urb.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889
  1. #include <linux/module.h>
  2. #include <linux/string.h>
  3. #include <linux/bitops.h>
  4. #include <linux/slab.h>
  5. #include <linux/init.h>
  6. #include <linux/log2.h>
  7. #include <linux/usb.h>
  8. #include <linux/wait.h>
  9. #include <linux/usb/hcd.h>
  10. #define to_urb(d) container_of(d, struct urb, kref)
  11. static void urb_destroy(struct kref *kref)
  12. {
  13. struct urb *urb = to_urb(kref);
  14. if (urb->transfer_flags & URB_FREE_BUFFER)
  15. kfree(urb->transfer_buffer);
  16. kfree(urb);
  17. }
  18. /**
  19. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  20. * @urb: pointer to the urb to initialize
  21. *
  22. * Initializes a urb so that the USB subsystem can use it properly.
  23. *
  24. * If a urb is created with a call to usb_alloc_urb() it is not
  25. * necessary to call this function. Only use this if you allocate the
  26. * space for a struct urb on your own. If you call this function, be
  27. * careful when freeing the memory for your urb that it is no longer in
  28. * use by the USB core.
  29. *
  30. * Only use this function if you _really_ understand what you are doing.
  31. */
  32. void usb_init_urb(struct urb *urb)
  33. {
  34. if (urb) {
  35. memset(urb, 0, sizeof(*urb));
  36. kref_init(&urb->kref);
  37. INIT_LIST_HEAD(&urb->anchor_list);
  38. }
  39. }
  40. EXPORT_SYMBOL_GPL(usb_init_urb);
  41. /**
  42. * usb_alloc_urb - creates a new urb for a USB driver to use
  43. * @iso_packets: number of iso packets for this urb
  44. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  45. * valid options for this.
  46. *
  47. * Creates an urb for the USB driver to use, initializes a few internal
  48. * structures, incrementes the usage counter, and returns a pointer to it.
  49. *
  50. * If no memory is available, NULL is returned.
  51. *
  52. * If the driver want to use this urb for interrupt, control, or bulk
  53. * endpoints, pass '0' as the number of iso packets.
  54. *
  55. * The driver must call usb_free_urb() when it is finished with the urb.
  56. */
  57. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  58. {
  59. struct urb *urb;
  60. urb = kmalloc(sizeof(struct urb) +
  61. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  62. mem_flags);
  63. if (!urb) {
  64. printk(KERN_ERR "alloc_urb: kmalloc failed\n");
  65. return NULL;
  66. }
  67. usb_init_urb(urb);
  68. return urb;
  69. }
  70. EXPORT_SYMBOL_GPL(usb_alloc_urb);
  71. /**
  72. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  73. * @urb: pointer to the urb to free, may be NULL
  74. *
  75. * Must be called when a user of a urb is finished with it. When the last user
  76. * of the urb calls this function, the memory of the urb is freed.
  77. *
  78. * Note: The transfer buffer associated with the urb is not freed unless the
  79. * URB_FREE_BUFFER transfer flag is set.
  80. */
  81. void usb_free_urb(struct urb *urb)
  82. {
  83. if (urb)
  84. kref_put(&urb->kref, urb_destroy);
  85. }
  86. EXPORT_SYMBOL_GPL(usb_free_urb);
  87. /**
  88. * usb_get_urb - increments the reference count of the urb
  89. * @urb: pointer to the urb to modify, may be NULL
  90. *
  91. * This must be called whenever a urb is transferred from a device driver to a
  92. * host controller driver. This allows proper reference counting to happen
  93. * for urbs.
  94. *
  95. * A pointer to the urb with the incremented reference counter is returned.
  96. */
  97. struct urb *usb_get_urb(struct urb *urb)
  98. {
  99. if (urb)
  100. kref_get(&urb->kref);
  101. return urb;
  102. }
  103. EXPORT_SYMBOL_GPL(usb_get_urb);
  104. /**
  105. * usb_anchor_urb - anchors an URB while it is processed
  106. * @urb: pointer to the urb to anchor
  107. * @anchor: pointer to the anchor
  108. *
  109. * This can be called to have access to URBs which are to be executed
  110. * without bothering to track them
  111. */
  112. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  113. {
  114. unsigned long flags;
  115. spin_lock_irqsave(&anchor->lock, flags);
  116. usb_get_urb(urb);
  117. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  118. urb->anchor = anchor;
  119. if (unlikely(anchor->poisoned)) {
  120. atomic_inc(&urb->reject);
  121. }
  122. spin_unlock_irqrestore(&anchor->lock, flags);
  123. }
  124. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  125. /* Callers must hold anchor->lock */
  126. static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
  127. {
  128. urb->anchor = NULL;
  129. list_del(&urb->anchor_list);
  130. usb_put_urb(urb);
  131. if (list_empty(&anchor->urb_list))
  132. wake_up(&anchor->wait);
  133. }
  134. /**
  135. * usb_unanchor_urb - unanchors an URB
  136. * @urb: pointer to the urb to anchor
  137. *
  138. * Call this to stop the system keeping track of this URB
  139. */
  140. void usb_unanchor_urb(struct urb *urb)
  141. {
  142. unsigned long flags;
  143. struct usb_anchor *anchor;
  144. if (!urb)
  145. return;
  146. anchor = urb->anchor;
  147. if (!anchor)
  148. return;
  149. spin_lock_irqsave(&anchor->lock, flags);
  150. /*
  151. * At this point, we could be competing with another thread which
  152. * has the same intention. To protect the urb from being unanchored
  153. * twice, only the winner of the race gets the job.
  154. */
  155. if (likely(anchor == urb->anchor))
  156. __usb_unanchor_urb(urb, anchor);
  157. spin_unlock_irqrestore(&anchor->lock, flags);
  158. }
  159. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  160. /*-------------------------------------------------------------------*/
  161. /**
  162. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  163. * @urb: pointer to the urb describing the request
  164. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  165. * of valid options for this.
  166. *
  167. * This submits a transfer request, and transfers control of the URB
  168. * describing that request to the USB subsystem. Request completion will
  169. * be indicated later, asynchronously, by calling the completion handler.
  170. * The three types of completion are success, error, and unlink
  171. * (a software-induced fault, also called "request cancellation").
  172. *
  173. * URBs may be submitted in interrupt context.
  174. *
  175. * The caller must have correctly initialized the URB before submitting
  176. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  177. * available to ensure that most fields are correctly initialized, for
  178. * the particular kind of transfer, although they will not initialize
  179. * any transfer flags.
  180. *
  181. * Successful submissions return 0; otherwise this routine returns a
  182. * negative error number. If the submission is successful, the complete()
  183. * callback from the URB will be called exactly once, when the USB core and
  184. * Host Controller Driver (HCD) are finished with the URB. When the completion
  185. * function is called, control of the URB is returned to the device
  186. * driver which issued the request. The completion handler may then
  187. * immediately free or reuse that URB.
  188. *
  189. * With few exceptions, USB device drivers should never access URB fields
  190. * provided by usbcore or the HCD until its complete() is called.
  191. * The exceptions relate to periodic transfer scheduling. For both
  192. * interrupt and isochronous urbs, as part of successful URB submission
  193. * urb->interval is modified to reflect the actual transfer period used
  194. * (normally some power of two units). And for isochronous urbs,
  195. * urb->start_frame is modified to reflect when the URB's transfers were
  196. * scheduled to start. Not all isochronous transfer scheduling policies
  197. * will work, but most host controller drivers should easily handle ISO
  198. * queues going from now until 10-200 msec into the future.
  199. *
  200. * For control endpoints, the synchronous usb_control_msg() call is
  201. * often used (in non-interrupt context) instead of this call.
  202. * That is often used through convenience wrappers, for the requests
  203. * that are standardized in the USB 2.0 specification. For bulk
  204. * endpoints, a synchronous usb_bulk_msg() call is available.
  205. *
  206. * Request Queuing:
  207. *
  208. * URBs may be submitted to endpoints before previous ones complete, to
  209. * minimize the impact of interrupt latencies and system overhead on data
  210. * throughput. With that queuing policy, an endpoint's queue would never
  211. * be empty. This is required for continuous isochronous data streams,
  212. * and may also be required for some kinds of interrupt transfers. Such
  213. * queuing also maximizes bandwidth utilization by letting USB controllers
  214. * start work on later requests before driver software has finished the
  215. * completion processing for earlier (successful) requests.
  216. *
  217. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  218. * than one. This was previously a HCD-specific behavior, except for ISO
  219. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  220. * after faults (transfer errors or cancellation).
  221. *
  222. * Reserved Bandwidth Transfers:
  223. *
  224. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  225. * using the interval specified in the urb. Submitting the first urb to
  226. * the endpoint reserves the bandwidth necessary to make those transfers.
  227. * If the USB subsystem can't allocate sufficient bandwidth to perform
  228. * the periodic request, submitting such a periodic request should fail.
  229. *
  230. * For devices under xHCI, the bandwidth is reserved at configuration time, or
  231. * when the alt setting is selected. If there is not enough bus bandwidth, the
  232. * configuration/alt setting request will fail. Therefore, submissions to
  233. * periodic endpoints on devices under xHCI should never fail due to bandwidth
  234. * constraints.
  235. *
  236. * Device drivers must explicitly request that repetition, by ensuring that
  237. * some URB is always on the endpoint's queue (except possibly for short
  238. * periods during completion callacks). When there is no longer an urb
  239. * queued, the endpoint's bandwidth reservation is canceled. This means
  240. * drivers can use their completion handlers to ensure they keep bandwidth
  241. * they need, by reinitializing and resubmitting the just-completed urb
  242. * until the driver longer needs that periodic bandwidth.
  243. *
  244. * Memory Flags:
  245. *
  246. * The general rules for how to decide which mem_flags to use
  247. * are the same as for kmalloc. There are four
  248. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  249. * GFP_ATOMIC.
  250. *
  251. * GFP_NOFS is not ever used, as it has not been implemented yet.
  252. *
  253. * GFP_ATOMIC is used when
  254. * (a) you are inside a completion handler, an interrupt, bottom half,
  255. * tasklet or timer, or
  256. * (b) you are holding a spinlock or rwlock (does not apply to
  257. * semaphores), or
  258. * (c) current->state != TASK_RUNNING, this is the case only after
  259. * you've changed it.
  260. *
  261. * GFP_NOIO is used in the block io path and error handling of storage
  262. * devices.
  263. *
  264. * All other situations use GFP_KERNEL.
  265. *
  266. * Some more specific rules for mem_flags can be inferred, such as
  267. * (1) start_xmit, timeout, and receive methods of network drivers must
  268. * use GFP_ATOMIC (they are called with a spinlock held);
  269. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  270. * called with a spinlock held);
  271. * (3) If you use a kernel thread with a network driver you must use
  272. * GFP_NOIO, unless (b) or (c) apply;
  273. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  274. * apply or your are in a storage driver's block io path;
  275. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  276. * (6) changing firmware on a running storage or net device uses
  277. * GFP_NOIO, unless b) or c) apply
  278. *
  279. */
  280. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  281. {
  282. int xfertype, max;
  283. struct usb_device *dev;
  284. struct usb_host_endpoint *ep;
  285. int is_out;
  286. if (!urb || urb->hcpriv || !urb->complete)
  287. return -EINVAL;
  288. dev = urb->dev;
  289. if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
  290. return -ENODEV;
  291. /* For now, get the endpoint from the pipe. Eventually drivers
  292. * will be required to set urb->ep directly and we will eliminate
  293. * urb->pipe.
  294. */
  295. ep = usb_pipe_endpoint(dev, urb->pipe);
  296. if (!ep)
  297. return -ENOENT;
  298. urb->ep = ep;
  299. urb->status = -EINPROGRESS;
  300. urb->actual_length = 0;
  301. /* Lots of sanity checks, so HCDs can rely on clean data
  302. * and don't need to duplicate tests
  303. */
  304. xfertype = usb_endpoint_type(&ep->desc);
  305. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  306. struct usb_ctrlrequest *setup =
  307. (struct usb_ctrlrequest *) urb->setup_packet;
  308. if (!setup)
  309. return -ENOEXEC;
  310. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  311. !setup->wLength;
  312. } else {
  313. is_out = usb_endpoint_dir_out(&ep->desc);
  314. }
  315. /* Clear the internal flags and cache the direction for later use */
  316. urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
  317. URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
  318. URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
  319. URB_DMA_SG_COMBINED);
  320. urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
  321. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  322. dev->state < USB_STATE_CONFIGURED)
  323. return -ENODEV;
  324. max = usb_endpoint_maxp(&ep->desc);
  325. if (max <= 0) {
  326. dev_dbg(&dev->dev,
  327. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  328. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  329. __func__, max);
  330. return -EMSGSIZE;
  331. }
  332. /* periodic transfers limit size per frame/uframe,
  333. * but drivers only control those sizes for ISO.
  334. * while we're checking, initialize return status.
  335. */
  336. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  337. int n, len;
  338. /* SuperSpeed isoc endpoints have up to 16 bursts of up to
  339. * 3 packets each
  340. */
  341. if (dev->speed == USB_SPEED_SUPER) {
  342. int burst = 1 + ep->ss_ep_comp.bMaxBurst;
  343. int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
  344. max *= burst;
  345. max *= mult;
  346. }
  347. /* "high bandwidth" mode, 1-3 packets/uframe? */
  348. if (dev->speed == USB_SPEED_HIGH) {
  349. int mult = 1 + ((max >> 11) & 0x03);
  350. max &= 0x07ff;
  351. max *= mult;
  352. }
  353. if (urb->number_of_packets <= 0)
  354. return -EINVAL;
  355. for (n = 0; n < urb->number_of_packets; n++) {
  356. len = urb->iso_frame_desc[n].length;
  357. if (len < 0 || len > max)
  358. return -EMSGSIZE;
  359. urb->iso_frame_desc[n].status = -EXDEV;
  360. urb->iso_frame_desc[n].actual_length = 0;
  361. }
  362. }
  363. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  364. if (urb->transfer_buffer_length > INT_MAX)
  365. return -EMSGSIZE;
  366. #ifdef DEBUG
  367. /* stuff that drivers shouldn't do, but which shouldn't
  368. * cause problems in HCDs if they get it wrong.
  369. */
  370. {
  371. unsigned int allowed;
  372. static int pipetypes[4] = {
  373. PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
  374. };
  375. /* Check that the pipe's type matches the endpoint's type */
  376. if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
  377. dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
  378. usb_pipetype(urb->pipe), pipetypes[xfertype]);
  379. /* Check against a simple/standard policy */
  380. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
  381. URB_FREE_BUFFER);
  382. switch (xfertype) {
  383. case USB_ENDPOINT_XFER_BULK:
  384. if (is_out)
  385. allowed |= URB_ZERO_PACKET;
  386. /* FALLTHROUGH */
  387. case USB_ENDPOINT_XFER_CONTROL:
  388. allowed |= URB_NO_FSBR; /* only affects UHCI */
  389. /* FALLTHROUGH */
  390. default: /* all non-iso endpoints */
  391. if (!is_out)
  392. allowed |= URB_SHORT_NOT_OK;
  393. break;
  394. case USB_ENDPOINT_XFER_ISOC:
  395. allowed |= URB_ISO_ASAP;
  396. break;
  397. }
  398. allowed &= urb->transfer_flags;
  399. /* warn if submitter gave bogus flags */
  400. if (allowed != urb->transfer_flags)
  401. dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
  402. urb->transfer_flags, allowed);
  403. }
  404. #endif
  405. /*
  406. * Force periodic transfer intervals to be legal values that are
  407. * a power of two (so HCDs don't need to).
  408. *
  409. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  410. * supports different values... this uses EHCI/UHCI defaults (and
  411. * EHCI can use smaller non-default values).
  412. */
  413. switch (xfertype) {
  414. case USB_ENDPOINT_XFER_ISOC:
  415. case USB_ENDPOINT_XFER_INT:
  416. /* too small? */
  417. switch (dev->speed) {
  418. case USB_SPEED_WIRELESS:
  419. if (urb->interval < 6)
  420. return -EINVAL;
  421. break;
  422. default:
  423. if (urb->interval <= 0)
  424. return -EINVAL;
  425. break;
  426. }
  427. /* too big? */
  428. switch (dev->speed) {
  429. case USB_SPEED_SUPER: /* units are 125us */
  430. /* Handle up to 2^(16-1) microframes */
  431. if (urb->interval > (1 << 15))
  432. return -EINVAL;
  433. max = 1 << 15;
  434. break;
  435. case USB_SPEED_WIRELESS:
  436. if (urb->interval > 16)
  437. return -EINVAL;
  438. break;
  439. case USB_SPEED_HIGH: /* units are microframes */
  440. /* NOTE usb handles 2^15 */
  441. if (urb->interval > (1024 * 8))
  442. urb->interval = 1024 * 8;
  443. max = 1024 * 8;
  444. break;
  445. case USB_SPEED_FULL: /* units are frames/msec */
  446. case USB_SPEED_LOW:
  447. if (xfertype == USB_ENDPOINT_XFER_INT) {
  448. if (urb->interval > 255)
  449. return -EINVAL;
  450. /* NOTE ohci only handles up to 32 */
  451. max = 128;
  452. } else {
  453. if (urb->interval > 1024)
  454. urb->interval = 1024;
  455. /* NOTE usb and ohci handle up to 2^15 */
  456. max = 1024;
  457. }
  458. break;
  459. default:
  460. return -EINVAL;
  461. }
  462. if (dev->speed != USB_SPEED_WIRELESS) {
  463. /* Round down to a power of 2, no more than max */
  464. urb->interval = min(max, 1 << ilog2(urb->interval));
  465. }
  466. }
  467. return usb_hcd_submit_urb(urb, mem_flags);
  468. }
  469. EXPORT_SYMBOL_GPL(usb_submit_urb);
  470. /*-------------------------------------------------------------------*/
  471. /**
  472. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  473. * @urb: pointer to urb describing a previously submitted request,
  474. * may be NULL
  475. *
  476. * This routine cancels an in-progress request. URBs complete only once
  477. * per submission, and may be canceled only once per submission.
  478. * Successful cancellation means termination of @urb will be expedited
  479. * and the completion handler will be called with a status code
  480. * indicating that the request has been canceled (rather than any other
  481. * code).
  482. *
  483. * Drivers should not call this routine or related routines, such as
  484. * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
  485. * method has returned. The disconnect function should synchronize with
  486. * a driver's I/O routines to insure that all URB-related activity has
  487. * completed before it returns.
  488. *
  489. * This request is asynchronous, however the HCD might call the ->complete()
  490. * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
  491. * must not hold any locks that may be taken by the completion function.
  492. * Success is indicated by returning -EINPROGRESS, at which time the URB will
  493. * probably not yet have been given back to the device driver. When it is
  494. * eventually called, the completion function will see @urb->status ==
  495. * -ECONNRESET.
  496. * Failure is indicated by usb_unlink_urb() returning any other value.
  497. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  498. * never submitted, or it was unlinked before, or the hardware is already
  499. * finished with it), even if the completion handler has not yet run.
  500. *
  501. * The URB must not be deallocated while this routine is running. In
  502. * particular, when a driver calls this routine, it must insure that the
  503. * completion handler cannot deallocate the URB.
  504. *
  505. * Unlinking and Endpoint Queues:
  506. *
  507. * [The behaviors and guarantees described below do not apply to virtual
  508. * root hubs but only to endpoint queues for physical USB devices.]
  509. *
  510. * Host Controller Drivers (HCDs) place all the URBs for a particular
  511. * endpoint in a queue. Normally the queue advances as the controller
  512. * hardware processes each request. But when an URB terminates with an
  513. * error its queue generally stops (see below), at least until that URB's
  514. * completion routine returns. It is guaranteed that a stopped queue
  515. * will not restart until all its unlinked URBs have been fully retired,
  516. * with their completion routines run, even if that's not until some time
  517. * after the original completion handler returns. The same behavior and
  518. * guarantee apply when an URB terminates because it was unlinked.
  519. *
  520. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  521. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  522. * and -EREMOTEIO. Control endpoint queues behave the same way except
  523. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  524. * for isochronous endpoints are treated differently, because they must
  525. * advance at fixed rates. Such queues do not stop when an URB
  526. * encounters an error or is unlinked. An unlinked isochronous URB may
  527. * leave a gap in the stream of packets; it is undefined whether such
  528. * gaps can be filled in.
  529. *
  530. * Note that early termination of an URB because a short packet was
  531. * received will generate a -EREMOTEIO error if and only if the
  532. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  533. * drivers can build deep queues for large or complex bulk transfers
  534. * and clean them up reliably after any sort of aborted transfer by
  535. * unlinking all pending URBs at the first fault.
  536. *
  537. * When a control URB terminates with an error other than -EREMOTEIO, it
  538. * is quite likely that the status stage of the transfer will not take
  539. * place.
  540. */
  541. int usb_unlink_urb(struct urb *urb)
  542. {
  543. if (!urb)
  544. return -EINVAL;
  545. if (!urb->dev)
  546. return -ENODEV;
  547. if (!urb->ep)
  548. return -EIDRM;
  549. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  550. }
  551. EXPORT_SYMBOL_GPL(usb_unlink_urb);
  552. /**
  553. * usb_kill_urb - cancel a transfer request and wait for it to finish
  554. * @urb: pointer to URB describing a previously submitted request,
  555. * may be NULL
  556. *
  557. * This routine cancels an in-progress request. It is guaranteed that
  558. * upon return all completion handlers will have finished and the URB
  559. * will be totally idle and available for reuse. These features make
  560. * this an ideal way to stop I/O in a disconnect() callback or close()
  561. * function. If the request has not already finished or been unlinked
  562. * the completion handler will see urb->status == -ENOENT.
  563. *
  564. * While the routine is running, attempts to resubmit the URB will fail
  565. * with error -EPERM. Thus even if the URB's completion handler always
  566. * tries to resubmit, it will not succeed and the URB will become idle.
  567. *
  568. * The URB must not be deallocated while this routine is running. In
  569. * particular, when a driver calls this routine, it must insure that the
  570. * completion handler cannot deallocate the URB.
  571. *
  572. * This routine may not be used in an interrupt context (such as a bottom
  573. * half or a completion handler), or when holding a spinlock, or in other
  574. * situations where the caller can't schedule().
  575. *
  576. * This routine should not be called by a driver after its disconnect
  577. * method has returned.
  578. */
  579. void usb_kill_urb(struct urb *urb)
  580. {
  581. might_sleep();
  582. if (!(urb && urb->dev && urb->ep))
  583. return;
  584. atomic_inc(&urb->reject);
  585. usb_hcd_unlink_urb(urb, -ENOENT);
  586. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  587. atomic_dec(&urb->reject);
  588. }
  589. EXPORT_SYMBOL_GPL(usb_kill_urb);
  590. /**
  591. * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
  592. * @urb: pointer to URB describing a previously submitted request,
  593. * may be NULL
  594. *
  595. * This routine cancels an in-progress request. It is guaranteed that
  596. * upon return all completion handlers will have finished and the URB
  597. * will be totally idle and cannot be reused. These features make
  598. * this an ideal way to stop I/O in a disconnect() callback.
  599. * If the request has not already finished or been unlinked
  600. * the completion handler will see urb->status == -ENOENT.
  601. *
  602. * After and while the routine runs, attempts to resubmit the URB will fail
  603. * with error -EPERM. Thus even if the URB's completion handler always
  604. * tries to resubmit, it will not succeed and the URB will become idle.
  605. *
  606. * The URB must not be deallocated while this routine is running. In
  607. * particular, when a driver calls this routine, it must insure that the
  608. * completion handler cannot deallocate the URB.
  609. *
  610. * This routine may not be used in an interrupt context (such as a bottom
  611. * half or a completion handler), or when holding a spinlock, or in other
  612. * situations where the caller can't schedule().
  613. *
  614. * This routine should not be called by a driver after its disconnect
  615. * method has returned.
  616. */
  617. void usb_poison_urb(struct urb *urb)
  618. {
  619. might_sleep();
  620. if (!(urb && urb->dev && urb->ep))
  621. return;
  622. atomic_inc(&urb->reject);
  623. usb_hcd_unlink_urb(urb, -ENOENT);
  624. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  625. }
  626. EXPORT_SYMBOL_GPL(usb_poison_urb);
  627. void usb_unpoison_urb(struct urb *urb)
  628. {
  629. if (!urb)
  630. return;
  631. atomic_dec(&urb->reject);
  632. }
  633. EXPORT_SYMBOL_GPL(usb_unpoison_urb);
  634. /**
  635. * usb_block_urb - reliably prevent further use of an URB
  636. * @urb: pointer to URB to be blocked, may be NULL
  637. *
  638. * After the routine has run, attempts to resubmit the URB will fail
  639. * with error -EPERM. Thus even if the URB's completion handler always
  640. * tries to resubmit, it will not succeed and the URB will become idle.
  641. *
  642. * The URB must not be deallocated while this routine is running. In
  643. * particular, when a driver calls this routine, it must insure that the
  644. * completion handler cannot deallocate the URB.
  645. */
  646. void usb_block_urb(struct urb *urb)
  647. {
  648. if (!urb)
  649. return;
  650. atomic_inc(&urb->reject);
  651. }
  652. EXPORT_SYMBOL_GPL(usb_block_urb);
  653. /**
  654. * usb_kill_anchored_urbs - cancel transfer requests en masse
  655. * @anchor: anchor the requests are bound to
  656. *
  657. * this allows all outstanding URBs to be killed starting
  658. * from the back of the queue
  659. *
  660. * This routine should not be called by a driver after its disconnect
  661. * method has returned.
  662. */
  663. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  664. {
  665. struct urb *victim;
  666. spin_lock_irq(&anchor->lock);
  667. while (!list_empty(&anchor->urb_list)) {
  668. victim = list_entry(anchor->urb_list.prev, struct urb,
  669. anchor_list);
  670. /* we must make sure the URB isn't freed before we kill it*/
  671. usb_get_urb(victim);
  672. spin_unlock_irq(&anchor->lock);
  673. /* this will unanchor the URB */
  674. usb_kill_urb(victim);
  675. usb_put_urb(victim);
  676. spin_lock_irq(&anchor->lock);
  677. }
  678. spin_unlock_irq(&anchor->lock);
  679. }
  680. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  681. /**
  682. * usb_poison_anchored_urbs - cease all traffic from an anchor
  683. * @anchor: anchor the requests are bound to
  684. *
  685. * this allows all outstanding URBs to be poisoned starting
  686. * from the back of the queue. Newly added URBs will also be
  687. * poisoned
  688. *
  689. * This routine should not be called by a driver after its disconnect
  690. * method has returned.
  691. */
  692. void usb_poison_anchored_urbs(struct usb_anchor *anchor)
  693. {
  694. struct urb *victim;
  695. spin_lock_irq(&anchor->lock);
  696. anchor->poisoned = 1;
  697. while (!list_empty(&anchor->urb_list)) {
  698. victim = list_entry(anchor->urb_list.prev, struct urb,
  699. anchor_list);
  700. /* we must make sure the URB isn't freed before we kill it*/
  701. usb_get_urb(victim);
  702. spin_unlock_irq(&anchor->lock);
  703. /* this will unanchor the URB */
  704. usb_poison_urb(victim);
  705. usb_put_urb(victim);
  706. spin_lock_irq(&anchor->lock);
  707. }
  708. spin_unlock_irq(&anchor->lock);
  709. }
  710. EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
  711. /**
  712. * usb_unpoison_anchored_urbs - let an anchor be used successfully again
  713. * @anchor: anchor the requests are bound to
  714. *
  715. * Reverses the effect of usb_poison_anchored_urbs
  716. * the anchor can be used normally after it returns
  717. */
  718. void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
  719. {
  720. unsigned long flags;
  721. struct urb *lazarus;
  722. spin_lock_irqsave(&anchor->lock, flags);
  723. list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
  724. usb_unpoison_urb(lazarus);
  725. }
  726. anchor->poisoned = 0;
  727. spin_unlock_irqrestore(&anchor->lock, flags);
  728. }
  729. EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
  730. /**
  731. * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
  732. * @anchor: anchor the requests are bound to
  733. *
  734. * this allows all outstanding URBs to be unlinked starting
  735. * from the back of the queue. This function is asynchronous.
  736. * The unlinking is just tiggered. It may happen after this
  737. * function has returned.
  738. *
  739. * This routine should not be called by a driver after its disconnect
  740. * method has returned.
  741. */
  742. void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
  743. {
  744. struct urb *victim;
  745. while ((victim = usb_get_from_anchor(anchor)) != NULL) {
  746. usb_unlink_urb(victim);
  747. usb_put_urb(victim);
  748. }
  749. }
  750. EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
  751. /**
  752. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  753. * @anchor: the anchor you want to become unused
  754. * @timeout: how long you are willing to wait in milliseconds
  755. *
  756. * Call this is you want to be sure all an anchor's
  757. * URBs have finished
  758. */
  759. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  760. unsigned int timeout)
  761. {
  762. return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
  763. msecs_to_jiffies(timeout));
  764. }
  765. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  766. /**
  767. * usb_get_from_anchor - get an anchor's oldest urb
  768. * @anchor: the anchor whose urb you want
  769. *
  770. * this will take the oldest urb from an anchor,
  771. * unanchor and return it
  772. */
  773. struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
  774. {
  775. struct urb *victim;
  776. unsigned long flags;
  777. spin_lock_irqsave(&anchor->lock, flags);
  778. if (!list_empty(&anchor->urb_list)) {
  779. victim = list_entry(anchor->urb_list.next, struct urb,
  780. anchor_list);
  781. usb_get_urb(victim);
  782. __usb_unanchor_urb(victim, anchor);
  783. } else {
  784. victim = NULL;
  785. }
  786. spin_unlock_irqrestore(&anchor->lock, flags);
  787. return victim;
  788. }
  789. EXPORT_SYMBOL_GPL(usb_get_from_anchor);
  790. /**
  791. * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
  792. * @anchor: the anchor whose urbs you want to unanchor
  793. *
  794. * use this to get rid of all an anchor's urbs
  795. */
  796. void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
  797. {
  798. struct urb *victim;
  799. unsigned long flags;
  800. spin_lock_irqsave(&anchor->lock, flags);
  801. while (!list_empty(&anchor->urb_list)) {
  802. victim = list_entry(anchor->urb_list.prev, struct urb,
  803. anchor_list);
  804. __usb_unanchor_urb(victim, anchor);
  805. }
  806. spin_unlock_irqrestore(&anchor->lock, flags);
  807. }
  808. EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
  809. /**
  810. * usb_anchor_empty - is an anchor empty
  811. * @anchor: the anchor you want to query
  812. *
  813. * returns 1 if the anchor has no urbs associated with it
  814. */
  815. int usb_anchor_empty(struct usb_anchor *anchor)
  816. {
  817. return list_empty(&anchor->urb_list);
  818. }
  819. EXPORT_SYMBOL_GPL(usb_anchor_empty);