libfs.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017
  1. /*
  2. * fs/libfs.c
  3. * Library for filesystems writers.
  4. */
  5. #include <linux/export.h>
  6. #include <linux/pagemap.h>
  7. #include <linux/slab.h>
  8. #include <linux/mount.h>
  9. #include <linux/vfs.h>
  10. #include <linux/quotaops.h>
  11. #include <linux/mutex.h>
  12. #include <linux/exportfs.h>
  13. #include <linux/writeback.h>
  14. #include <linux/buffer_head.h> /* sync_mapping_buffers */
  15. #include <asm/uaccess.h>
  16. #include "internal.h"
  17. static inline int simple_positive(struct dentry *dentry)
  18. {
  19. return dentry->d_inode && !d_unhashed(dentry);
  20. }
  21. int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  22. struct kstat *stat)
  23. {
  24. struct inode *inode = dentry->d_inode;
  25. generic_fillattr(inode, stat);
  26. stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
  27. return 0;
  28. }
  29. int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  30. {
  31. buf->f_type = dentry->d_sb->s_magic;
  32. buf->f_bsize = PAGE_CACHE_SIZE;
  33. buf->f_namelen = NAME_MAX;
  34. return 0;
  35. }
  36. /*
  37. * Retaining negative dentries for an in-memory filesystem just wastes
  38. * memory and lookup time: arrange for them to be deleted immediately.
  39. */
  40. static int simple_delete_dentry(const struct dentry *dentry)
  41. {
  42. return 1;
  43. }
  44. /*
  45. * Lookup the data. This is trivial - if the dentry didn't already
  46. * exist, we know it is negative. Set d_op to delete negative dentries.
  47. */
  48. struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
  49. {
  50. static const struct dentry_operations simple_dentry_operations = {
  51. .d_delete = simple_delete_dentry,
  52. };
  53. if (dentry->d_name.len > NAME_MAX)
  54. return ERR_PTR(-ENAMETOOLONG);
  55. d_set_d_op(dentry, &simple_dentry_operations);
  56. d_add(dentry, NULL);
  57. return NULL;
  58. }
  59. int dcache_dir_open(struct inode *inode, struct file *file)
  60. {
  61. static struct qstr cursor_name = {.len = 1, .name = "."};
  62. file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  63. return file->private_data ? 0 : -ENOMEM;
  64. }
  65. int dcache_dir_close(struct inode *inode, struct file *file)
  66. {
  67. dput(file->private_data);
  68. return 0;
  69. }
  70. loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
  71. {
  72. struct dentry *dentry = file->f_path.dentry;
  73. mutex_lock(&dentry->d_inode->i_mutex);
  74. switch (origin) {
  75. case 1:
  76. offset += file->f_pos;
  77. case 0:
  78. if (offset >= 0)
  79. break;
  80. default:
  81. mutex_unlock(&dentry->d_inode->i_mutex);
  82. return -EINVAL;
  83. }
  84. if (offset != file->f_pos) {
  85. file->f_pos = offset;
  86. if (file->f_pos >= 2) {
  87. struct list_head *p;
  88. struct dentry *cursor = file->private_data;
  89. loff_t n = file->f_pos - 2;
  90. spin_lock(&dentry->d_lock);
  91. /* d_lock not required for cursor */
  92. list_del(&cursor->d_child);
  93. p = dentry->d_subdirs.next;
  94. while (n && p != &dentry->d_subdirs) {
  95. struct dentry *next;
  96. next = list_entry(p, struct dentry, d_child);
  97. spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
  98. if (simple_positive(next))
  99. n--;
  100. spin_unlock(&next->d_lock);
  101. p = p->next;
  102. }
  103. list_add_tail(&cursor->d_child, p);
  104. spin_unlock(&dentry->d_lock);
  105. }
  106. }
  107. mutex_unlock(&dentry->d_inode->i_mutex);
  108. return offset;
  109. }
  110. /* Relationship between i_mode and the DT_xxx types */
  111. static inline unsigned char dt_type(struct inode *inode)
  112. {
  113. return (inode->i_mode >> 12) & 15;
  114. }
  115. /*
  116. * Directory is locked and all positive dentries in it are safe, since
  117. * for ramfs-type trees they can't go away without unlink() or rmdir(),
  118. * both impossible due to the lock on directory.
  119. */
  120. int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
  121. {
  122. struct dentry *dentry = filp->f_path.dentry;
  123. struct dentry *cursor = filp->private_data;
  124. struct list_head *p, *q = &cursor->d_child;
  125. ino_t ino;
  126. int i = filp->f_pos;
  127. switch (i) {
  128. case 0:
  129. ino = dentry->d_inode->i_ino;
  130. if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
  131. break;
  132. filp->f_pos++;
  133. i++;
  134. /* fallthrough */
  135. case 1:
  136. ino = parent_ino(dentry);
  137. if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
  138. break;
  139. filp->f_pos++;
  140. i++;
  141. /* fallthrough */
  142. default:
  143. spin_lock(&dentry->d_lock);
  144. if (filp->f_pos == 2)
  145. list_move(q, &dentry->d_subdirs);
  146. for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
  147. struct dentry *next;
  148. next = list_entry(p, struct dentry, d_child);
  149. spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
  150. if (!simple_positive(next)) {
  151. spin_unlock(&next->d_lock);
  152. continue;
  153. }
  154. spin_unlock(&next->d_lock);
  155. spin_unlock(&dentry->d_lock);
  156. if (filldir(dirent, next->d_name.name,
  157. next->d_name.len, filp->f_pos,
  158. next->d_inode->i_ino,
  159. dt_type(next->d_inode)) < 0)
  160. return 0;
  161. spin_lock(&dentry->d_lock);
  162. spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
  163. /* next is still alive */
  164. list_move(q, p);
  165. spin_unlock(&next->d_lock);
  166. p = q;
  167. filp->f_pos++;
  168. }
  169. spin_unlock(&dentry->d_lock);
  170. }
  171. return 0;
  172. }
  173. ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
  174. {
  175. return -EISDIR;
  176. }
  177. const struct file_operations simple_dir_operations = {
  178. .open = dcache_dir_open,
  179. .release = dcache_dir_close,
  180. .llseek = dcache_dir_lseek,
  181. .read = generic_read_dir,
  182. .readdir = dcache_readdir,
  183. .fsync = noop_fsync,
  184. };
  185. const struct inode_operations simple_dir_inode_operations = {
  186. .lookup = simple_lookup,
  187. };
  188. static const struct super_operations simple_super_operations = {
  189. .statfs = simple_statfs,
  190. };
  191. /*
  192. * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
  193. * will never be mountable)
  194. */
  195. struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
  196. const struct super_operations *ops,
  197. const struct dentry_operations *dops, unsigned long magic)
  198. {
  199. struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
  200. struct dentry *dentry;
  201. struct inode *root;
  202. struct qstr d_name = {.name = name, .len = strlen(name)};
  203. if (IS_ERR(s))
  204. return ERR_CAST(s);
  205. s->s_flags = MS_NOUSER;
  206. s->s_maxbytes = MAX_LFS_FILESIZE;
  207. s->s_blocksize = PAGE_SIZE;
  208. s->s_blocksize_bits = PAGE_SHIFT;
  209. s->s_magic = magic;
  210. s->s_op = ops ? ops : &simple_super_operations;
  211. s->s_time_gran = 1;
  212. root = new_inode(s);
  213. if (!root)
  214. goto Enomem;
  215. /*
  216. * since this is the first inode, make it number 1. New inodes created
  217. * after this must take care not to collide with it (by passing
  218. * max_reserved of 1 to iunique).
  219. */
  220. root->i_ino = 1;
  221. root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
  222. root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
  223. dentry = __d_alloc(s, &d_name);
  224. if (!dentry) {
  225. iput(root);
  226. goto Enomem;
  227. }
  228. d_instantiate(dentry, root);
  229. s->s_root = dentry;
  230. s->s_d_op = dops;
  231. s->s_flags |= MS_ACTIVE;
  232. return dget(s->s_root);
  233. Enomem:
  234. deactivate_locked_super(s);
  235. return ERR_PTR(-ENOMEM);
  236. }
  237. int simple_open(struct inode *inode, struct file *file)
  238. {
  239. if (inode->i_private)
  240. file->private_data = inode->i_private;
  241. return 0;
  242. }
  243. int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
  244. {
  245. struct inode *inode = old_dentry->d_inode;
  246. inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  247. inc_nlink(inode);
  248. ihold(inode);
  249. dget(dentry);
  250. d_instantiate(dentry, inode);
  251. return 0;
  252. }
  253. int simple_empty(struct dentry *dentry)
  254. {
  255. struct dentry *child;
  256. int ret = 0;
  257. spin_lock(&dentry->d_lock);
  258. list_for_each_entry(child, &dentry->d_subdirs, d_child) {
  259. spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
  260. if (simple_positive(child)) {
  261. spin_unlock(&child->d_lock);
  262. goto out;
  263. }
  264. spin_unlock(&child->d_lock);
  265. }
  266. ret = 1;
  267. out:
  268. spin_unlock(&dentry->d_lock);
  269. return ret;
  270. }
  271. int simple_unlink(struct inode *dir, struct dentry *dentry)
  272. {
  273. struct inode *inode = dentry->d_inode;
  274. inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  275. drop_nlink(inode);
  276. dput(dentry);
  277. return 0;
  278. }
  279. int simple_rmdir(struct inode *dir, struct dentry *dentry)
  280. {
  281. if (!simple_empty(dentry))
  282. return -ENOTEMPTY;
  283. drop_nlink(dentry->d_inode);
  284. simple_unlink(dir, dentry);
  285. drop_nlink(dir);
  286. return 0;
  287. }
  288. int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
  289. struct inode *new_dir, struct dentry *new_dentry)
  290. {
  291. struct inode *inode = old_dentry->d_inode;
  292. int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
  293. if (!simple_empty(new_dentry))
  294. return -ENOTEMPTY;
  295. if (new_dentry->d_inode) {
  296. simple_unlink(new_dir, new_dentry);
  297. if (they_are_dirs) {
  298. drop_nlink(new_dentry->d_inode);
  299. drop_nlink(old_dir);
  300. }
  301. } else if (they_are_dirs) {
  302. drop_nlink(old_dir);
  303. inc_nlink(new_dir);
  304. }
  305. old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
  306. new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
  307. return 0;
  308. }
  309. /**
  310. * simple_setattr - setattr for simple filesystem
  311. * @dentry: dentry
  312. * @iattr: iattr structure
  313. *
  314. * Returns 0 on success, -error on failure.
  315. *
  316. * simple_setattr is a simple ->setattr implementation without a proper
  317. * implementation of size changes.
  318. *
  319. * It can either be used for in-memory filesystems or special files
  320. * on simple regular filesystems. Anything that needs to change on-disk
  321. * or wire state on size changes needs its own setattr method.
  322. */
  323. int simple_setattr(struct dentry *dentry, struct iattr *iattr)
  324. {
  325. struct inode *inode = dentry->d_inode;
  326. int error;
  327. WARN_ON_ONCE(inode->i_op->truncate);
  328. error = inode_change_ok(inode, iattr);
  329. if (error)
  330. return error;
  331. if (iattr->ia_valid & ATTR_SIZE)
  332. truncate_setsize(inode, iattr->ia_size);
  333. setattr_copy(inode, iattr);
  334. mark_inode_dirty(inode);
  335. return 0;
  336. }
  337. EXPORT_SYMBOL(simple_setattr);
  338. int simple_readpage(struct file *file, struct page *page)
  339. {
  340. clear_highpage(page);
  341. flush_dcache_page(page);
  342. SetPageUptodate(page);
  343. unlock_page(page);
  344. return 0;
  345. }
  346. int simple_write_begin(struct file *file, struct address_space *mapping,
  347. loff_t pos, unsigned len, unsigned flags,
  348. struct page **pagep, void **fsdata)
  349. {
  350. struct page *page;
  351. pgoff_t index;
  352. index = pos >> PAGE_CACHE_SHIFT;
  353. page = grab_cache_page_write_begin(mapping, index, flags);
  354. if (!page)
  355. return -ENOMEM;
  356. *pagep = page;
  357. if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
  358. unsigned from = pos & (PAGE_CACHE_SIZE - 1);
  359. zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
  360. }
  361. return 0;
  362. }
  363. /**
  364. * simple_write_end - .write_end helper for non-block-device FSes
  365. * @available: See .write_end of address_space_operations
  366. * @file: "
  367. * @mapping: "
  368. * @pos: "
  369. * @len: "
  370. * @copied: "
  371. * @page: "
  372. * @fsdata: "
  373. *
  374. * simple_write_end does the minimum needed for updating a page after writing is
  375. * done. It has the same API signature as the .write_end of
  376. * address_space_operations vector. So it can just be set onto .write_end for
  377. * FSes that don't need any other processing. i_mutex is assumed to be held.
  378. * Block based filesystems should use generic_write_end().
  379. * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
  380. * is not called, so a filesystem that actually does store data in .write_inode
  381. * should extend on what's done here with a call to mark_inode_dirty() in the
  382. * case that i_size has changed.
  383. */
  384. int simple_write_end(struct file *file, struct address_space *mapping,
  385. loff_t pos, unsigned len, unsigned copied,
  386. struct page *page, void *fsdata)
  387. {
  388. struct inode *inode = page->mapping->host;
  389. loff_t last_pos = pos + copied;
  390. /* zero the stale part of the page if we did a short copy */
  391. if (copied < len) {
  392. unsigned from = pos & (PAGE_CACHE_SIZE - 1);
  393. zero_user(page, from + copied, len - copied);
  394. }
  395. if (!PageUptodate(page))
  396. SetPageUptodate(page);
  397. /*
  398. * No need to use i_size_read() here, the i_size
  399. * cannot change under us because we hold the i_mutex.
  400. */
  401. if (last_pos > inode->i_size)
  402. i_size_write(inode, last_pos);
  403. set_page_dirty(page);
  404. unlock_page(page);
  405. page_cache_release(page);
  406. return copied;
  407. }
  408. /*
  409. * the inodes created here are not hashed. If you use iunique to generate
  410. * unique inode values later for this filesystem, then you must take care
  411. * to pass it an appropriate max_reserved value to avoid collisions.
  412. */
  413. int simple_fill_super(struct super_block *s, unsigned long magic,
  414. struct tree_descr *files)
  415. {
  416. struct inode *inode;
  417. struct dentry *root;
  418. struct dentry *dentry;
  419. int i;
  420. s->s_blocksize = PAGE_CACHE_SIZE;
  421. s->s_blocksize_bits = PAGE_CACHE_SHIFT;
  422. s->s_magic = magic;
  423. s->s_op = &simple_super_operations;
  424. s->s_time_gran = 1;
  425. inode = new_inode(s);
  426. if (!inode)
  427. return -ENOMEM;
  428. /*
  429. * because the root inode is 1, the files array must not contain an
  430. * entry at index 1
  431. */
  432. inode->i_ino = 1;
  433. inode->i_mode = S_IFDIR | 0755;
  434. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  435. inode->i_op = &simple_dir_inode_operations;
  436. inode->i_fop = &simple_dir_operations;
  437. set_nlink(inode, 2);
  438. root = d_make_root(inode);
  439. if (!root)
  440. return -ENOMEM;
  441. for (i = 0; !files->name || files->name[0]; i++, files++) {
  442. if (!files->name)
  443. continue;
  444. /* warn if it tries to conflict with the root inode */
  445. if (unlikely(i == 1))
  446. printk(KERN_WARNING "%s: %s passed in a files array"
  447. "with an index of 1!\n", __func__,
  448. s->s_type->name);
  449. dentry = d_alloc_name(root, files->name);
  450. if (!dentry)
  451. goto out;
  452. inode = new_inode(s);
  453. if (!inode) {
  454. dput(dentry);
  455. goto out;
  456. }
  457. inode->i_mode = S_IFREG | files->mode;
  458. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  459. inode->i_fop = files->ops;
  460. inode->i_ino = i;
  461. d_add(dentry, inode);
  462. }
  463. s->s_root = root;
  464. return 0;
  465. out:
  466. d_genocide(root);
  467. shrink_dcache_parent(root);
  468. dput(root);
  469. return -ENOMEM;
  470. }
  471. static DEFINE_SPINLOCK(pin_fs_lock);
  472. int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
  473. {
  474. struct vfsmount *mnt = NULL;
  475. spin_lock(&pin_fs_lock);
  476. if (unlikely(!*mount)) {
  477. spin_unlock(&pin_fs_lock);
  478. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
  479. if (IS_ERR(mnt))
  480. return PTR_ERR(mnt);
  481. spin_lock(&pin_fs_lock);
  482. if (!*mount)
  483. *mount = mnt;
  484. }
  485. mntget(*mount);
  486. ++*count;
  487. spin_unlock(&pin_fs_lock);
  488. mntput(mnt);
  489. return 0;
  490. }
  491. void simple_release_fs(struct vfsmount **mount, int *count)
  492. {
  493. struct vfsmount *mnt;
  494. spin_lock(&pin_fs_lock);
  495. mnt = *mount;
  496. if (!--*count)
  497. *mount = NULL;
  498. spin_unlock(&pin_fs_lock);
  499. mntput(mnt);
  500. }
  501. /**
  502. * simple_read_from_buffer - copy data from the buffer to user space
  503. * @to: the user space buffer to read to
  504. * @count: the maximum number of bytes to read
  505. * @ppos: the current position in the buffer
  506. * @from: the buffer to read from
  507. * @available: the size of the buffer
  508. *
  509. * The simple_read_from_buffer() function reads up to @count bytes from the
  510. * buffer @from at offset @ppos into the user space address starting at @to.
  511. *
  512. * On success, the number of bytes read is returned and the offset @ppos is
  513. * advanced by this number, or negative value is returned on error.
  514. **/
  515. ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
  516. const void *from, size_t available)
  517. {
  518. loff_t pos = *ppos;
  519. size_t ret;
  520. if (pos < 0)
  521. return -EINVAL;
  522. if (pos >= available || !count)
  523. return 0;
  524. if (count > available - pos)
  525. count = available - pos;
  526. ret = copy_to_user(to, from + pos, count);
  527. if (ret == count)
  528. return -EFAULT;
  529. count -= ret;
  530. *ppos = pos + count;
  531. return count;
  532. }
  533. /**
  534. * simple_write_to_buffer - copy data from user space to the buffer
  535. * @to: the buffer to write to
  536. * @available: the size of the buffer
  537. * @ppos: the current position in the buffer
  538. * @from: the user space buffer to read from
  539. * @count: the maximum number of bytes to read
  540. *
  541. * The simple_write_to_buffer() function reads up to @count bytes from the user
  542. * space address starting at @from into the buffer @to at offset @ppos.
  543. *
  544. * On success, the number of bytes written is returned and the offset @ppos is
  545. * advanced by this number, or negative value is returned on error.
  546. **/
  547. ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
  548. const void __user *from, size_t count)
  549. {
  550. loff_t pos = *ppos;
  551. size_t res;
  552. if (pos < 0)
  553. return -EINVAL;
  554. if (pos >= available || !count)
  555. return 0;
  556. if (count > available - pos)
  557. count = available - pos;
  558. res = copy_from_user(to + pos, from, count);
  559. if (res == count)
  560. return -EFAULT;
  561. count -= res;
  562. *ppos = pos + count;
  563. return count;
  564. }
  565. /**
  566. * memory_read_from_buffer - copy data from the buffer
  567. * @to: the kernel space buffer to read to
  568. * @count: the maximum number of bytes to read
  569. * @ppos: the current position in the buffer
  570. * @from: the buffer to read from
  571. * @available: the size of the buffer
  572. *
  573. * The memory_read_from_buffer() function reads up to @count bytes from the
  574. * buffer @from at offset @ppos into the kernel space address starting at @to.
  575. *
  576. * On success, the number of bytes read is returned and the offset @ppos is
  577. * advanced by this number, or negative value is returned on error.
  578. **/
  579. ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
  580. const void *from, size_t available)
  581. {
  582. loff_t pos = *ppos;
  583. if (pos < 0)
  584. return -EINVAL;
  585. if (pos >= available)
  586. return 0;
  587. if (count > available - pos)
  588. count = available - pos;
  589. memcpy(to, from + pos, count);
  590. *ppos = pos + count;
  591. return count;
  592. }
  593. /*
  594. * Transaction based IO.
  595. * The file expects a single write which triggers the transaction, and then
  596. * possibly a read which collects the result - which is stored in a
  597. * file-local buffer.
  598. */
  599. void simple_transaction_set(struct file *file, size_t n)
  600. {
  601. struct simple_transaction_argresp *ar = file->private_data;
  602. BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
  603. /*
  604. * The barrier ensures that ar->size will really remain zero until
  605. * ar->data is ready for reading.
  606. */
  607. smp_mb();
  608. ar->size = n;
  609. }
  610. char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
  611. {
  612. struct simple_transaction_argresp *ar;
  613. static DEFINE_SPINLOCK(simple_transaction_lock);
  614. if (size > SIMPLE_TRANSACTION_LIMIT - 1)
  615. return ERR_PTR(-EFBIG);
  616. ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
  617. if (!ar)
  618. return ERR_PTR(-ENOMEM);
  619. spin_lock(&simple_transaction_lock);
  620. /* only one write allowed per open */
  621. if (file->private_data) {
  622. spin_unlock(&simple_transaction_lock);
  623. free_page((unsigned long)ar);
  624. return ERR_PTR(-EBUSY);
  625. }
  626. file->private_data = ar;
  627. spin_unlock(&simple_transaction_lock);
  628. if (copy_from_user(ar->data, buf, size))
  629. return ERR_PTR(-EFAULT);
  630. return ar->data;
  631. }
  632. ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
  633. {
  634. struct simple_transaction_argresp *ar = file->private_data;
  635. if (!ar)
  636. return 0;
  637. return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
  638. }
  639. int simple_transaction_release(struct inode *inode, struct file *file)
  640. {
  641. free_page((unsigned long)file->private_data);
  642. return 0;
  643. }
  644. /* Simple attribute files */
  645. struct simple_attr {
  646. int (*get)(void *, u64 *);
  647. int (*set)(void *, u64);
  648. char get_buf[24]; /* enough to store a u64 and "\n\0" */
  649. char set_buf[24];
  650. void *data;
  651. const char *fmt; /* format for read operation */
  652. struct mutex mutex; /* protects access to these buffers */
  653. };
  654. /* simple_attr_open is called by an actual attribute open file operation
  655. * to set the attribute specific access operations. */
  656. int simple_attr_open(struct inode *inode, struct file *file,
  657. int (*get)(void *, u64 *), int (*set)(void *, u64),
  658. const char *fmt)
  659. {
  660. struct simple_attr *attr;
  661. attr = kmalloc(sizeof(*attr), GFP_KERNEL);
  662. if (!attr)
  663. return -ENOMEM;
  664. attr->get = get;
  665. attr->set = set;
  666. attr->data = inode->i_private;
  667. attr->fmt = fmt;
  668. mutex_init(&attr->mutex);
  669. file->private_data = attr;
  670. return nonseekable_open(inode, file);
  671. }
  672. int simple_attr_release(struct inode *inode, struct file *file)
  673. {
  674. kfree(file->private_data);
  675. return 0;
  676. }
  677. /* read from the buffer that is filled with the get function */
  678. ssize_t simple_attr_read(struct file *file, char __user *buf,
  679. size_t len, loff_t *ppos)
  680. {
  681. struct simple_attr *attr;
  682. size_t size;
  683. ssize_t ret;
  684. attr = file->private_data;
  685. if (!attr->get)
  686. return -EACCES;
  687. ret = mutex_lock_interruptible(&attr->mutex);
  688. if (ret)
  689. return ret;
  690. if (*ppos) { /* continued read */
  691. size = strlen(attr->get_buf);
  692. } else { /* first read */
  693. u64 val;
  694. ret = attr->get(attr->data, &val);
  695. if (ret)
  696. goto out;
  697. size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
  698. attr->fmt, (unsigned long long)val);
  699. }
  700. ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
  701. out:
  702. mutex_unlock(&attr->mutex);
  703. return ret;
  704. }
  705. /* interpret the buffer as a number to call the set function with */
  706. ssize_t simple_attr_write(struct file *file, const char __user *buf,
  707. size_t len, loff_t *ppos)
  708. {
  709. struct simple_attr *attr;
  710. u64 val;
  711. size_t size;
  712. ssize_t ret;
  713. attr = file->private_data;
  714. if (!attr->set)
  715. return -EACCES;
  716. ret = mutex_lock_interruptible(&attr->mutex);
  717. if (ret)
  718. return ret;
  719. ret = -EFAULT;
  720. size = min(sizeof(attr->set_buf) - 1, len);
  721. if (copy_from_user(attr->set_buf, buf, size))
  722. goto out;
  723. attr->set_buf[size] = '\0';
  724. val = simple_strtoll(attr->set_buf, NULL, 0);
  725. ret = attr->set(attr->data, val);
  726. if (ret == 0)
  727. ret = len; /* on success, claim we got the whole input */
  728. out:
  729. mutex_unlock(&attr->mutex);
  730. return ret;
  731. }
  732. /**
  733. * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
  734. * @sb: filesystem to do the file handle conversion on
  735. * @fid: file handle to convert
  736. * @fh_len: length of the file handle in bytes
  737. * @fh_type: type of file handle
  738. * @get_inode: filesystem callback to retrieve inode
  739. *
  740. * This function decodes @fid as long as it has one of the well-known
  741. * Linux filehandle types and calls @get_inode on it to retrieve the
  742. * inode for the object specified in the file handle.
  743. */
  744. struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
  745. int fh_len, int fh_type, struct inode *(*get_inode)
  746. (struct super_block *sb, u64 ino, u32 gen))
  747. {
  748. struct inode *inode = NULL;
  749. if (fh_len < 2)
  750. return NULL;
  751. switch (fh_type) {
  752. case FILEID_INO32_GEN:
  753. case FILEID_INO32_GEN_PARENT:
  754. inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
  755. break;
  756. }
  757. return d_obtain_alias(inode);
  758. }
  759. EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
  760. /**
  761. * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
  762. * @sb: filesystem to do the file handle conversion on
  763. * @fid: file handle to convert
  764. * @fh_len: length of the file handle in bytes
  765. * @fh_type: type of file handle
  766. * @get_inode: filesystem callback to retrieve inode
  767. *
  768. * This function decodes @fid as long as it has one of the well-known
  769. * Linux filehandle types and calls @get_inode on it to retrieve the
  770. * inode for the _parent_ object specified in the file handle if it
  771. * is specified in the file handle, or NULL otherwise.
  772. */
  773. struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
  774. int fh_len, int fh_type, struct inode *(*get_inode)
  775. (struct super_block *sb, u64 ino, u32 gen))
  776. {
  777. struct inode *inode = NULL;
  778. if (fh_len <= 2)
  779. return NULL;
  780. switch (fh_type) {
  781. case FILEID_INO32_GEN_PARENT:
  782. inode = get_inode(sb, fid->i32.parent_ino,
  783. (fh_len > 3 ? fid->i32.parent_gen : 0));
  784. break;
  785. }
  786. return d_obtain_alias(inode);
  787. }
  788. EXPORT_SYMBOL_GPL(generic_fh_to_parent);
  789. /**
  790. * generic_file_fsync - generic fsync implementation for simple filesystems
  791. * @file: file to synchronize
  792. * @datasync: only synchronize essential metadata if true
  793. *
  794. * This is a generic implementation of the fsync method for simple
  795. * filesystems which track all non-inode metadata in the buffers list
  796. * hanging off the address_space structure.
  797. */
  798. int generic_file_fsync(struct file *file, loff_t start, loff_t end,
  799. int datasync)
  800. {
  801. struct inode *inode = file->f_mapping->host;
  802. int err;
  803. int ret;
  804. err = filemap_write_and_wait_range(inode->i_mapping, start, end);
  805. if (err)
  806. return err;
  807. mutex_lock(&inode->i_mutex);
  808. ret = sync_mapping_buffers(inode->i_mapping);
  809. if (!(inode->i_state & I_DIRTY))
  810. goto out;
  811. if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
  812. goto out;
  813. err = sync_inode_metadata(inode, 1);
  814. if (ret == 0)
  815. ret = err;
  816. out:
  817. mutex_unlock(&inode->i_mutex);
  818. return ret;
  819. }
  820. EXPORT_SYMBOL(generic_file_fsync);
  821. /**
  822. * generic_check_addressable - Check addressability of file system
  823. * @blocksize_bits: log of file system block size
  824. * @num_blocks: number of blocks in file system
  825. *
  826. * Determine whether a file system with @num_blocks blocks (and a
  827. * block size of 2**@blocksize_bits) is addressable by the sector_t
  828. * and page cache of the system. Return 0 if so and -EFBIG otherwise.
  829. */
  830. int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
  831. {
  832. u64 last_fs_block = num_blocks - 1;
  833. u64 last_fs_page =
  834. last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
  835. if (unlikely(num_blocks == 0))
  836. return 0;
  837. if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
  838. return -EINVAL;
  839. if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
  840. (last_fs_page > (pgoff_t)(~0ULL))) {
  841. return -EFBIG;
  842. }
  843. return 0;
  844. }
  845. EXPORT_SYMBOL(generic_check_addressable);
  846. /*
  847. * No-op implementation of ->fsync for in-memory filesystems.
  848. */
  849. int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
  850. {
  851. return 0;
  852. }
  853. EXPORT_SYMBOL(dcache_dir_close);
  854. EXPORT_SYMBOL(dcache_dir_lseek);
  855. EXPORT_SYMBOL(dcache_dir_open);
  856. EXPORT_SYMBOL(dcache_readdir);
  857. EXPORT_SYMBOL(generic_read_dir);
  858. EXPORT_SYMBOL(mount_pseudo);
  859. EXPORT_SYMBOL(simple_write_begin);
  860. EXPORT_SYMBOL(simple_write_end);
  861. EXPORT_SYMBOL(simple_dir_inode_operations);
  862. EXPORT_SYMBOL(simple_dir_operations);
  863. EXPORT_SYMBOL(simple_empty);
  864. EXPORT_SYMBOL(simple_fill_super);
  865. EXPORT_SYMBOL(simple_getattr);
  866. EXPORT_SYMBOL(simple_open);
  867. EXPORT_SYMBOL(simple_link);
  868. EXPORT_SYMBOL(simple_lookup);
  869. EXPORT_SYMBOL(simple_pin_fs);
  870. EXPORT_SYMBOL(simple_readpage);
  871. EXPORT_SYMBOL(simple_release_fs);
  872. EXPORT_SYMBOL(simple_rename);
  873. EXPORT_SYMBOL(simple_rmdir);
  874. EXPORT_SYMBOL(simple_statfs);
  875. EXPORT_SYMBOL(noop_fsync);
  876. EXPORT_SYMBOL(simple_unlink);
  877. EXPORT_SYMBOL(simple_read_from_buffer);
  878. EXPORT_SYMBOL(simple_write_to_buffer);
  879. EXPORT_SYMBOL(memory_read_from_buffer);
  880. EXPORT_SYMBOL(simple_transaction_set);
  881. EXPORT_SYMBOL(simple_transaction_get);
  882. EXPORT_SYMBOL(simple_transaction_read);
  883. EXPORT_SYMBOL(simple_transaction_release);
  884. EXPORT_SYMBOL_GPL(simple_attr_open);
  885. EXPORT_SYMBOL_GPL(simple_attr_release);
  886. EXPORT_SYMBOL_GPL(simple_attr_read);
  887. EXPORT_SYMBOL_GPL(simple_attr_write);