revoke.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747
  1. /*
  2. * linux/fs/jbd2/revoke.c
  3. *
  4. * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
  5. *
  6. * Copyright 2000 Red Hat corp --- All Rights Reserved
  7. *
  8. * This file is part of the Linux kernel and is made available under
  9. * the terms of the GNU General Public License, version 2, or at your
  10. * option, any later version, incorporated herein by reference.
  11. *
  12. * Journal revoke routines for the generic filesystem journaling code;
  13. * part of the ext2fs journaling system.
  14. *
  15. * Revoke is the mechanism used to prevent old log records for deleted
  16. * metadata from being replayed on top of newer data using the same
  17. * blocks. The revoke mechanism is used in two separate places:
  18. *
  19. * + Commit: during commit we write the entire list of the current
  20. * transaction's revoked blocks to the journal
  21. *
  22. * + Recovery: during recovery we record the transaction ID of all
  23. * revoked blocks. If there are multiple revoke records in the log
  24. * for a single block, only the last one counts, and if there is a log
  25. * entry for a block beyond the last revoke, then that log entry still
  26. * gets replayed.
  27. *
  28. * We can get interactions between revokes and new log data within a
  29. * single transaction:
  30. *
  31. * Block is revoked and then journaled:
  32. * The desired end result is the journaling of the new block, so we
  33. * cancel the revoke before the transaction commits.
  34. *
  35. * Block is journaled and then revoked:
  36. * The revoke must take precedence over the write of the block, so we
  37. * need either to cancel the journal entry or to write the revoke
  38. * later in the log than the log block. In this case, we choose the
  39. * latter: journaling a block cancels any revoke record for that block
  40. * in the current transaction, so any revoke for that block in the
  41. * transaction must have happened after the block was journaled and so
  42. * the revoke must take precedence.
  43. *
  44. * Block is revoked and then written as data:
  45. * The data write is allowed to succeed, but the revoke is _not_
  46. * cancelled. We still need to prevent old log records from
  47. * overwriting the new data. We don't even need to clear the revoke
  48. * bit here.
  49. *
  50. * We cache revoke status of a buffer in the current transaction in b_states
  51. * bits. As the name says, revokevalid flag indicates that the cached revoke
  52. * status of a buffer is valid and we can rely on the cached status.
  53. *
  54. * Revoke information on buffers is a tri-state value:
  55. *
  56. * RevokeValid clear: no cached revoke status, need to look it up
  57. * RevokeValid set, Revoked clear:
  58. * buffer has not been revoked, and cancel_revoke
  59. * need do nothing.
  60. * RevokeValid set, Revoked set:
  61. * buffer has been revoked.
  62. *
  63. * Locking rules:
  64. * We keep two hash tables of revoke records. One hashtable belongs to the
  65. * running transaction (is pointed to by journal->j_revoke), the other one
  66. * belongs to the committing transaction. Accesses to the second hash table
  67. * happen only from the kjournald and no other thread touches this table. Also
  68. * journal_switch_revoke_table() which switches which hashtable belongs to the
  69. * running and which to the committing transaction is called only from
  70. * kjournald. Therefore we need no locks when accessing the hashtable belonging
  71. * to the committing transaction.
  72. *
  73. * All users operating on the hash table belonging to the running transaction
  74. * have a handle to the transaction. Therefore they are safe from kjournald
  75. * switching hash tables under them. For operations on the lists of entries in
  76. * the hash table j_revoke_lock is used.
  77. *
  78. * Finally, also replay code uses the hash tables but at this moment no one else
  79. * can touch them (filesystem isn't mounted yet) and hence no locking is
  80. * needed.
  81. */
  82. #ifndef __KERNEL__
  83. #include "jfs_user.h"
  84. #else
  85. #include <linux/time.h>
  86. #include <linux/fs.h>
  87. #include <linux/jbd2.h>
  88. #include <linux/errno.h>
  89. #include <linux/slab.h>
  90. #include <linux/list.h>
  91. #include <linux/init.h>
  92. #include <linux/bio.h>
  93. #endif
  94. #include <linux/log2.h>
  95. static struct kmem_cache *jbd2_revoke_record_cache;
  96. static struct kmem_cache *jbd2_revoke_table_cache;
  97. /* Each revoke record represents one single revoked block. During
  98. journal replay, this involves recording the transaction ID of the
  99. last transaction to revoke this block. */
  100. struct jbd2_revoke_record_s
  101. {
  102. struct list_head hash;
  103. tid_t sequence; /* Used for recovery only */
  104. unsigned long long blocknr;
  105. };
  106. /* The revoke table is just a simple hash table of revoke records. */
  107. struct jbd2_revoke_table_s
  108. {
  109. /* It is conceivable that we might want a larger hash table
  110. * for recovery. Must be a power of two. */
  111. int hash_size;
  112. int hash_shift;
  113. struct list_head *hash_table;
  114. };
  115. #ifdef __KERNEL__
  116. static void write_one_revoke_record(journal_t *, transaction_t *,
  117. struct list_head *,
  118. struct buffer_head **, int *,
  119. struct jbd2_revoke_record_s *, int);
  120. static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
  121. #endif
  122. /* Utility functions to maintain the revoke table */
  123. /* Borrowed from buffer.c: this is a tried and tested block hash function */
  124. static inline int hash(journal_t *journal, unsigned long long block)
  125. {
  126. struct jbd2_revoke_table_s *table = journal->j_revoke;
  127. int hash_shift = table->hash_shift;
  128. int hash = (int)block ^ (int)((block >> 31) >> 1);
  129. return ((hash << (hash_shift - 6)) ^
  130. (hash >> 13) ^
  131. (hash << (hash_shift - 12))) & (table->hash_size - 1);
  132. }
  133. static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
  134. tid_t seq)
  135. {
  136. struct list_head *hash_list;
  137. struct jbd2_revoke_record_s *record;
  138. repeat:
  139. record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
  140. if (!record)
  141. goto oom;
  142. record->sequence = seq;
  143. record->blocknr = blocknr;
  144. hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
  145. spin_lock(&journal->j_revoke_lock);
  146. list_add(&record->hash, hash_list);
  147. spin_unlock(&journal->j_revoke_lock);
  148. return 0;
  149. oom:
  150. if (!journal_oom_retry)
  151. return -ENOMEM;
  152. jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
  153. yield();
  154. goto repeat;
  155. }
  156. /* Find a revoke record in the journal's hash table. */
  157. static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
  158. unsigned long long blocknr)
  159. {
  160. struct list_head *hash_list;
  161. struct jbd2_revoke_record_s *record;
  162. hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
  163. spin_lock(&journal->j_revoke_lock);
  164. record = (struct jbd2_revoke_record_s *) hash_list->next;
  165. while (&(record->hash) != hash_list) {
  166. if (record->blocknr == blocknr) {
  167. spin_unlock(&journal->j_revoke_lock);
  168. return record;
  169. }
  170. record = (struct jbd2_revoke_record_s *) record->hash.next;
  171. }
  172. spin_unlock(&journal->j_revoke_lock);
  173. return NULL;
  174. }
  175. void jbd2_journal_destroy_revoke_caches(void)
  176. {
  177. if (jbd2_revoke_record_cache) {
  178. kmem_cache_destroy(jbd2_revoke_record_cache);
  179. jbd2_revoke_record_cache = NULL;
  180. }
  181. if (jbd2_revoke_table_cache) {
  182. kmem_cache_destroy(jbd2_revoke_table_cache);
  183. jbd2_revoke_table_cache = NULL;
  184. }
  185. }
  186. int __init jbd2_journal_init_revoke_caches(void)
  187. {
  188. J_ASSERT(!jbd2_revoke_record_cache);
  189. J_ASSERT(!jbd2_revoke_table_cache);
  190. jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
  191. SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
  192. if (!jbd2_revoke_record_cache)
  193. goto record_cache_failure;
  194. jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
  195. SLAB_TEMPORARY);
  196. if (!jbd2_revoke_table_cache)
  197. goto table_cache_failure;
  198. return 0;
  199. table_cache_failure:
  200. jbd2_journal_destroy_revoke_caches();
  201. record_cache_failure:
  202. return -ENOMEM;
  203. }
  204. static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
  205. {
  206. int shift = 0;
  207. int tmp = hash_size;
  208. struct jbd2_revoke_table_s *table;
  209. table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
  210. if (!table)
  211. goto out;
  212. while((tmp >>= 1UL) != 0UL)
  213. shift++;
  214. table->hash_size = hash_size;
  215. table->hash_shift = shift;
  216. table->hash_table =
  217. kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
  218. if (!table->hash_table) {
  219. kmem_cache_free(jbd2_revoke_table_cache, table);
  220. table = NULL;
  221. goto out;
  222. }
  223. for (tmp = 0; tmp < hash_size; tmp++)
  224. INIT_LIST_HEAD(&table->hash_table[tmp]);
  225. out:
  226. return table;
  227. }
  228. static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
  229. {
  230. int i;
  231. struct list_head *hash_list;
  232. for (i = 0; i < table->hash_size; i++) {
  233. hash_list = &table->hash_table[i];
  234. J_ASSERT(list_empty(hash_list));
  235. }
  236. kfree(table->hash_table);
  237. kmem_cache_free(jbd2_revoke_table_cache, table);
  238. }
  239. /* Initialise the revoke table for a given journal to a given size. */
  240. int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
  241. {
  242. J_ASSERT(journal->j_revoke_table[0] == NULL);
  243. J_ASSERT(is_power_of_2(hash_size));
  244. journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
  245. if (!journal->j_revoke_table[0])
  246. goto fail0;
  247. journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
  248. if (!journal->j_revoke_table[1])
  249. goto fail1;
  250. journal->j_revoke = journal->j_revoke_table[1];
  251. spin_lock_init(&journal->j_revoke_lock);
  252. return 0;
  253. fail1:
  254. jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
  255. fail0:
  256. return -ENOMEM;
  257. }
  258. /* Destroy a journal's revoke table. The table must already be empty! */
  259. void jbd2_journal_destroy_revoke(journal_t *journal)
  260. {
  261. journal->j_revoke = NULL;
  262. if (journal->j_revoke_table[0])
  263. jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
  264. if (journal->j_revoke_table[1])
  265. jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
  266. }
  267. #ifdef __KERNEL__
  268. /*
  269. * jbd2_journal_revoke: revoke a given buffer_head from the journal. This
  270. * prevents the block from being replayed during recovery if we take a
  271. * crash after this current transaction commits. Any subsequent
  272. * metadata writes of the buffer in this transaction cancel the
  273. * revoke.
  274. *
  275. * Note that this call may block --- it is up to the caller to make
  276. * sure that there are no further calls to journal_write_metadata
  277. * before the revoke is complete. In ext3, this implies calling the
  278. * revoke before clearing the block bitmap when we are deleting
  279. * metadata.
  280. *
  281. * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
  282. * parameter, but does _not_ forget the buffer_head if the bh was only
  283. * found implicitly.
  284. *
  285. * bh_in may not be a journalled buffer - it may have come off
  286. * the hash tables without an attached journal_head.
  287. *
  288. * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
  289. * by one.
  290. */
  291. int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
  292. struct buffer_head *bh_in)
  293. {
  294. struct buffer_head *bh = NULL;
  295. journal_t *journal;
  296. struct block_device *bdev;
  297. int err;
  298. might_sleep();
  299. if (bh_in)
  300. BUFFER_TRACE(bh_in, "enter");
  301. journal = handle->h_transaction->t_journal;
  302. if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
  303. J_ASSERT (!"Cannot set revoke feature!");
  304. return -EINVAL;
  305. }
  306. bdev = journal->j_fs_dev;
  307. bh = bh_in;
  308. if (!bh) {
  309. bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
  310. if (bh)
  311. BUFFER_TRACE(bh, "found on hash");
  312. }
  313. #ifdef JBD2_EXPENSIVE_CHECKING
  314. else {
  315. struct buffer_head *bh2;
  316. /* If there is a different buffer_head lying around in
  317. * memory anywhere... */
  318. bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
  319. if (bh2) {
  320. /* ... and it has RevokeValid status... */
  321. if (bh2 != bh && buffer_revokevalid(bh2))
  322. /* ...then it better be revoked too,
  323. * since it's illegal to create a revoke
  324. * record against a buffer_head which is
  325. * not marked revoked --- that would
  326. * risk missing a subsequent revoke
  327. * cancel. */
  328. J_ASSERT_BH(bh2, buffer_revoked(bh2));
  329. put_bh(bh2);
  330. }
  331. }
  332. #endif
  333. /* We really ought not ever to revoke twice in a row without
  334. first having the revoke cancelled: it's illegal to free a
  335. block twice without allocating it in between! */
  336. if (bh) {
  337. if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
  338. "inconsistent data on disk")) {
  339. if (!bh_in)
  340. brelse(bh);
  341. return -EIO;
  342. }
  343. set_buffer_revoked(bh);
  344. set_buffer_revokevalid(bh);
  345. if (bh_in) {
  346. BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
  347. jbd2_journal_forget(handle, bh_in);
  348. } else {
  349. BUFFER_TRACE(bh, "call brelse");
  350. __brelse(bh);
  351. }
  352. }
  353. jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
  354. err = insert_revoke_hash(journal, blocknr,
  355. handle->h_transaction->t_tid);
  356. BUFFER_TRACE(bh_in, "exit");
  357. return err;
  358. }
  359. /*
  360. * Cancel an outstanding revoke. For use only internally by the
  361. * journaling code (called from jbd2_journal_get_write_access).
  362. *
  363. * We trust buffer_revoked() on the buffer if the buffer is already
  364. * being journaled: if there is no revoke pending on the buffer, then we
  365. * don't do anything here.
  366. *
  367. * This would break if it were possible for a buffer to be revoked and
  368. * discarded, and then reallocated within the same transaction. In such
  369. * a case we would have lost the revoked bit, but when we arrived here
  370. * the second time we would still have a pending revoke to cancel. So,
  371. * do not trust the Revoked bit on buffers unless RevokeValid is also
  372. * set.
  373. */
  374. int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
  375. {
  376. struct jbd2_revoke_record_s *record;
  377. journal_t *journal = handle->h_transaction->t_journal;
  378. int need_cancel;
  379. int did_revoke = 0; /* akpm: debug */
  380. struct buffer_head *bh = jh2bh(jh);
  381. jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
  382. /* Is the existing Revoke bit valid? If so, we trust it, and
  383. * only perform the full cancel if the revoke bit is set. If
  384. * not, we can't trust the revoke bit, and we need to do the
  385. * full search for a revoke record. */
  386. if (test_set_buffer_revokevalid(bh)) {
  387. need_cancel = test_clear_buffer_revoked(bh);
  388. } else {
  389. need_cancel = 1;
  390. clear_buffer_revoked(bh);
  391. }
  392. if (need_cancel) {
  393. record = find_revoke_record(journal, bh->b_blocknr);
  394. if (record) {
  395. jbd_debug(4, "cancelled existing revoke on "
  396. "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
  397. spin_lock(&journal->j_revoke_lock);
  398. list_del(&record->hash);
  399. spin_unlock(&journal->j_revoke_lock);
  400. kmem_cache_free(jbd2_revoke_record_cache, record);
  401. did_revoke = 1;
  402. }
  403. }
  404. #ifdef JBD2_EXPENSIVE_CHECKING
  405. /* There better not be one left behind by now! */
  406. record = find_revoke_record(journal, bh->b_blocknr);
  407. J_ASSERT_JH(jh, record == NULL);
  408. #endif
  409. /* Finally, have we just cleared revoke on an unhashed
  410. * buffer_head? If so, we'd better make sure we clear the
  411. * revoked status on any hashed alias too, otherwise the revoke
  412. * state machine will get very upset later on. */
  413. if (need_cancel) {
  414. struct buffer_head *bh2;
  415. bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
  416. if (bh2) {
  417. if (bh2 != bh)
  418. clear_buffer_revoked(bh2);
  419. __brelse(bh2);
  420. }
  421. }
  422. return did_revoke;
  423. }
  424. /*
  425. * journal_clear_revoked_flag clears revoked flag of buffers in
  426. * revoke table to reflect there is no revoked buffers in the next
  427. * transaction which is going to be started.
  428. */
  429. void jbd2_clear_buffer_revoked_flags(journal_t *journal)
  430. {
  431. struct jbd2_revoke_table_s *revoke = journal->j_revoke;
  432. int i = 0;
  433. for (i = 0; i < revoke->hash_size; i++) {
  434. struct list_head *hash_list;
  435. struct list_head *list_entry;
  436. hash_list = &revoke->hash_table[i];
  437. list_for_each(list_entry, hash_list) {
  438. struct jbd2_revoke_record_s *record;
  439. struct buffer_head *bh;
  440. record = (struct jbd2_revoke_record_s *)list_entry;
  441. bh = __find_get_block(journal->j_fs_dev,
  442. record->blocknr,
  443. journal->j_blocksize);
  444. if (bh) {
  445. clear_buffer_revoked(bh);
  446. __brelse(bh);
  447. }
  448. }
  449. }
  450. }
  451. /* journal_switch_revoke table select j_revoke for next transaction
  452. * we do not want to suspend any processing until all revokes are
  453. * written -bzzz
  454. */
  455. void jbd2_journal_switch_revoke_table(journal_t *journal)
  456. {
  457. int i;
  458. if (journal->j_revoke == journal->j_revoke_table[0])
  459. journal->j_revoke = journal->j_revoke_table[1];
  460. else
  461. journal->j_revoke = journal->j_revoke_table[0];
  462. for (i = 0; i < journal->j_revoke->hash_size; i++)
  463. INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
  464. }
  465. /*
  466. * Write revoke records to the journal for all entries in the current
  467. * revoke hash, deleting the entries as we go.
  468. */
  469. void jbd2_journal_write_revoke_records(journal_t *journal,
  470. transaction_t *transaction,
  471. struct list_head *log_bufs,
  472. int write_op)
  473. {
  474. struct buffer_head *descriptor;
  475. struct jbd2_revoke_record_s *record;
  476. struct jbd2_revoke_table_s *revoke;
  477. struct list_head *hash_list;
  478. int i, offset, count;
  479. descriptor = NULL;
  480. offset = 0;
  481. count = 0;
  482. /* select revoke table for committing transaction */
  483. revoke = journal->j_revoke == journal->j_revoke_table[0] ?
  484. journal->j_revoke_table[1] : journal->j_revoke_table[0];
  485. for (i = 0; i < revoke->hash_size; i++) {
  486. hash_list = &revoke->hash_table[i];
  487. while (!list_empty(hash_list)) {
  488. record = (struct jbd2_revoke_record_s *)
  489. hash_list->next;
  490. write_one_revoke_record(journal, transaction, log_bufs,
  491. &descriptor, &offset,
  492. record, write_op);
  493. count++;
  494. list_del(&record->hash);
  495. kmem_cache_free(jbd2_revoke_record_cache, record);
  496. }
  497. }
  498. if (descriptor)
  499. flush_descriptor(journal, descriptor, offset, write_op);
  500. jbd_debug(1, "Wrote %d revoke records\n", count);
  501. }
  502. /*
  503. * Write out one revoke record. We need to create a new descriptor
  504. * block if the old one is full or if we have not already created one.
  505. */
  506. static void write_one_revoke_record(journal_t *journal,
  507. transaction_t *transaction,
  508. struct list_head *log_bufs,
  509. struct buffer_head **descriptorp,
  510. int *offsetp,
  511. struct jbd2_revoke_record_s *record,
  512. int write_op)
  513. {
  514. struct buffer_head *descriptor;
  515. int offset;
  516. journal_header_t *header;
  517. /* If we are already aborting, this all becomes a noop. We
  518. still need to go round the loop in
  519. jbd2_journal_write_revoke_records in order to free all of the
  520. revoke records: only the IO to the journal is omitted. */
  521. if (is_journal_aborted(journal))
  522. return;
  523. descriptor = *descriptorp;
  524. offset = *offsetp;
  525. /* Make sure we have a descriptor with space left for the record */
  526. if (descriptor) {
  527. if (offset == journal->j_blocksize) {
  528. flush_descriptor(journal, descriptor, offset, write_op);
  529. descriptor = NULL;
  530. }
  531. }
  532. if (!descriptor) {
  533. descriptor = jbd2_journal_get_descriptor_buffer(journal);
  534. if (!descriptor)
  535. return;
  536. header = (journal_header_t *)descriptor->b_data;
  537. header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
  538. header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
  539. header->h_sequence = cpu_to_be32(transaction->t_tid);
  540. /* Record it so that we can wait for IO completion later */
  541. BUFFER_TRACE(descriptor, "file in log_bufs");
  542. jbd2_file_log_bh(log_bufs, descriptor);
  543. offset = sizeof(jbd2_journal_revoke_header_t);
  544. *descriptorp = descriptor;
  545. }
  546. if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
  547. * ((__be64 *)(&descriptor->b_data[offset])) =
  548. cpu_to_be64(record->blocknr);
  549. offset += 8;
  550. } else {
  551. * ((__be32 *)(&descriptor->b_data[offset])) =
  552. cpu_to_be32(record->blocknr);
  553. offset += 4;
  554. }
  555. *offsetp = offset;
  556. }
  557. /*
  558. * Flush a revoke descriptor out to the journal. If we are aborting,
  559. * this is a noop; otherwise we are generating a buffer which needs to
  560. * be waited for during commit, so it has to go onto the appropriate
  561. * journal buffer list.
  562. */
  563. static void flush_descriptor(journal_t *journal,
  564. struct buffer_head *descriptor,
  565. int offset, int write_op)
  566. {
  567. jbd2_journal_revoke_header_t *header;
  568. if (is_journal_aborted(journal)) {
  569. put_bh(descriptor);
  570. return;
  571. }
  572. header = (jbd2_journal_revoke_header_t *) descriptor->b_data;
  573. header->r_count = cpu_to_be32(offset);
  574. set_buffer_jwrite(descriptor);
  575. BUFFER_TRACE(descriptor, "write");
  576. set_buffer_dirty(descriptor);
  577. write_dirty_buffer(descriptor, write_op);
  578. }
  579. #endif
  580. /*
  581. * Revoke support for recovery.
  582. *
  583. * Recovery needs to be able to:
  584. *
  585. * record all revoke records, including the tid of the latest instance
  586. * of each revoke in the journal
  587. *
  588. * check whether a given block in a given transaction should be replayed
  589. * (ie. has not been revoked by a revoke record in that or a subsequent
  590. * transaction)
  591. *
  592. * empty the revoke table after recovery.
  593. */
  594. /*
  595. * First, setting revoke records. We create a new revoke record for
  596. * every block ever revoked in the log as we scan it for recovery, and
  597. * we update the existing records if we find multiple revokes for a
  598. * single block.
  599. */
  600. int jbd2_journal_set_revoke(journal_t *journal,
  601. unsigned long long blocknr,
  602. tid_t sequence)
  603. {
  604. struct jbd2_revoke_record_s *record;
  605. record = find_revoke_record(journal, blocknr);
  606. if (record) {
  607. /* If we have multiple occurrences, only record the
  608. * latest sequence number in the hashed record */
  609. if (tid_gt(sequence, record->sequence))
  610. record->sequence = sequence;
  611. return 0;
  612. }
  613. return insert_revoke_hash(journal, blocknr, sequence);
  614. }
  615. /*
  616. * Test revoke records. For a given block referenced in the log, has
  617. * that block been revoked? A revoke record with a given transaction
  618. * sequence number revokes all blocks in that transaction and earlier
  619. * ones, but later transactions still need replayed.
  620. */
  621. int jbd2_journal_test_revoke(journal_t *journal,
  622. unsigned long long blocknr,
  623. tid_t sequence)
  624. {
  625. struct jbd2_revoke_record_s *record;
  626. record = find_revoke_record(journal, blocknr);
  627. if (!record)
  628. return 0;
  629. if (tid_gt(sequence, record->sequence))
  630. return 0;
  631. return 1;
  632. }
  633. /*
  634. * Finally, once recovery is over, we need to clear the revoke table so
  635. * that it can be reused by the running filesystem.
  636. */
  637. void jbd2_journal_clear_revoke(journal_t *journal)
  638. {
  639. int i;
  640. struct list_head *hash_list;
  641. struct jbd2_revoke_record_s *record;
  642. struct jbd2_revoke_table_s *revoke;
  643. revoke = journal->j_revoke;
  644. for (i = 0; i < revoke->hash_size; i++) {
  645. hash_list = &revoke->hash_table[i];
  646. while (!list_empty(hash_list)) {
  647. record = (struct jbd2_revoke_record_s*) hash_list->next;
  648. list_del(&record->hash);
  649. kmem_cache_free(jbd2_revoke_record_cache, record);
  650. }
  651. }
  652. }