start_vaddr = svpfn << PAGE_SHIFT;
  948. end_vaddr = TASK_SIZE_OF(task);
  949. /* watch out for wraparound */
  950. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  951. start_vaddr = end_vaddr;
  952. /*
  953. * The odds are that this will stop walking way
  954. * before end_vaddr, because the length of the
  955. * user buffer is tracked in "pm", and the walk
  956. * will stop when we hit the end of the buffer.
  957. */
  958. ret = 0;
  959. while (count && (start_vaddr < end_vaddr)) {
  960. int len;
  961. unsigned long end;
  962. pm.pos = 0;
  963. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  964. /* overflow ? */
  965. if (end < start_vaddr || end > end_vaddr)
  966. end = end_vaddr;
  967. down_read(&mm->mmap_sem);
  968. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  969. up_read(&mm->mmap_sem);
  970. start_vaddr = end;
  971. len = min(count, PM_ENTRY_BYTES * pm.pos);
  972. if (copy_to_user(buf, pm.buffer, len)) {
  973. ret = -EFAULT;
  974. goto out_mm;
  975. }
  976. copied += len;
  977. buf += len;
  978. count -= len;
  979. }
  980. *ppos += copied;
  981. if (!ret || ret == PM_END_OF_BUFFER)
  982. ret = copied;
  983. out_mm:
  984. mmput(mm);
  985. out_free:
  986. kfree(pm.buffer);
  987. out_task:
  988. put_task_struct(task);
  989. out:
  990. return ret;
  991. }
  992. static int pagemap_open(struct inode *inode, struct file *file)
  993. {
  994. /* do not disclose physical addresses to unprivileged
  995. userspace (closes a rowhammer attack vector) */
  996. if (!capable(CAP_SYS_ADMIN))
  997. return -EPERM;
  998. return 0;
  999. }
  1000. const struct file_operations proc_pagemap_operations = {
  1001. .llseek = mem_lseek, /* borrow this */
  1002. .read = pagemap_read,
  1003. .open = pagemap_open,
  1004. };
  1005. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1006. #ifdef CONFIG_NUMA
  1007. struct numa_maps {
  1008. struct vm_area_struct *vma;
  1009. unsigned long pages;
  1010. unsigned long anon;
  1011. unsigned long active;
  1012. unsigned long writeback;
  1013. unsigned long mapcount_max;
  1014. unsigned long dirty;
  1015. unsigned long swapcache;
  1016. unsigned long node[MAX_NUMNODES];
  1017. };
  1018. struct numa_maps_private {
  1019. struct proc_maps_private proc_maps;
  1020. struct numa_maps md;
  1021. };
  1022. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1023. unsigned long nr_pages)
  1024. {
  1025. int count = page_mapcount(page);
  1026. md->pages += nr_pages;
  1027. if (pte_dirty || PageDirty(page))
  1028. md->dirty += nr_pages;
  1029. if (PageSwapCache(page))
  1030. md->swapcache += nr_pages;
  1031. if (PageActive(page) || PageUnevictable(page))
  1032. md->active += nr_pages;
  1033. if (PageWriteback(page))
  1034. md->writeback += nr_pages;
  1035. if (PageAnon(page))
  1036. md->anon += nr_pages;
  1037. if (count > md->mapcount_max)
  1038. md->mapcount_max = count;
  1039. md->node[page_to_nid(page)] += nr_pages;
  1040. }
  1041. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1042. unsigned long addr)
  1043. {
  1044. struct page *page;
  1045. int nid;
  1046. if (!pte_present(pte))
  1047. return NULL;
  1048. page = vm_normal_page(vma, addr, pte);
  1049. if (!page)
  1050. return NULL;
  1051. if (PageReserved(page))
  1052. return NULL;
  1053. nid = page_to_nid(page);
  1054. if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
  1055. return NULL;
  1056. return page;
  1057. }
  1058. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1059. unsigned long end, struct mm_walk *walk)
  1060. {
  1061. struct numa_maps *md;
  1062. spinlock_t *ptl;
  1063. pte_t *orig_pte;
  1064. pte_t *pte;
  1065. md = walk->private;
  1066. if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
  1067. pte_t huge_pte = *(pte_t *)pmd;
  1068. struct page *page;
  1069. page = can_gather_numa_stats(huge_pte, md->vma, addr);
  1070. if (page)
  1071. gather_stats(page, md, pte_dirty(huge_pte),
  1072. HPAGE_PMD_SIZE/PAGE_SIZE);
  1073. spin_unlock(&walk->mm->page_table_lock);
  1074. return 0;
  1075. }
  1076. if (pmd_trans_unstable(pmd))
  1077. return 0;
  1078. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1079. do {
  1080. struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
  1081. if (!page)
  1082. continue;
  1083. gather_stats(page, md, pte_dirty(*pte), 1);
  1084. } while (pte++, addr += PAGE_SIZE, addr != end);
  1085. pte_unmap_unlock(orig_pte, ptl);
  1086. return 0;
  1087. }
  1088. #ifdef CONFIG_HUGETLB_PAGE
  1089. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1090. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1091. {
  1092. struct numa_maps *md;
  1093. struct page *page;
  1094. if (pte_none(*pte))
  1095. return 0;
  1096. page = pte_page(*pte);
  1097. if (!page)
  1098. return 0;
  1099. md = walk->private;
  1100. gather_stats(page, md, pte_dirty(*pte), 1);
  1101. return 0;
  1102. }
  1103. #else
  1104. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1105. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1106. {
  1107. return 0;
  1108. }
  1109. #endif
  1110. /*
  1111. * Display pages allocated per node and memory policy via /proc.
  1112. */
  1113. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1114. {
  1115. struct numa_maps_private *numa_priv = m->private;
  1116. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1117. struct vm_area_struct *vma = v;
  1118. struct numa_maps *md = &numa_priv->md;
  1119. struct file *file = vma->vm_file;
  1120. struct mm_struct *mm = vma->vm_mm;
  1121. struct mm_walk walk = {};
  1122. struct mempolicy *pol;
  1123. int n;
  1124. char buffer[50];
  1125. if (!mm)
  1126. return 0;
  1127. /* Ensure we start with an empty set of numa_maps statistics. */
  1128. memset(md, 0, sizeof(*md));
  1129. md->vma = vma;
  1130. walk.hugetlb_entry = gather_hugetbl_stats;
  1131. walk.pmd_entry = gather_pte_stats;
  1132. walk.private = md;
  1133. walk.mm = mm;
  1134. pol = get_vma_policy(proc_priv->task, vma, vma->vm_start);
  1135. mpol_to_str(buffer, sizeof(buffer), pol, 0);
  1136. mpol_cond_put(pol);
  1137. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1138. if (file) {
  1139. seq_printf(m, " file=");
  1140. seq_path(m, &file->f_path, "\n\t= ");
  1141. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1142. seq_printf(m, " heap");
  1143. } else {
  1144. pid_t tid = vm_is_stack(proc_priv->task, vma, is_pid);
  1145. if (tid != 0) {
  1146. /*
  1147. * Thread stack in /proc/PID/task/TID/maps or
  1148. * the main process stack.
  1149. */
  1150. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  1151. vma->vm_end >= mm->start_stack))
  1152. seq_printf(m, " stack");
  1153. else
  1154. seq_printf(m, " stack:%d", tid);
  1155. }
  1156. }
  1157. if (is_vm_hugetlb_page(vma))
  1158. seq_printf(m, " huge");
  1159. walk_page_range(vma->vm_start, vma->vm_end, &walk);
  1160. if (!md->pages)
  1161. goto out;
  1162. if (md->anon)
  1163. seq_printf(m, " anon=%lu", md->anon);
  1164. if (md->dirty)
  1165. seq_printf(m, " dirty=%lu", md->dirty);
  1166. if (md->pages != md->anon && md->pages != md->dirty)
  1167. seq_printf(m, " mapped=%lu", md->pages);
  1168. if (md->mapcount_max > 1)
  1169. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1170. if (md->swapcache)
  1171. seq_printf(m, " swapcache=%lu", md->swapcache);
  1172. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1173. seq_printf(m, " active=%lu", md->active);
  1174. if (md->writeback)
  1175. seq_printf(m, " writeback=%lu", md->writeback);
  1176. for_each_node_state(n, N_HIGH_MEMORY)
  1177. if (md->node[n])
  1178. seq_printf(m, " N%d=%lu", n, md->node[n]);
  1179. out:
  1180. seq_putc(m, '\n');
  1181. if (m->count < m->size)
  1182. m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
  1183. return 0;
  1184. }
  1185. static int show_pid_numa_map(struct seq_file *m, void *v)
  1186. {
  1187. return show_numa_map(m, v, 1);
  1188. }
  1189. static int show_tid_numa_map(struct seq_file *m, void *v)
  1190. {
  1191. return show_numa_map(m, v, 0);
  1192. }
  1193. static const struct seq_operations proc_pid_numa_maps_op = {
  1194. .start = m_start,
  1195. .next = m_next,
  1196. .stop = m_stop,
  1197. .show = show_pid_numa_map,
  1198. };
  1199. static const struct seq_operations proc_tid_numa_maps_op = {
  1200. .start = m_start,
  1201. .next = m_next,
  1202. .stop = m_stop,
  1203. .show = show_tid_numa_map,
  1204. };
  1205. static int numa_maps_open(struct inode *inode, struct file *file,
  1206. const struct seq_operations *ops)
  1207. {
  1208. struct numa_maps_private *priv;
  1209. int ret = -ENOMEM;
  1210. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  1211. if (priv) {
  1212. priv->proc_maps.pid = proc_pid(inode);
  1213. ret = seq_open(file, ops);
  1214. if (!ret) {
  1215. struct seq_file *m = file->private_data;
  1216. m->private = priv;
  1217. } else {
  1218. kfree(priv);
  1219. }
  1220. }
  1221. return ret;
  1222. }
  1223. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1224. {
  1225. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1226. }
  1227. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1228. {
  1229. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1230. }
  1231. const struct file_operations proc_pid_numa_maps_operations = {
  1232. .open = pid_numa_maps_open,
  1233. .read = seq_read,
  1234. .llseek = seq_lseek,
  1235. .release = seq_release_private,
  1236. };
  1237. const struct file_operations proc_tid_numa_maps_operations = {
  1238. .open = tid_numa_maps_open,
  1239. .read = seq_read,
  1240. .llseek = seq_lseek,
  1241. .release = seq_release_private,
  1242. };
  1243. #endif /* CONFIG_NUMA */