dm.c 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801
  1. /*
  2. * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
  3. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include "dm.h"
  8. #include "dm-uevent.h"
  9. #include <linux/init.h>
  10. #include <linux/module.h>
  11. #include <linux/mutex.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/blkpg.h>
  14. #include <linux/bio.h>
  15. #include <linux/mempool.h>
  16. #include <linux/slab.h>
  17. #include <linux/idr.h>
  18. #include <linux/hdreg.h>
  19. #include <linux/delay.h>
  20. #include <trace/events/block.h>
  21. #define DM_MSG_PREFIX "core"
  22. #ifdef CONFIG_PRINTK
  23. /*
  24. * ratelimit state to be used in DMXXX_LIMIT().
  25. */
  26. DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  27. DEFAULT_RATELIMIT_INTERVAL,
  28. DEFAULT_RATELIMIT_BURST);
  29. EXPORT_SYMBOL(dm_ratelimit_state);
  30. #endif
  31. /*
  32. * Cookies are numeric values sent with CHANGE and REMOVE
  33. * uevents while resuming, removing or renaming the device.
  34. */
  35. #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  36. #define DM_COOKIE_LENGTH 24
  37. static const char *_name = DM_NAME;
  38. static unsigned int major = 0;
  39. static unsigned int _major = 0;
  40. static DEFINE_IDR(_minor_idr);
  41. static DEFINE_SPINLOCK(_minor_lock);
  42. /*
  43. * For bio-based dm.
  44. * One of these is allocated per bio.
  45. */
  46. struct dm_io {
  47. struct mapped_device *md;
  48. int error;
  49. atomic_t io_count;
  50. struct bio *bio;
  51. unsigned long start_time;
  52. spinlock_t endio_lock;
  53. };
  54. /*
  55. * For bio-based dm.
  56. * One of these is allocated per target within a bio. Hopefully
  57. * this will be simplified out one day.
  58. */
  59. struct dm_target_io {
  60. struct dm_io *io;
  61. struct dm_target *ti;
  62. union map_info info;
  63. };
  64. /*
  65. * For request-based dm.
  66. * One of these is allocated per request.
  67. */
  68. struct dm_rq_target_io {
  69. struct mapped_device *md;
  70. struct dm_target *ti;
  71. struct request *orig, clone;
  72. int error;
  73. union map_info info;
  74. };
  75. /*
  76. * For request-based dm.
  77. * One of these is allocated per bio.
  78. */
  79. struct dm_rq_clone_bio_info {
  80. struct bio *orig;
  81. struct dm_rq_target_io *tio;
  82. };
  83. union map_info *dm_get_mapinfo(struct bio *bio)
  84. {
  85. if (bio && bio->bi_private)
  86. return &((struct dm_target_io *)bio->bi_private)->info;
  87. return NULL;
  88. }
  89. union map_info *dm_get_rq_mapinfo(struct request *rq)
  90. {
  91. if (rq && rq->end_io_data)
  92. return &((struct dm_rq_target_io *)rq->end_io_data)->info;
  93. return NULL;
  94. }
  95. EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
  96. #define MINOR_ALLOCED ((void *)-1)
  97. /*
  98. * Bits for the md->flags field.
  99. */
  100. #define DMF_BLOCK_IO_FOR_SUSPEND 0
  101. #define DMF_SUSPENDED 1
  102. #define DMF_FROZEN 2
  103. #define DMF_FREEING 3
  104. #define DMF_DELETING 4
  105. #define DMF_NOFLUSH_SUSPENDING 5
  106. #define DMF_MERGE_IS_OPTIONAL 6
  107. /*
  108. * Work processed by per-device workqueue.
  109. */
  110. struct mapped_device {
  111. struct rw_semaphore io_lock;
  112. struct mutex suspend_lock;
  113. rwlock_t map_lock;
  114. atomic_t holders;
  115. atomic_t open_count;
  116. unsigned long flags;
  117. struct request_queue *queue;
  118. unsigned type;
  119. /* Protect queue and type against concurrent access. */
  120. struct mutex type_lock;
  121. struct target_type *immutable_target_type;
  122. struct gendisk *disk;
  123. char name[16];
  124. void *interface_ptr;
  125. /*
  126. * A list of ios that arrived while we were suspended.
  127. */
  128. atomic_t pending[2];
  129. wait_queue_head_t wait;
  130. struct work_struct work;
  131. struct bio_list deferred;
  132. spinlock_t deferred_lock;
  133. /*
  134. * Processing queue (flush)
  135. */
  136. struct workqueue_struct *wq;
  137. /*
  138. * The current mapping.
  139. */
  140. struct dm_table *map;
  141. /*
  142. * io objects are allocated from here.
  143. */
  144. mempool_t *io_pool;
  145. mempool_t *tio_pool;
  146. struct bio_set *bs;
  147. /*
  148. * Event handling.
  149. */
  150. atomic_t event_nr;
  151. wait_queue_head_t eventq;
  152. atomic_t uevent_seq;
  153. struct list_head uevent_list;
  154. spinlock_t uevent_lock; /* Protect access to uevent_list */
  155. /*
  156. * freeze/thaw support require holding onto a super block
  157. */
  158. struct super_block *frozen_sb;
  159. struct block_device *bdev;
  160. /* forced geometry settings */
  161. struct hd_geometry geometry;
  162. /* kobject and completion */
  163. struct dm_kobject_holder kobj_holder;
  164. /* zero-length flush that will be cloned and submitted to targets */
  165. struct bio flush_bio;
  166. };
  167. /*
  168. * For mempools pre-allocation at the table loading time.
  169. */
  170. struct dm_md_mempools {
  171. mempool_t *io_pool;
  172. mempool_t *tio_pool;
  173. struct bio_set *bs;
  174. };
  175. #define MIN_IOS 256
  176. static struct kmem_cache *_io_cache;
  177. static struct kmem_cache *_tio_cache;
  178. static struct kmem_cache *_rq_tio_cache;
  179. static struct kmem_cache *_rq_bio_info_cache;
  180. static int __init local_init(void)
  181. {
  182. int r = -ENOMEM;
  183. /* allocate a slab for the dm_ios */
  184. _io_cache = KMEM_CACHE(dm_io, 0);
  185. if (!_io_cache)
  186. return r;
  187. /* allocate a slab for the target ios */
  188. _tio_cache = KMEM_CACHE(dm_target_io, 0);
  189. if (!_tio_cache)
  190. goto out_free_io_cache;
  191. _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
  192. if (!_rq_tio_cache)
  193. goto out_free_tio_cache;
  194. _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
  195. if (!_rq_bio_info_cache)
  196. goto out_free_rq_tio_cache;
  197. r = dm_uevent_init();
  198. if (r)
  199. goto out_free_rq_bio_info_cache;
  200. _major = major;
  201. r = register_blkdev(_major, _name);
  202. if (r < 0)
  203. goto out_uevent_exit;
  204. if (!_major)
  205. _major = r;
  206. return 0;
  207. out_uevent_exit:
  208. dm_uevent_exit();
  209. out_free_rq_bio_info_cache:
  210. kmem_cache_destroy(_rq_bio_info_cache);
  211. out_free_rq_tio_cache:
  212. kmem_cache_destroy(_rq_tio_cache);
  213. out_free_tio_cache:
  214. kmem_cache_destroy(_tio_cache);
  215. out_free_io_cache:
  216. kmem_cache_destroy(_io_cache);
  217. return r;
  218. }
  219. static void local_exit(void)
  220. {
  221. kmem_cache_destroy(_rq_bio_info_cache);
  222. kmem_cache_destroy(_rq_tio_cache);
  223. kmem_cache_destroy(_tio_cache);
  224. kmem_cache_destroy(_io_cache);
  225. unregister_blkdev(_major, _name);
  226. dm_uevent_exit();
  227. _major = 0;
  228. DMINFO("cleaned up");
  229. }
  230. static int (*_inits[])(void) __initdata = {
  231. local_init,
  232. dm_target_init,
  233. dm_linear_init,
  234. dm_stripe_init,
  235. dm_io_init,
  236. dm_kcopyd_init,
  237. dm_interface_init,
  238. };
  239. static void (*_exits[])(void) = {
  240. local_exit,
  241. dm_target_exit,
  242. dm_linear_exit,
  243. dm_stripe_exit,
  244. dm_io_exit,
  245. dm_kcopyd_exit,
  246. dm_interface_exit,
  247. };
  248. static int __init dm_init(void)
  249. {
  250. const int count = ARRAY_SIZE(_inits);
  251. int r, i;
  252. for (i = 0; i < count; i++) {
  253. r = _inits[i]();
  254. if (r)
  255. goto bad;
  256. }
  257. return 0;
  258. bad:
  259. while (i--)
  260. _exits[i]();
  261. return r;
  262. }
  263. static void __exit dm_exit(void)
  264. {
  265. int i = ARRAY_SIZE(_exits);
  266. while (i--)
  267. _exits[i]();
  268. /*
  269. * Should be empty by this point.
  270. */
  271. idr_remove_all(&_minor_idr);
  272. idr_destroy(&_minor_idr);
  273. }
  274. /*
  275. * Block device functions
  276. */
  277. int dm_deleting_md(struct mapped_device *md)
  278. {
  279. return test_bit(DMF_DELETING, &md->flags);
  280. }
  281. static int dm_blk_open(struct block_device *bdev, fmode_t mode)
  282. {
  283. struct mapped_device *md;
  284. spin_lock(&_minor_lock);
  285. md = bdev->bd_disk->private_data;
  286. if (!md)
  287. goto out;
  288. if (test_bit(DMF_FREEING, &md->flags) ||
  289. dm_deleting_md(md)) {
  290. md = NULL;
  291. goto out;
  292. }
  293. dm_get(md);
  294. atomic_inc(&md->open_count);
  295. out:
  296. spin_unlock(&_minor_lock);
  297. return md ? 0 : -ENXIO;
  298. }
  299. static int dm_blk_close(struct gendisk *disk, fmode_t mode)
  300. {
  301. struct mapped_device *md = disk->private_data;
  302. spin_lock(&_minor_lock);
  303. atomic_dec(&md->open_count);
  304. dm_put(md);
  305. spin_unlock(&_minor_lock);
  306. return 0;
  307. }
  308. int dm_open_count(struct mapped_device *md)
  309. {
  310. return atomic_read(&md->open_count);
  311. }
  312. /*
  313. * Guarantees nothing is using the device before it's deleted.
  314. */
  315. int dm_lock_for_deletion(struct mapped_device *md)
  316. {
  317. int r = 0;
  318. spin_lock(&_minor_lock);
  319. if (dm_open_count(md))
  320. r = -EBUSY;
  321. else
  322. set_bit(DMF_DELETING, &md->flags);
  323. spin_unlock(&_minor_lock);
  324. return r;
  325. }
  326. static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  327. {
  328. struct mapped_device *md = bdev->bd_disk->private_data;
  329. return dm_get_geometry(md, geo);
  330. }
  331. static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
  332. unsigned int cmd, unsigned long arg)
  333. {
  334. struct mapped_device *md = bdev->bd_disk->private_data;
  335. struct dm_table *map = dm_get_live_table(md);
  336. struct dm_target *tgt;
  337. int r = -ENOTTY;
  338. if (!map || !dm_table_get_size(map))
  339. goto out;
  340. /* We only support devices that have a single target */
  341. if (dm_table_get_num_targets(map) != 1)
  342. goto out;
  343. tgt = dm_table_get_target(map, 0);
  344. if (dm_suspended_md(md)) {
  345. r = -EAGAIN;
  346. goto out;
  347. }
  348. if (tgt->type->ioctl)
  349. r = tgt->type->ioctl(tgt, cmd, arg);
  350. out:
  351. dm_table_put(map);
  352. return r;
  353. }
  354. static struct dm_io *alloc_io(struct mapped_device *md)
  355. {
  356. return mempool_alloc(md->io_pool, GFP_NOIO);
  357. }
  358. static void free_io(struct mapped_device *md, struct dm_io *io)
  359. {
  360. mempool_free(io, md->io_pool);
  361. }
  362. static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
  363. {
  364. mempool_free(tio, md->tio_pool);
  365. }
  366. static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
  367. gfp_t gfp_mask)
  368. {
  369. return mempool_alloc(md->tio_pool, gfp_mask);
  370. }
  371. static void free_rq_tio(struct dm_rq_target_io *tio)
  372. {
  373. mempool_free(tio, tio->md->tio_pool);
  374. }
  375. static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
  376. {
  377. return mempool_alloc(md->io_pool, GFP_ATOMIC);
  378. }
  379. static void free_bio_info(struct dm_rq_clone_bio_info *info)
  380. {
  381. mempool_free(info, info->tio->md->io_pool);
  382. }
  383. static int md_in_flight(struct mapped_device *md)
  384. {
  385. return atomic_read(&md->pending[READ]) +
  386. atomic_read(&md->pending[WRITE]);
  387. }
  388. static void start_io_acct(struct dm_io *io)
  389. {
  390. struct mapped_device *md = io->md;
  391. int cpu;
  392. int rw = bio_data_dir(io->bio);
  393. io->start_time = jiffies;
  394. cpu = part_stat_lock();
  395. part_round_stats(cpu, &dm_disk(md)->part0);
  396. part_stat_unlock();
  397. atomic_set(&dm_disk(md)->part0.in_flight[rw],
  398. atomic_inc_return(&md->pending[rw]));
  399. }
  400. static void end_io_acct(struct dm_io *io)
  401. {
  402. struct mapped_device *md = io->md;
  403. struct bio *bio = io->bio;
  404. unsigned long duration = jiffies - io->start_time;
  405. int pending, cpu;
  406. int rw = bio_data_dir(bio);
  407. cpu = part_stat_lock();
  408. part_round_stats(cpu, &dm_disk(md)->part0);
  409. part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
  410. part_stat_unlock();
  411. /*
  412. * After this is decremented the bio must not be touched if it is
  413. * a flush.
  414. */
  415. pending = atomic_dec_return(&md->pending[rw]);
  416. atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
  417. pending += atomic_read(&md->pending[rw^0x1]);
  418. /* nudge anyone waiting on suspend queue */
  419. if (!pending)
  420. wake_up(&md->wait);
  421. }
  422. /*
  423. * Add the bio to the list of deferred io.
  424. */
  425. static void queue_io(struct mapped_device *md, struct bio *bio)
  426. {
  427. unsigned long flags;
  428. spin_lock_irqsave(&md->deferred_lock, flags);
  429. bio_list_add(&md->deferred, bio);
  430. spin_unlock_irqrestore(&md->deferred_lock, flags);
  431. queue_work(md->wq, &md->work);
  432. }
  433. /*
  434. * Everyone (including functions in this file), should use this
  435. * function to access the md->map field, and make sure they call
  436. * dm_table_put() when finished.
  437. */
  438. struct dm_table *dm_get_live_table(struct mapped_device *md)
  439. {
  440. struct dm_table *t;
  441. unsigned long flags;
  442. read_lock_irqsave(&md->map_lock, flags);
  443. t = md->map;
  444. if (t)
  445. dm_table_get(t);
  446. read_unlock_irqrestore(&md->map_lock, flags);
  447. return t;
  448. }
  449. /*
  450. * Get the geometry associated with a dm device
  451. */
  452. int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
  453. {
  454. *geo = md->geometry;
  455. return 0;
  456. }
  457. /*
  458. * Set the geometry of a device.
  459. */
  460. int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
  461. {
  462. sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
  463. if (geo->start > sz) {
  464. DMWARN("Start sector is beyond the geometry limits.");
  465. return -EINVAL;
  466. }
  467. md->geometry = *geo;
  468. return 0;
  469. }
  470. /*-----------------------------------------------------------------
  471. * CRUD START:
  472. * A more elegant soln is in the works that uses the queue
  473. * merge fn, unfortunately there are a couple of changes to
  474. * the block layer that I want to make for this. So in the
  475. * interests of getting something for people to use I give
  476. * you this clearly demarcated crap.
  477. *---------------------------------------------------------------*/
  478. static int __noflush_suspending(struct mapped_device *md)
  479. {
  480. return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  481. }
  482. /*
  483. * Decrements the number of outstanding ios that a bio has been
  484. * cloned into, completing the original io if necc.
  485. */
  486. static void dec_pending(struct dm_io *io, int error)
  487. {
  488. unsigned long flags;
  489. int io_error;
  490. struct bio *bio;
  491. struct mapped_device *md = io->md;
  492. /* Push-back supersedes any I/O errors */
  493. if (unlikely(error)) {
  494. spin_lock_irqsave(&io->endio_lock, flags);
  495. if (!(io->error > 0 && __noflush_suspending(md)))
  496. io->error = error;
  497. spin_unlock_irqrestore(&io->endio_lock, flags);
  498. }
  499. if (atomic_dec_and_test(&io->io_count)) {
  500. if (io->error == DM_ENDIO_REQUEUE) {
  501. /*
  502. * Target requested pushing back the I/O.
  503. */
  504. spin_lock_irqsave(&md->deferred_lock, flags);
  505. if (__noflush_suspending(md))
  506. bio_list_add_head(&md->deferred, io->bio);
  507. else
  508. /* noflush suspend was interrupted. */
  509. io->error = -EIO;
  510. spin_unlock_irqrestore(&md->deferred_lock, flags);
  511. }
  512. io_error = io->error;
  513. bio = io->bio;
  514. end_io_acct(io);
  515. free_io(md, io);
  516. if (io_error == DM_ENDIO_REQUEUE)
  517. return;
  518. if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
  519. /*
  520. * Preflush done for flush with data, reissue
  521. * without REQ_FLUSH.
  522. */
  523. bio->bi_rw &= ~REQ_FLUSH;
  524. queue_io(md, bio);
  525. } else {
  526. /* done with normal IO or empty flush */
  527. trace_block_bio_complete(md->queue, bio, io_error);
  528. bio_endio(bio, io_error);
  529. }
  530. }
  531. }
  532. static void clone_endio(struct bio *bio, int error)
  533. {
  534. int r = 0;
  535. struct dm_target_io *tio = bio->bi_private;
  536. struct dm_io *io = tio->io;
  537. struct mapped_device *md = tio->io->md;
  538. dm_endio_fn endio = tio->ti->type->end_io;
  539. if (!bio_flagged(bio, BIO_UPTODATE) && !error)
  540. error = -EIO;
  541. if (endio) {
  542. r = endio(tio->ti, bio, error, &tio->info);
  543. if (r < 0 || r == DM_ENDIO_REQUEUE)
  544. /*
  545. * error and requeue request are handled
  546. * in dec_pending().
  547. */
  548. error = r;
  549. else if (r == DM_ENDIO_INCOMPLETE)
  550. /* The target will handle the io */
  551. return;
  552. else if (r) {
  553. DMWARN("unimplemented target endio return value: %d", r);
  554. BUG();
  555. }
  556. }
  557. /*
  558. * Store md for cleanup instead of tio which is about to get freed.
  559. */
  560. bio->bi_private = md->bs;
  561. free_tio(md, tio);
  562. bio_put(bio);
  563. dec_pending(io, error);
  564. }
  565. /*
  566. * Partial completion handling for request-based dm
  567. */
  568. static void end_clone_bio(struct bio *clone, int error)
  569. {
  570. struct dm_rq_clone_bio_info *info = clone->bi_private;
  571. struct dm_rq_target_io *tio = info->tio;
  572. struct bio *bio = info->orig;
  573. unsigned int nr_bytes = info->orig->bi_size;
  574. bio_put(clone);
  575. if (tio->error)
  576. /*
  577. * An error has already been detected on the request.
  578. * Once error occurred, just let clone->end_io() handle
  579. * the remainder.
  580. */
  581. return;
  582. else if (error) {
  583. /*
  584. * Don't notice the error to the upper layer yet.
  585. * The error handling decision is made by the target driver,
  586. * when the request is completed.
  587. */
  588. tio->error = error;
  589. return;
  590. }
  591. /*
  592. * I/O for the bio successfully completed.
  593. * Notice the data completion to the upper layer.
  594. */
  595. /*
  596. * bios are processed from the head of the list.
  597. * So the completing bio should always be rq->bio.
  598. * If it's not, something wrong is happening.
  599. */
  600. if (tio->orig->bio != bio)
  601. DMERR("bio completion is going in the middle of the request");
  602. /*
  603. * Update the original request.
  604. * Do not use blk_end_request() here, because it may complete
  605. * the original request before the clone, and break the ordering.
  606. */
  607. blk_update_request(tio->orig, 0, nr_bytes);
  608. }
  609. /*
  610. * Don't touch any member of the md after calling this function because
  611. * the md may be freed in dm_put() at the end of this function.
  612. * Or do dm_get() before calling this function and dm_put() later.
  613. */
  614. static void rq_completed(struct mapped_device *md, int rw, int run_queue)
  615. {
  616. atomic_dec(&md->pending[rw]);
  617. /* nudge anyone waiting on suspend queue */
  618. if (!md_in_flight(md))
  619. wake_up(&md->wait);
  620. /*
  621. * Run this off this callpath, as drivers could invoke end_io while
  622. * inside their request_fn (and holding the queue lock). Calling
  623. * back into ->request_fn() could deadlock attempting to grab the
  624. * queue lock again.
  625. */
  626. if (run_queue)
  627. blk_run_queue_async(md->queue);
  628. /*
  629. * dm_put() must be at the end of this function. See the comment above
  630. */
  631. dm_put(md);
  632. }
  633. static void free_rq_clone(struct request *clone)
  634. {
  635. struct dm_rq_target_io *tio = clone->end_io_data;
  636. blk_rq_unprep_clone(clone);
  637. free_rq_tio(tio);
  638. }
  639. /*
  640. * Complete the clone and the original request.
  641. * Must be called without queue lock.
  642. */
  643. void dm_end_request(struct request *clone, int error)
  644. {
  645. int rw = rq_data_dir(clone);
  646. struct dm_rq_target_io *tio = clone->end_io_data;
  647. struct mapped_device *md = tio->md;
  648. struct request *rq = tio->orig;
  649. if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
  650. rq->errors = clone->errors;
  651. rq->resid_len = clone->resid_len;
  652. if (rq->sense)
  653. /*
  654. * We are using the sense buffer of the original
  655. * request.
  656. * So setting the length of the sense data is enough.
  657. */
  658. rq->sense_len = clone->sense_len;
  659. }
  660. free_rq_clone(clone);
  661. blk_end_request_all(rq, error);
  662. rq_completed(md, rw, true);
  663. }
  664. static void dm_unprep_request(struct request *rq)
  665. {
  666. struct request *clone = rq->special;
  667. rq->special = NULL;
  668. rq->cmd_flags &= ~REQ_DONTPREP;
  669. free_rq_clone(clone);
  670. }
  671. /*
  672. * Requeue the original request of a clone.
  673. */
  674. void dm_requeue_unmapped_request(struct request *clone)
  675. {
  676. int rw = rq_data_dir(clone);
  677. struct dm_rq_target_io *tio = clone->end_io_data;
  678. struct mapped_device *md = tio->md;
  679. struct request *rq = tio->orig;
  680. struct request_queue *q = rq->q;
  681. unsigned long flags;
  682. dm_unprep_request(rq);
  683. spin_lock_irqsave(q->queue_lock, flags);
  684. blk_requeue_request(q, rq);
  685. spin_unlock_irqrestore(q->queue_lock, flags);
  686. rq_completed(md, rw, 0);
  687. }
  688. EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
  689. static void __stop_queue(struct request_queue *q)
  690. {
  691. blk_stop_queue(q);
  692. }
  693. static void stop_queue(struct request_queue *q)
  694. {
  695. unsigned long flags;
  696. spin_lock_irqsave(q->queue_lock, flags);
  697. __stop_queue(q);
  698. spin_unlock_irqrestore(q->queue_lock, flags);
  699. }
  700. static void __start_queue(struct request_queue *q)
  701. {
  702. if (blk_queue_stopped(q))
  703. blk_start_queue(q);
  704. }
  705. static void start_queue(struct request_queue *q)
  706. {
  707. unsigned long flags;
  708. spin_lock_irqsave(q->queue_lock, flags);
  709. __start_queue(q);
  710. spin_unlock_irqrestore(q->queue_lock, flags);
  711. }
  712. static void dm_done(struct request *clone, int error, bool mapped)
  713. {
  714. int r = error;
  715. struct dm_rq_target_io *tio = clone->end_io_data;
  716. dm_request_endio_fn rq_end_io = NULL;
  717. if (tio->ti) {
  718. rq_end_io = tio->ti->type->rq_end_io;
  719. if (mapped && rq_end_io)
  720. r = rq_end_io(tio->ti, clone, error, &tio->info);
  721. }
  722. if (r <= 0)
  723. /* The target wants to complete the I/O */
  724. dm_end_request(clone, r);
  725. else if (r == DM_ENDIO_INCOMPLETE)
  726. /* The target will handle the I/O */
  727. return;
  728. else if (r == DM_ENDIO_REQUEUE)
  729. /* The target wants to requeue the I/O */
  730. dm_requeue_unmapped_request(clone);
  731. else {
  732. DMWARN("unimplemented target endio return value: %d", r);
  733. BUG();
  734. }
  735. }
  736. /*
  737. * Request completion handler for request-based dm
  738. */
  739. static void dm_softirq_done(struct request *rq)
  740. {
  741. bool mapped = true;
  742. struct request *clone = rq->completion_data;
  743. struct dm_rq_target_io *tio = clone->end_io_data;
  744. if (rq->cmd_flags & REQ_FAILED)
  745. mapped = false;
  746. dm_done(clone, tio->error, mapped);
  747. }
  748. /*
  749. * Complete the clone and the original request with the error status
  750. * through softirq context.
  751. */
  752. static void dm_complete_request(struct request *clone, int error)
  753. {
  754. struct dm_rq_target_io *tio = clone->end_io_data;
  755. struct request *rq = tio->orig;
  756. tio->error = error;
  757. rq->completion_data = clone;
  758. blk_complete_request(rq);
  759. }
  760. /*
  761. * Complete the not-mapped clone and the original request with the error status
  762. * through softirq context.
  763. * Target's rq_end_io() function isn't called.
  764. * This may be used when the target's map_rq() function fails.
  765. */
  766. void dm_kill_unmapped_request(struct request *clone, int error)
  767. {
  768. struct dm_rq_target_io *tio = clone->end_io_data;
  769. struct request *rq = tio->orig;
  770. rq->cmd_flags |= REQ_FAILED;
  771. dm_complete_request(clone, error);
  772. }
  773. EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
  774. /*
  775. * Called with the queue lock held
  776. */
  777. static void end_clone_request(struct request *clone, int error)
  778. {
  779. /*
  780. * For just cleaning up the information of the queue in which
  781. * the clone was dispatched.
  782. * The clone is *NOT* freed actually here because it is alloced from
  783. * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
  784. */
  785. __blk_put_request(clone->q, clone);
  786. /*
  787. * Actual request completion is done in a softirq context which doesn't
  788. * hold the queue lock. Otherwise, deadlock could occur because:
  789. * - another request may be submitted by the upper level driver
  790. * of the stacking during the completion
  791. * - the submission which requires queue lock may be done
  792. * against this queue
  793. */
  794. dm_complete_request(clone, error);
  795. }
  796. /*
  797. * Return maximum size of I/O possible at the supplied sector up to the current
  798. * target boundary.
  799. */
  800. static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
  801. {
  802. sector_t target_offset = dm_target_offset(ti, sector);
  803. return ti->len - target_offset;
  804. }
  805. static sector_t max_io_len(sector_t sector, struct dm_target *ti)
  806. {
  807. sector_t len = max_io_len_target_boundary(sector, ti);
  808. /*
  809. * Does the target need to split even further ?
  810. */
  811. if (ti->split_io) {
  812. sector_t boundary;
  813. sector_t offset = dm_target_offset(ti, sector);
  814. boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
  815. - offset;
  816. if (len > boundary)
  817. len = boundary;
  818. }
  819. return len;
  820. }
  821. static void __map_bio(struct dm_target *ti, struct bio *clone,
  822. struct dm_target_io *tio)
  823. {
  824. int r;
  825. sector_t sector;
  826. struct mapped_device *md;
  827. clone->bi_end_io = clone_endio;
  828. clone->bi_private = tio;
  829. /*
  830. * Map the clone. If r == 0 we don't need to do
  831. * anything, the target has assumed ownership of
  832. * this io.
  833. */
  834. atomic_inc(&tio->io->io_count);
  835. sector = clone->bi_sector;
  836. r = ti->type->map(ti, clone, &tio->info);
  837. if (r == DM_MAPIO_REMAPPED) {
  838. /* the bio has been remapped so dispatch it */
  839. trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
  840. tio->io->bio->bi_bdev->bd_dev, sector);
  841. generic_make_request(clone);
  842. } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
  843. /* error the io and bail out, or requeue it if needed */
  844. md = tio->io->md;
  845. dec_pending(tio->io, r);
  846. /*
  847. * Store bio_set for cleanup.
  848. */
  849. clone->bi_end_io = NULL;
  850. clone->bi_private = md->bs;
  851. bio_put(clone);
  852. free_tio(md, tio);
  853. } else if (r) {
  854. DMWARN("unimplemented target map return value: %d", r);
  855. BUG();
  856. }
  857. }
  858. struct clone_info {
  859. struct mapped_device *md;
  860. struct dm_table *map;
  861. struct bio *bio;
  862. struct dm_io *io;
  863. sector_t sector;
  864. sector_t sector_count;
  865. unsigned short idx;
  866. };
  867. static void dm_bio_destructor(struct bio *bio)
  868. {
  869. struct bio_set *bs = bio->bi_private;
  870. bio_free(bio, bs);
  871. }
  872. /*
  873. * Creates a little bio that just does part of a bvec.
  874. */
  875. static struct bio *split_bvec(struct bio *bio, sector_t sector,
  876. unsigned short idx, unsigned int offset,
  877. unsigned int len, struct bio_set *bs)
  878. {
  879. struct bio *clone;
  880. struct bio_vec *bv = bio->bi_io_vec + idx;
  881. clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
  882. clone->bi_destructor = dm_bio_destructor;
  883. *clone->bi_io_vec = *bv;
  884. clone->bi_sector = sector;
  885. clone->bi_bdev = bio->bi_bdev;
  886. clone->bi_rw = bio->bi_rw;
  887. clone->bi_vcnt = 1;
  888. clone->bi_size = to_bytes(len);
  889. clone->bi_io_vec->bv_offset = offset;
  890. clone->bi_io_vec->bv_len = clone->bi_size;
  891. clone->bi_flags |= 1 << BIO_CLONED;
  892. if (bio_integrity(bio)) {
  893. bio_integrity_clone(clone, bio, GFP_NOIO, bs);
  894. bio_integrity_trim(clone,
  895. bio_sector_offset(bio, idx, offset), len);
  896. }
  897. return clone;
  898. }
  899. /*
  900. * Creates a bio that consists of range of complete bvecs.
  901. */
  902. static struct bio *clone_bio(struct bio *bio, sector_t sector,
  903. unsigned short idx, unsigned short bv_count,
  904. unsigned int len, struct bio_set *bs)
  905. {
  906. struct bio *clone;
  907. clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
  908. __bio_clone(clone, bio);
  909. clone->bi_destructor = dm_bio_destructor;
  910. clone->bi_sector = sector;
  911. clone->bi_idx = idx;
  912. clone->bi_vcnt = idx + bv_count;
  913. clone->bi_size = to_bytes(len);
  914. clone->bi_flags &= ~(1 << BIO_SEG_VALID);
  915. if (bio_integrity(bio)) {
  916. bio_integrity_clone(clone, bio, GFP_NOIO, bs);
  917. if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
  918. bio_integrity_trim(clone,
  919. bio_sector_offset(bio, idx, 0), len);
  920. }
  921. return clone;
  922. }
  923. static struct dm_target_io *alloc_tio(struct clone_info *ci,
  924. struct dm_target *ti)
  925. {
  926. struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
  927. tio->io = ci->io;
  928. tio->ti = ti;
  929. memset(&tio->info, 0, sizeof(tio->info));
  930. return tio;
  931. }
  932. static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
  933. unsigned request_nr, sector_t len)
  934. {
  935. struct dm_target_io *tio = alloc_tio(ci, ti);
  936. struct bio *clone;
  937. tio->info.target_request_nr = request_nr;
  938. /*
  939. * Discard requests require the bio's inline iovecs be initialized.
  940. * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
  941. * and discard, so no need for concern about wasted bvec allocations.
  942. */
  943. clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
  944. __bio_clone(clone, ci->bio);
  945. clone->bi_destructor = dm_bio_destructor;
  946. if (len) {
  947. clone->bi_sector = ci->sector;
  948. clone->bi_size = to_bytes(len);
  949. }
  950. __map_bio(ti, clone, tio);
  951. }
  952. static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
  953. unsigned num_requests, sector_t len)
  954. {
  955. unsigned request_nr;
  956. for (request_nr = 0; request_nr < num_requests; request_nr++)
  957. __issue_target_request(ci, ti, request_nr, len);
  958. }
  959. static int __clone_and_map_empty_flush(struct clone_info *ci)
  960. {
  961. unsigned target_nr = 0;
  962. struct dm_target *ti;
  963. BUG_ON(bio_has_data(ci->bio));
  964. while ((ti = dm_table_get_target(ci->map, target_nr++)))
  965. __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
  966. return 0;
  967. }
  968. /*
  969. * Perform all io with a single clone.
  970. */
  971. static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
  972. {
  973. struct bio *clone, *bio = ci->bio;
  974. struct dm_target_io *tio;
  975. tio = alloc_tio(ci, ti);
  976. clone = clone_bio(bio, ci->sector, ci->idx,
  977. bio->bi_vcnt - ci->idx, ci->sector_count,
  978. ci->md->bs);
  979. __map_bio(ti, clone, tio);
  980. ci->sector_count = 0;
  981. }
  982. static int __clone_and_map_discard(struct clone_info *ci)
  983. {
  984. struct dm_target *ti;
  985. sector_t len;
  986. do {
  987. ti = dm_table_find_target(ci->map, ci->sector);
  988. if (!dm_target_is_valid(ti))
  989. return -EIO;
  990. /*
  991. * Even though the device advertised discard support,
  992. * that does not mean every target supports it, and
  993. * reconfiguration might also have changed that since the
  994. * check was performed.
  995. */
  996. if (!ti->num_discard_requests)
  997. return -EOPNOTSUPP;
  998. len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
  999. __issue_target_requests(ci, ti, ti->num_discard_requests, len);
  1000. ci->sector += len;
  1001. } while (ci->sector_count -= len);
  1002. return 0;
  1003. }
  1004. static int __clone_and_map(struct clone_info *ci)
  1005. {
  1006. struct bio *clone, *bio = ci->bio;
  1007. struct dm_target *ti;
  1008. sector_t len = 0, max;
  1009. struct dm_target_io *tio;
  1010. if (unlikely(bio->bi_rw & REQ_DISCARD))
  1011. return __clone_and_map_discard(ci);
  1012. ti = dm_table_find_target(ci->map, ci->sector);
  1013. if (!dm_target_is_valid(ti))
  1014. return -EIO;
  1015. max = max_io_len(ci->sector, ti);
  1016. if (ci->sector_count <= max) {
  1017. /*
  1018. * Optimise for the simple case where we can do all of
  1019. * the remaining io with a single clone.
  1020. */
  1021. __clone_and_map_simple(ci, ti);
  1022. } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
  1023. /*
  1024. * There are some bvecs that don't span targets.
  1025. * Do as many of these as possible.
  1026. */
  1027. int i;
  1028. sector_t remaining = max;
  1029. sector_t bv_len;
  1030. for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
  1031. bv_len = to_sector(bio->bi_io_vec[i].bv_len);
  1032. if (bv_len > remaining)
  1033. break;
  1034. remaining -= bv_len;
  1035. len += bv_len;
  1036. }
  1037. tio = alloc_tio(ci, ti);
  1038. clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
  1039. ci->md->bs);
  1040. __map_bio(ti, clone, tio);
  1041. ci->sector += len;
  1042. ci->sector_count -= len;
  1043. ci->idx = i;
  1044. } else {
  1045. /*
  1046. * Handle a bvec that must be split between two or more targets.
  1047. */
  1048. struct bio_vec *bv = bio->bi_io_vec + ci->idx;
  1049. sector_t remaining = to_sector(bv->bv_len);
  1050. unsigned int offset = 0;
  1051. do {
  1052. if (offset) {
  1053. ti = dm_table_find_target(ci->map, ci->sector);
  1054. if (!dm_target_is_valid(ti))
  1055. return -EIO;
  1056. max = max_io_len(ci->sector, ti);
  1057. }
  1058. len = min(remaining, max);
  1059. tio = alloc_tio(ci, ti);
  1060. clone = split_bvec(bio, ci->sector, ci->idx,
  1061. bv->bv_offset + offset, len,
  1062. ci->md->bs);
  1063. __map_bio(ti, clone, tio);
  1064. ci->sector += len;
  1065. ci->sector_count -= len;
  1066. offset += to_bytes(len);
  1067. } while (remaining -= len);
  1068. ci->idx++;
  1069. }
  1070. return 0;
  1071. }
  1072. /*
  1073. * Split the bio into several clones and submit it to targets.
  1074. */
  1075. static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
  1076. {
  1077. struct clone_info ci;
  1078. int error = 0;
  1079. ci.map = dm_get_live_table(md);
  1080. if (unlikely(!ci.map)) {
  1081. bio_io_error(bio);
  1082. return;
  1083. }
  1084. ci.md = md;
  1085. ci.io = alloc_io(md);
  1086. ci.io->error = 0;
  1087. atomic_set(&ci.io->io_count, 1);
  1088. ci.io->bio = bio;
  1089. ci.io->md = md;
  1090. spin_lock_init(&ci.io->endio_lock);
  1091. ci.sector = bio->bi_sector;
  1092. ci.idx = bio->bi_idx;
  1093. start_io_acct(ci.io);
  1094. if (bio->bi_rw & REQ_FLUSH) {
  1095. ci.bio = &ci.md->flush_bio;
  1096. ci.sector_count = 0;
  1097. error = __clone_and_map_empty_flush(&ci);
  1098. /* dec_pending submits any data associated with flush */
  1099. } else {
  1100. ci.bio = bio;
  1101. ci.sector_count = bio_sectors(bio);
  1102. while (ci.sector_count && !error)
  1103. error = __clone_and_map(&ci);
  1104. }
  1105. /* drop the extra reference count */
  1106. dec_pending(ci.io, error);
  1107. dm_table_put(ci.map);
  1108. }
  1109. /*-----------------------------------------------------------------
  1110. * CRUD END
  1111. *---------------------------------------------------------------*/
  1112. static int dm_merge_bvec(struct request_queue *q,
  1113. struct bvec_merge_data *bvm,
  1114. struct bio_vec *biovec)
  1115. {
  1116. struct mapped_device *md = q->queuedata;
  1117. struct dm_table *map = dm_get_live_table(md);
  1118. struct dm_target *ti;
  1119. sector_t max_sectors;
  1120. int max_size = 0;
  1121. if (unlikely(!map))
  1122. goto out;
  1123. ti = dm_table_find_target(map, bvm->bi_sector);
  1124. if (!dm_target_is_valid(ti))
  1125. goto out_table;
  1126. /*
  1127. * Find maximum amount of I/O that won't need splitting
  1128. */
  1129. max_sectors = min(max_io_len(bvm->bi_sector, ti),
  1130. (sector_t) BIO_MAX_SECTORS);
  1131. max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
  1132. if (max_size < 0)
  1133. max_size = 0;
  1134. /*
  1135. * merge_bvec_fn() returns number of bytes
  1136. * it can accept at this offset
  1137. * max is precomputed maximal io size
  1138. */
  1139. if (max_size && ti->type->merge)
  1140. max_size = ti->type->merge(ti, bvm, biovec, max_size);
  1141. /*
  1142. * If the target doesn't support merge method and some of the devices
  1143. * provided their merge_bvec method (we know this by looking at
  1144. * queue_max_hw_sectors), then we can't allow bios with multiple vector
  1145. * entries. So always set max_size to 0, and the code below allows
  1146. * just one page.
  1147. */
  1148. else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
  1149. max_size = 0;
  1150. out_table:
  1151. dm_table_put(map);
  1152. out:
  1153. /*
  1154. * Always allow an entire first page
  1155. */
  1156. if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
  1157. max_size = biovec->bv_len;
  1158. return max_size;
  1159. }
  1160. /*
  1161. * The request function that just remaps the bio built up by
  1162. * dm_merge_bvec.
  1163. */
  1164. static void _dm_request(struct request_queue *q, struct bio *bio)
  1165. {
  1166. int rw = bio_data_dir(bio);
  1167. struct mapped_device *md = q->queuedata;
  1168. int cpu;
  1169. down_read(&md->io_lock);
  1170. cpu = part_stat_lock();
  1171. part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
  1172. part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
  1173. part_stat_unlock();
  1174. /* if we're suspended, we have to queue this io for later */
  1175. if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
  1176. up_read(&md->io_lock);
  1177. if (bio_rw(bio) != READA)
  1178. queue_io(md, bio);
  1179. else
  1180. bio_io_error(bio);
  1181. return;
  1182. }
  1183. __split_and_process_bio(md, bio);
  1184. up_read(&md->io_lock);
  1185. return;
  1186. }
  1187. static int dm_request_based(struct mapped_device *md)
  1188. {
  1189. return blk_queue_stackable(md->queue);
  1190. }
  1191. static void dm_request(struct request_queue *q, struct bio *bio)
  1192. {
  1193. struct mapped_device *md = q->queuedata;
  1194. if (dm_request_based(md))
  1195. blk_queue_bio(q, bio);
  1196. else
  1197. _dm_request(q, bio);
  1198. }
  1199. void dm_dispatch_request(struct request *rq)
  1200. {
  1201. int r;
  1202. if (blk_queue_io_stat(rq->q))
  1203. rq->cmd_flags |= REQ_IO_STAT;
  1204. rq->start_time = jiffies;
  1205. r = blk_insert_cloned_request(rq->q, rq);
  1206. if (r)
  1207. dm_complete_request(rq, r);
  1208. }
  1209. EXPORT_SYMBOL_GPL(dm_dispatch_request);
  1210. static void dm_rq_bio_destructor(struct bio *bio)
  1211. {
  1212. struct dm_rq_clone_bio_info *info = bio->bi_private;
  1213. struct mapped_device *md = info->tio->md;
  1214. free_bio_info(info);
  1215. bio_free(bio, md->bs);
  1216. }
  1217. static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
  1218. void *data)
  1219. {
  1220. struct dm_rq_target_io *tio = data;
  1221. struct mapped_device *md = tio->md;
  1222. struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
  1223. if (!info)
  1224. return -ENOMEM;
  1225. info->orig = bio_orig;
  1226. info->tio = tio;
  1227. bio->bi_end_io = end_clone_bio;
  1228. bio->bi_private = info;
  1229. bio->bi_destructor = dm_rq_bio_destructor;
  1230. return 0;
  1231. }
  1232. static int setup_clone(struct request *clone, struct request *rq,
  1233. struct dm_rq_target_io *tio)
  1234. {
  1235. int r;
  1236. r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
  1237. dm_rq_bio_constructor, tio);
  1238. if (r)
  1239. return r;
  1240. clone->cmd = rq->cmd;
  1241. clone->cmd_len = rq->cmd_len;
  1242. clone->sense = rq->sense;
  1243. clone->buffer = rq->buffer;
  1244. clone->end_io = end_clone_request;
  1245. clone->end_io_data = tio;
  1246. return 0;
  1247. }
  1248. static struct request *clone_rq(struct request *rq, struct mapped_device *md,
  1249. gfp_t gfp_mask)
  1250. {
  1251. struct request *clone;
  1252. struct dm_rq_target_io *tio;
  1253. tio = alloc_rq_tio(md, gfp_mask);
  1254. if (!tio)
  1255. return NULL;
  1256. tio->md = md;
  1257. tio->ti = NULL;
  1258. tio->orig = rq;
  1259. tio->error = 0;
  1260. memset(&tio->info, 0, sizeof(tio->info));
  1261. clone = &tio->clone;
  1262. if (setup_clone(clone, rq, tio)) {
  1263. /* -ENOMEM */
  1264. free_rq_tio(tio);
  1265. return NULL;
  1266. }
  1267. return clone;
  1268. }
  1269. /*
  1270. * Called with the queue lock held.
  1271. */
  1272. static int dm_prep_fn(struct request_queue *q, struct request *rq)
  1273. {
  1274. struct mapped_device *md = q->queuedata;
  1275. struct request *clone;
  1276. if (unlikely(rq->special)) {
  1277. DMWARN("Already has something in rq->special.");
  1278. return BLKPREP_KILL;
  1279. }
  1280. clone = clone_rq(rq, md, GFP_ATOMIC);
  1281. if (!clone)
  1282. return BLKPREP_DEFER;
  1283. rq->special = clone;
  1284. rq->cmd_flags |= REQ_DONTPREP;
  1285. return BLKPREP_OK;
  1286. }
  1287. /*
  1288. * Returns:
  1289. * 0 : the request has been processed (not requeued)
  1290. * !0 : the request has been requeued
  1291. */
  1292. static int map_request(struct dm_target *ti, struct request *clone,
  1293. struct mapped_device *md)
  1294. {
  1295. int r, requeued = 0;
  1296. struct dm_rq_target_io *tio = clone->end_io_data;
  1297. tio->ti = ti;
  1298. r = ti->type->map_rq(ti, clone, &tio->info);
  1299. switch (r) {
  1300. case DM_MAPIO_SUBMITTED:
  1301. /* The target has taken the I/O to submit by itself later */
  1302. break;
  1303. case DM_MAPIO_REMAPPED:
  1304. /* The target has remapped the I/O so dispatch it */
  1305. trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
  1306. blk_rq_pos(tio->orig));
  1307. dm_dispatch_request(clone);
  1308. break;
  1309. case DM_MAPIO_REQUEUE:
  1310. /* The target wants to requeue the I/O */
  1311. dm_requeue_unmapped_request(clone);
  1312. requeued = 1;
  1313. break;
  1314. default:
  1315. if (r > 0) {
  1316. DMWARN("unimplemented target map return value: %d", r);
  1317. BUG();
  1318. }
  1319. /* The target wants to complete the I/O */
  1320. dm_kill_unmapped_request(clone, r);
  1321. break;
  1322. }
  1323. return requeued;
  1324. }
  1325. static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
  1326. {
  1327. struct request *clone;
  1328. blk_start_request(orig);
  1329. clone = orig->special;
  1330. atomic_inc(&md->pending[rq_data_dir(clone)]);
  1331. /*
  1332. * Hold the md reference here for the in-flight I/O.
  1333. * We can't rely on the reference count by device opener,
  1334. * because the device may be closed during the request completion
  1335. * when all bios are completed.
  1336. * See the comment in rq_completed() too.
  1337. */
  1338. dm_get(md);
  1339. return clone;
  1340. }
  1341. /*
  1342. * q->request_fn for request-based dm.
  1343. * Called with the queue lock held.
  1344. */
  1345. static void dm_request_fn(struct request_queue *q)
  1346. {
  1347. struct mapped_device *md = q->queuedata;
  1348. struct dm_table *map = dm_get_live_table(md);
  1349. struct dm_target *ti;
  1350. struct request *rq, *clone;
  1351. sector_t pos;
  1352. /*
  1353. * For suspend, check blk_queue_stopped() and increment
  1354. * ->pending within a single queue_lock not to increment the
  1355. * number of in-flight I/Os after the queue is stopped in
  1356. * dm_suspend().
  1357. */
  1358. while (!blk_queue_stopped(q)) {
  1359. rq = blk_peek_request(q);
  1360. if (!rq)
  1361. goto delay_and_out;
  1362. /* always use block 0 to find the target for flushes for now */
  1363. pos = 0;
  1364. if (!(rq->cmd_flags & REQ_FLUSH))
  1365. pos = blk_rq_pos(rq);
  1366. ti = dm_table_find_target(map, pos);
  1367. if (!dm_target_is_valid(ti)) {
  1368. /*
  1369. * Must perform setup, that dm_done() requires,
  1370. * before calling dm_kill_unmapped_request
  1371. */
  1372. DMERR_LIMIT("request attempted access beyond the end of device");
  1373. clone = dm_start_request(md, rq);
  1374. dm_kill_unmapped_request(clone, -EIO);
  1375. continue;
  1376. }
  1377. if (ti->type->busy && ti->type->busy(ti))
  1378. goto delay_and_out;
  1379. clone = dm_start_request(md, rq);
  1380. spin_unlock(q->queue_lock);
  1381. if (map_request(ti, clone, md))
  1382. goto requeued;
  1383. BUG_ON(!irqs_disabled());
  1384. spin_lock(q->queue_lock);
  1385. }
  1386. goto out;
  1387. requeued:
  1388. BUG_ON(!irqs_disabled());
  1389. spin_lock(q->queue_lock);
  1390. delay_and_out:
  1391. blk_delay_queue(q, HZ / 10);
  1392. out:
  1393. dm_table_put(map);
  1394. }
  1395. int dm_underlying_device_busy(struct request_queue *q)
  1396. {
  1397. return blk_lld_busy(q);
  1398. }
  1399. EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
  1400. static int dm_lld_busy(struct request_queue *q)
  1401. {
  1402. int r;
  1403. struct mapped_device *md = q->queuedata;
  1404. struct dm_table *map = dm_get_live_table(md);
  1405. if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
  1406. r = 1;
  1407. else
  1408. r = dm_table_any_busy_target(map);
  1409. dm_table_put(map);
  1410. return r;
  1411. }
  1412. static int dm_any_congested(void *congested_data, int bdi_bits)
  1413. {
  1414. int r = bdi_bits;
  1415. struct mapped_device *md = congested_data;
  1416. struct dm_table *map;
  1417. if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
  1418. map = dm_get_live_table(md);
  1419. if (map) {
  1420. /*
  1421. * Request-based dm cares about only own queue for
  1422. * the query about congestion status of request_queue
  1423. */
  1424. if (dm_request_based(md))
  1425. r = md->queue->backing_dev_info.state &
  1426. bdi_bits;
  1427. else
  1428. r = dm_table_any_congested(map, bdi_bits);
  1429. dm_table_put(map);
  1430. }
  1431. }
  1432. return r;
  1433. }
  1434. /*-----------------------------------------------------------------
  1435. * An IDR is used to keep track of allocated minor numbers.
  1436. *---------------------------------------------------------------*/
  1437. static void free_minor(int minor)
  1438. {
  1439. spin_lock(&_minor_lock);
  1440. idr_remove(&_minor_idr, minor);
  1441. spin_unlock(&_minor_lock);
  1442. }
  1443. /*
  1444. * See if the device with a specific minor # is free.
  1445. */
  1446. static int specific_minor(int minor)
  1447. {
  1448. int r, m;
  1449. if (minor >= (1 << MINORBITS))
  1450. return -EINVAL;
  1451. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  1452. if (!r)
  1453. return -ENOMEM;
  1454. spin_lock(&_minor_lock);
  1455. if (idr_find(&_minor_idr, minor)) {
  1456. r = -EBUSY;
  1457. goto out;
  1458. }
  1459. r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
  1460. if (r)
  1461. goto out;
  1462. if (m != minor) {
  1463. idr_remove(&_minor_idr, m);
  1464. r = -EBUSY;
  1465. goto out;
  1466. }
  1467. out:
  1468. spin_unlock(&_minor_lock);
  1469. return r;
  1470. }
  1471. static int next_free_minor(int *minor)
  1472. {
  1473. int r, m;
  1474. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  1475. if (!r)
  1476. return -ENOMEM;
  1477. spin_lock(&_minor_lock);
  1478. r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
  1479. if (r)
  1480. goto out;
  1481. if (m >= (1 << MINORBITS)) {
  1482. idr_remove(&_minor_idr, m);
  1483. r = -ENOSPC;
  1484. goto out;
  1485. }
  1486. *minor = m;
  1487. out:
  1488. spin_unlock(&_minor_lock);
  1489. return r;
  1490. }
  1491. static const struct block_device_operations dm_blk_dops;
  1492. static void dm_wq_work(struct work_struct *work);
  1493. static void dm_init_md_queue(struct mapped_device *md)
  1494. {
  1495. /*
  1496. * Request-based dm devices cannot be stacked on top of bio-based dm
  1497. * devices. The type of this dm device has not been decided yet.
  1498. * The type is decided at the first table loading time.
  1499. * To prevent problematic device stacking, clear the queue flag
  1500. * for request stacking support until then.
  1501. *
  1502. * This queue is new, so no concurrency on the queue_flags.
  1503. */
  1504. queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
  1505. md->queue->queuedata = md;
  1506. md->queue->backing_dev_info.congested_fn = dm_any_congested;
  1507. md->queue->backing_dev_info.congested_data = md;
  1508. blk_queue_make_request(md->queue, dm_request);
  1509. blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
  1510. blk_queue_merge_bvec(md->queue, dm_merge_bvec);
  1511. }
  1512. /*
  1513. * Allocate and initialise a blank device with a given minor.
  1514. */
  1515. static struct mapped_device *alloc_dev(int minor)
  1516. {
  1517. int r;
  1518. struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
  1519. void *old_md;
  1520. if (!md) {
  1521. DMWARN("unable to allocate device, out of memory.");
  1522. return NULL;
  1523. }
  1524. if (!try_module_get(THIS_MODULE))
  1525. goto bad_module_get;
  1526. /* get a minor number for the dev */
  1527. if (minor == DM_ANY_MINOR)
  1528. r = next_free_minor(&minor);
  1529. else
  1530. r = specific_minor(minor);
  1531. if (r < 0)
  1532. goto bad_minor;
  1533. md->type = DM_TYPE_NONE;
  1534. init_rwsem(&md->io_lock);
  1535. mutex_init(&md->suspend_lock);
  1536. mutex_init(&md->type_lock);
  1537. spin_lock_init(&md->deferred_lock);
  1538. rwlock_init(&md->map_lock);
  1539. atomic_set(&md->holders, 1);
  1540. atomic_set(&md->open_count, 0);
  1541. atomic_set(&md->event_nr, 0);
  1542. atomic_set(&md->uevent_seq, 0);
  1543. INIT_LIST_HEAD(&md->uevent_list);
  1544. spin_lock_init(&md->uevent_lock);
  1545. md->queue = blk_alloc_queue(GFP_KERNEL);
  1546. if (!md->queue)
  1547. goto bad_queue;
  1548. dm_init_md_queue(md);
  1549. md->disk = alloc_disk(1);
  1550. if (!md->disk)
  1551. goto bad_disk;
  1552. atomic_set(&md->pending[0], 0);
  1553. atomic_set(&md->pending[1], 0);
  1554. init_waitqueue_head(&md->wait);
  1555. INIT_WORK(&md->work, dm_wq_work);
  1556. init_waitqueue_head(&md->eventq);
  1557. init_completion(&md->kobj_holder.completion);
  1558. md->disk->major = _major;
  1559. md->disk->first_minor = minor;
  1560. md->disk->fops = &dm_blk_dops;
  1561. md->disk->queue = md->queue;
  1562. md->disk->private_data = md;
  1563. sprintf(md->disk->disk_name, "dm-%d", minor);
  1564. add_disk(md->disk);
  1565. format_dev_t(md->name, MKDEV(_major, minor));
  1566. md->wq = alloc_workqueue("kdmflush",
  1567. WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
  1568. if (!md->wq)
  1569. goto bad_thread;
  1570. md->bdev = bdget_disk(md->disk, 0);
  1571. if (!md->bdev)
  1572. goto bad_bdev;
  1573. bio_init(&md->flush_bio);
  1574. md->flush_bio.bi_bdev = md->bdev;
  1575. md->flush_bio.bi_rw = WRITE_FLUSH;
  1576. /* Populate the mapping, nobody knows we exist yet */
  1577. spin_lock(&_minor_lock);
  1578. old_md = idr_replace(&_minor_idr, md, minor);
  1579. spin_unlock(&_minor_lock);
  1580. BUG_ON(old_md != MINOR_ALLOCED);
  1581. return md;
  1582. bad_bdev:
  1583. destroy_workqueue(md->wq);
  1584. bad_thread:
  1585. del_gendisk(md->disk);
  1586. put_disk(md->disk);
  1587. bad_disk:
  1588. blk_cleanup_queue(md->queue);
  1589. bad_queue:
  1590. free_minor(minor);
  1591. bad_minor:
  1592. module_put(THIS_MODULE);
  1593. bad_module_get:
  1594. kfree(md);
  1595. return NULL;
  1596. }
  1597. static void unlock_fs(struct mapped_device *md);
  1598. static void free_dev(struct mapped_device *md)
  1599. {
  1600. int minor = MINOR(disk_devt(md->disk));
  1601. unlock_fs(md);
  1602. bdput(md->bdev);
  1603. destroy_workqueue(md->wq);
  1604. if (md->tio_pool)
  1605. mempool_destroy(md->tio_pool);
  1606. if (md->io_pool)
  1607. mempool_destroy(md->io_pool);
  1608. if (md->bs)
  1609. bioset_free(md->bs);
  1610. blk_integrity_unregister(md->disk);
  1611. del_gendisk(md->disk);
  1612. free_minor(minor);
  1613. spin_lock(&_minor_lock);
  1614. md->disk->private_data = NULL;
  1615. spin_unlock(&_minor_lock);
  1616. put_disk(md->disk);
  1617. blk_cleanup_queue(md->queue);
  1618. module_put(THIS_MODULE);
  1619. kfree(md);
  1620. }
  1621. static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
  1622. {
  1623. struct dm_md_mempools *p;
  1624. if (md->io_pool && md->tio_pool && md->bs)
  1625. /* the md already has necessary mempools */
  1626. goto out;
  1627. p = dm_table_get_md_mempools(t);
  1628. BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
  1629. md->io_pool = p->io_pool;
  1630. p->io_pool = NULL;
  1631. md->tio_pool = p->tio_pool;
  1632. p->tio_pool = NULL;
  1633. md->bs = p->bs;
  1634. p->bs = NULL;
  1635. out:
  1636. /* mempool bind completed, now no need any mempools in the table */
  1637. dm_table_free_md_mempools(t);
  1638. }
  1639. /*
  1640. * Bind a table to the device.
  1641. */
  1642. static void event_callback(void *context)
  1643. {
  1644. unsigned long flags;
  1645. LIST_HEAD(uevents);
  1646. struct mapped_device *md = (struct mapped_device *) context;
  1647. spin_lock_irqsave(&md->uevent_lock, flags);
  1648. list_splice_init(&md->uevent_list, &uevents);
  1649. spin_unlock_irqrestore(&md->uevent_lock, flags);
  1650. dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
  1651. atomic_inc(&md->event_nr);
  1652. wake_up(&md->eventq);
  1653. }
  1654. /*
  1655. * Protected by md->suspend_lock obtained by dm_swap_table().
  1656. */
  1657. static void __set_size(struct mapped_device *md, sector_t size)
  1658. {
  1659. set_capacity(md->disk, size);
  1660. i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
  1661. }
  1662. /*
  1663. * Return 1 if the queue has a compulsory merge_bvec_fn function.
  1664. *
  1665. * If this function returns 0, then the device is either a non-dm
  1666. * device without a merge_bvec_fn, or it is a dm device that is
  1667. * able to split any bios it receives that are too big.
  1668. */
  1669. int dm_queue_merge_is_compulsory(struct request_queue *q)
  1670. {
  1671. struct mapped_device *dev_md;
  1672. if (!q->merge_bvec_fn)
  1673. return 0;
  1674. if (q->make_request_fn == dm_request) {
  1675. dev_md = q->queuedata;
  1676. if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
  1677. return 0;
  1678. }
  1679. return 1;
  1680. }
  1681. static int dm_device_merge_is_compulsory(struct dm_target *ti,
  1682. struct dm_dev *dev, sector_t start,
  1683. sector_t len, void *data)
  1684. {
  1685. struct block_device *bdev = dev->bdev;
  1686. struct request_queue *q = bdev_get_queue(bdev);
  1687. return dm_queue_merge_is_compulsory(q);
  1688. }
  1689. /*
  1690. * Return 1 if it is acceptable to ignore merge_bvec_fn based
  1691. * on the properties of the underlying devices.
  1692. */
  1693. static int dm_table_merge_is_optional(struct dm_table *table)
  1694. {
  1695. unsigned i = 0;
  1696. struct dm_target *ti;
  1697. while (i < dm_table_get_num_targets(table)) {
  1698. ti = dm_table_get_target(table, i++);
  1699. if (ti->type->iterate_devices &&
  1700. ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
  1701. return 0;
  1702. }
  1703. return 1;
  1704. }
  1705. /*
  1706. * Returns old map, which caller must destroy.
  1707. */
  1708. static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
  1709. struct queue_limits *limits)
  1710. {
  1711. struct dm_table *old_map;
  1712. struct request_queue *q = md->queue;
  1713. sector_t size;
  1714. unsigned long flags;
  1715. int merge_is_optional;
  1716. size = dm_table_get_size(t);
  1717. /*
  1718. * Wipe any geometry if the size of the table changed.
  1719. */
  1720. if (size != get_capacity(md->disk))
  1721. memset(&md->geometry, 0, sizeof(md->geometry));
  1722. __set_size(md, size);
  1723. dm_table_event_callback(t, event_callback, md);
  1724. /*
  1725. * The queue hasn't been stopped yet, if the old table type wasn't
  1726. * for request-based during suspension. So stop it to prevent
  1727. * I/O mapping before resume.
  1728. * This must be done before setting the queue restrictions,
  1729. * because request-based dm may be run just after the setting.
  1730. */
  1731. if (dm_table_request_based(t) && !blk_queue_stopped(q))
  1732. stop_queue(q);
  1733. __bind_mempools(md, t);
  1734. merge_is_optional = dm_table_merge_is_optional(t);
  1735. write_lock_irqsave(&md->map_lock, flags);
  1736. old_map = md->map;
  1737. md->map = t;
  1738. md->immutable_target_type = dm_table_get_immutable_target_type(t);
  1739. dm_table_set_restrictions(t, q, limits);
  1740. if (merge_is_optional)
  1741. set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
  1742. else
  1743. clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
  1744. write_unlock_irqrestore(&md->map_lock, flags);
  1745. return old_map;
  1746. }
  1747. /*
  1748. * Returns unbound table for the caller to free.
  1749. */
  1750. static struct dm_table *__unbind(struct mapped_device *md)
  1751. {
  1752. struct dm_table *map = md->map;
  1753. unsigned long flags;
  1754. if (!map)
  1755. return NULL;
  1756. dm_table_event_callback(map, NULL, NULL);
  1757. write_lock_irqsave(&md->map_lock, flags);
  1758. md->map = NULL;
  1759. write_unlock_irqrestore(&md->map_lock, flags);
  1760. return map;
  1761. }
  1762. /*
  1763. * Constructor for a new device.
  1764. */
  1765. int dm_create(int minor, struct mapped_device **result)
  1766. {
  1767. struct mapped_device *md;
  1768. md = alloc_dev(minor);
  1769. if (!md)
  1770. return -ENXIO;
  1771. dm_sysfs_init(md);
  1772. *result = md;
  1773. return 0;
  1774. }
  1775. /*
  1776. * Functions to manage md->type.
  1777. * All are required to hold md->type_lock.
  1778. */
  1779. void dm_lock_md_type(struct mapped_device *md)
  1780. {
  1781. mutex_lock(&md->type_lock);
  1782. }
  1783. void dm_unlock_md_type(struct mapped_device *md)
  1784. {
  1785. mutex_unlock(&md->type_lock);
  1786. }
  1787. void dm_set_md_type(struct mapped_device *md, unsigned type)
  1788. {
  1789. md->type = type;
  1790. }
  1791. unsigned dm_get_md_type(struct mapped_device *md)
  1792. {
  1793. return md->type;
  1794. }
  1795. struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
  1796. {
  1797. return md->immutable_target_type;
  1798. }
  1799. /*
  1800. * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
  1801. */
  1802. static int dm_init_request_based_queue(struct mapped_device *md)
  1803. {
  1804. struct request_queue *q = NULL;
  1805. if (md->queue->elevator)
  1806. return 1;
  1807. /* Fully initialize the queue */
  1808. q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
  1809. if (!q)
  1810. return 0;
  1811. md->queue = q;
  1812. dm_init_md_queue(md);
  1813. blk_queue_softirq_done(md->queue, dm_softirq_done);
  1814. blk_queue_prep_rq(md->queue, dm_prep_fn);
  1815. blk_queue_lld_busy(md->queue, dm_lld_busy);
  1816. elv_register_queue(md->queue);
  1817. return 1;
  1818. }
  1819. /*
  1820. * Setup the DM device's queue based on md's type
  1821. */
  1822. int dm_setup_md_queue(struct mapped_device *md)
  1823. {
  1824. if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
  1825. !dm_init_request_based_queue(md)) {
  1826. DMWARN("Cannot initialize queue for request-based mapped device");
  1827. return -EINVAL;
  1828. }
  1829. return 0;
  1830. }
  1831. struct mapped_device *dm_get_md(dev_t dev)
  1832. {
  1833. struct mapped_device *md;
  1834. unsigned minor = MINOR(dev);
  1835. if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
  1836. return NULL;
  1837. spin_lock(&_minor_lock);
  1838. md = idr_find(&_minor_idr, minor);
  1839. if (md) {
  1840. if ((md == MINOR_ALLOCED ||
  1841. (MINOR(disk_devt(dm_disk(md))) != minor) ||
  1842. dm_deleting_md(md) ||
  1843. test_bit(DMF_FREEING, &md->flags))) {
  1844. md = NULL;
  1845. goto out;
  1846. }
  1847. dm_get(md);
  1848. }
  1849. out:
  1850. spin_unlock(&_minor_lock);
  1851. return md;
  1852. }
  1853. EXPORT_SYMBOL_GPL(dm_get_md);
  1854. void *dm_get_mdptr(struct mapped_device *md)
  1855. {
  1856. return md->interface_ptr;
  1857. }
  1858. void dm_set_mdptr(struct mapped_device *md, void *ptr)
  1859. {
  1860. md->interface_ptr = ptr;
  1861. }
  1862. void dm_get(struct mapped_device *md)
  1863. {
  1864. atomic_inc(&md->holders);
  1865. BUG_ON(test_bit(DMF_FREEING, &md->flags));
  1866. }
  1867. const char *dm_device_name(struct mapped_device *md)
  1868. {
  1869. return md->name;
  1870. }
  1871. EXPORT_SYMBOL_GPL(dm_device_name);
  1872. static void __dm_destroy(struct mapped_device *md, bool wait)
  1873. {
  1874. struct dm_table *map;
  1875. might_sleep();
  1876. spin_lock(&_minor_lock);
  1877. map = dm_get_live_table(md);
  1878. idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
  1879. set_bit(DMF_FREEING, &md->flags);
  1880. spin_unlock(&_minor_lock);
  1881. /*
  1882. * Take suspend_lock so that presuspend and postsuspend methods
  1883. * do not race with internal suspend.
  1884. */
  1885. mutex_lock(&md->suspend_lock);
  1886. if (!dm_suspended_md(md)) {
  1887. dm_table_presuspend_targets(map);
  1888. dm_table_postsuspend_targets(map);
  1889. }
  1890. mutex_unlock(&md->suspend_lock);
  1891. /*
  1892. * Rare, but there may be I/O requests still going to complete,
  1893. * for example. Wait for all references to disappear.
  1894. * No one should increment the reference count of the mapped_device,
  1895. * after the mapped_device state becomes DMF_FREEING.
  1896. */
  1897. if (wait)
  1898. while (atomic_read(&md->holders))
  1899. msleep(1);
  1900. else if (atomic_read(&md->holders))
  1901. DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
  1902. dm_device_name(md), atomic_read(&md->holders));
  1903. dm_sysfs_exit(md);
  1904. dm_table_put(map);
  1905. dm_table_destroy(__unbind(md));
  1906. free_dev(md);
  1907. }
  1908. void dm_destroy(struct mapped_device *md)
  1909. {
  1910. __dm_destroy(md, true);
  1911. }
  1912. void dm_destroy_immediate(struct mapped_device *md)
  1913. {
  1914. __dm_destroy(md, false);
  1915. }
  1916. void dm_put(struct mapped_device *md)
  1917. {
  1918. atomic_dec(&md->holders);
  1919. }
  1920. EXPORT_SYMBOL_GPL(dm_put);
  1921. static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
  1922. {
  1923. int r = 0;
  1924. DECLARE_WAITQUEUE(wait, current);
  1925. add_wait_queue(&md->wait, &wait);
  1926. while (1) {
  1927. set_current_state(interruptible);
  1928. if (!md_in_flight(md))
  1929. break;
  1930. if (interruptible == TASK_INTERRUPTIBLE &&
  1931. signal_pending(current)) {
  1932. r = -EINTR;
  1933. break;
  1934. }
  1935. io_schedule();
  1936. }
  1937. set_current_state(TASK_RUNNING);
  1938. remove_wait_queue(&md->wait, &wait);
  1939. return r;
  1940. }
  1941. /*
  1942. * Process the deferred bios
  1943. */
  1944. static void dm_wq_work(struct work_struct *work)
  1945. {
  1946. struct mapped_device *md = container_of(work, struct mapped_device,
  1947. work);
  1948. struct bio *c;
  1949. down_read(&md->io_lock);
  1950. while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
  1951. spin_lock_irq(&md->deferred_lock);
  1952. c = bio_list_pop(&md->deferred);
  1953. spin_unlock_irq(&md->deferred_lock);
  1954. if (!c)
  1955. break;
  1956. up_read(&md->io_lock);
  1957. if (dm_request_based(md))
  1958. generic_make_request(c);
  1959. else
  1960. __split_and_process_bio(md, c);
  1961. down_read(&md->io_lock);
  1962. }
  1963. up_read(&md->io_lock);
  1964. }
  1965. static void dm_queue_flush(struct mapped_device *md)
  1966. {
  1967. clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
  1968. smp_mb__after_clear_bit();
  1969. queue_work(md->wq, &md->work);
  1970. }
  1971. /*
  1972. * Swap in a new table, returning the old one for the caller to destroy.
  1973. */
  1974. struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
  1975. {
  1976. struct dm_table *map = ERR_PTR(-EINVAL);
  1977. struct queue_limits limits;
  1978. int r;
  1979. mutex_lock(&md->suspend_lock);
  1980. /* device must be suspended */
  1981. if (!dm_suspended_md(md))
  1982. goto out;
  1983. r = dm_calculate_queue_limits(table, &limits);
  1984. if (r) {
  1985. map = ERR_PTR(r);
  1986. goto out;
  1987. }
  1988. map = __bind(md, table, &limits);
  1989. out:
  1990. mutex_unlock(&md->suspend_lock);
  1991. return map;
  1992. }
  1993. /*
  1994. * Functions to lock and unlock any filesystem running on the
  1995. * device.
  1996. */
  1997. static int lock_fs(struct mapped_device *md)
  1998. {
  1999. int r;
  2000. WARN_ON(md->frozen_sb);
  2001. md->frozen_sb = freeze_bdev(md->bdev);
  2002. if (IS_ERR(md->frozen_sb)) {
  2003. r = PTR_ERR(md->frozen_sb);
  2004. md->frozen_sb = NULL;
  2005. return r;
  2006. }
  2007. set_bit(DMF_FROZEN, &md->flags);
  2008. return 0;
  2009. }
  2010. static void unlock_fs(struct mapped_device *md)
  2011. {
  2012. if (!test_bit(DMF_FROZEN, &md->flags))
  2013. return;
  2014. thaw_bdev(md->bdev, md->frozen_sb);
  2015. md->frozen_sb = NULL;
  2016. clear_bit(DMF_FROZEN, &md->flags);
  2017. }
  2018. /*
  2019. * We need to be able to change a mapping table under a mounted
  2020. * filesystem. For example we might want to move some data in
  2021. * the background. Before the table can be swapped with
  2022. * dm_bind_table, dm_suspend must be called to flush any in
  2023. * flight bios and ensure that any further io gets deferred.
  2024. */
  2025. /*
  2026. * Suspend mechanism in request-based dm.
  2027. *
  2028. * 1. Flush all I/Os by lock_fs() if needed.
  2029. * 2. Stop dispatching any I/O by stopping the request_queue.
  2030. * 3. Wait for all in-flight I/Os to be completed or requeued.
  2031. *
  2032. * To abort suspend, start the request_queue.
  2033. */
  2034. int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
  2035. {
  2036. struct dm_table *map = NULL;
  2037. int r = 0;
  2038. int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
  2039. int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
  2040. mutex_lock(&md->suspend_lock);
  2041. if (dm_suspended_md(md)) {
  2042. r = -EINVAL;
  2043. goto out_unlock;
  2044. }
  2045. map = dm_get_live_table(md);
  2046. /*
  2047. * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
  2048. * This flag is cleared before dm_suspend returns.
  2049. */
  2050. if (noflush)
  2051. set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  2052. /* This does not get reverted if there's an error later. */
  2053. dm_table_presuspend_targets(map);
  2054. /*
  2055. * Flush I/O to the device.
  2056. * Any I/O submitted after lock_fs() may not be flushed.
  2057. * noflush takes precedence over do_lockfs.
  2058. * (lock_fs() flushes I/Os and waits for them to complete.)
  2059. */
  2060. if (!noflush && do_lockfs) {
  2061. r = lock_fs(md);
  2062. if (r)
  2063. goto out;
  2064. }
  2065. /*
  2066. * Here we must make sure that no processes are submitting requests
  2067. * to target drivers i.e. no one may be executing
  2068. * __split_and_process_bio. This is called from dm_request and
  2069. * dm_wq_work.
  2070. *
  2071. * To get all processes out of __split_and_process_bio in dm_request,
  2072. * we take the write lock. To prevent any process from reentering
  2073. * __split_and_process_bio from dm_request and quiesce the thread
  2074. * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
  2075. * flush_workqueue(md->wq).
  2076. */
  2077. down_write(&md->io_lock);
  2078. set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
  2079. up_write(&md->io_lock);
  2080. /*
  2081. * Stop md->queue before flushing md->wq in case request-based
  2082. * dm defers requests to md->wq from md->queue.
  2083. */
  2084. if (dm_request_based(md))
  2085. stop_queue(md->queue);
  2086. flush_workqueue(md->wq);
  2087. /*
  2088. * At this point no more requests are entering target request routines.
  2089. * We call dm_wait_for_completion to wait for all existing requests
  2090. * to finish.
  2091. */
  2092. r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
  2093. down_write(&md->io_lock);
  2094. if (noflush)
  2095. clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  2096. up_write(&md->io_lock);
  2097. /* were we interrupted ? */
  2098. if (r < 0) {
  2099. dm_queue_flush(md);
  2100. if (dm_request_based(md))
  2101. start_queue(md->queue);
  2102. unlock_fs(md);
  2103. goto out; /* pushback list is already flushed, so skip flush */
  2104. }
  2105. /*
  2106. * If dm_wait_for_completion returned 0, the device is completely
  2107. * quiescent now. There is no request-processing activity. All new
  2108. * requests are being added to md->deferred list.
  2109. */
  2110. set_bit(DMF_SUSPENDED, &md->flags);
  2111. dm_table_postsuspend_targets(map);
  2112. out:
  2113. dm_table_put(map);
  2114. out_unlock:
  2115. mutex_unlock(&md->suspend_lock);
  2116. return r;
  2117. }
  2118. int dm_resume(struct mapped_device *md)
  2119. {
  2120. int r = -EINVAL;
  2121. struct dm_table *map = NULL;
  2122. mutex_lock(&md->suspend_lock);
  2123. if (!dm_suspended_md(md))
  2124. goto out;
  2125. map = dm_get_live_table(md);
  2126. if (!map || !dm_table_get_size(map))
  2127. goto out;
  2128. r = dm_table_resume_targets(map);
  2129. if (r)
  2130. goto out;
  2131. dm_queue_flush(md);
  2132. /*
  2133. * Flushing deferred I/Os must be done after targets are resumed
  2134. * so that mapping of targets can work correctly.
  2135. * Request-based dm is queueing the deferred I/Os in its request_queue.
  2136. */
  2137. if (dm_request_based(md))
  2138. start_queue(md->queue);
  2139. unlock_fs(md);
  2140. clear_bit(DMF_SUSPENDED, &md->flags);
  2141. r = 0;
  2142. out:
  2143. dm_table_put(map);
  2144. mutex_unlock(&md->suspend_lock);
  2145. return r;
  2146. }
  2147. /*-----------------------------------------------------------------
  2148. * Event notification.
  2149. *---------------------------------------------------------------*/
  2150. int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
  2151. unsigned cookie)
  2152. {
  2153. char udev_cookie[DM_COOKIE_LENGTH];
  2154. char *envp[] = { udev_cookie, NULL };
  2155. if (!cookie)
  2156. return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
  2157. else {
  2158. snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
  2159. DM_COOKIE_ENV_VAR_NAME, cookie);
  2160. return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
  2161. action, envp);
  2162. }
  2163. }
  2164. uint32_t dm_next_uevent_seq(struct mapped_device *md)
  2165. {
  2166. return atomic_add_return(1, &md->uevent_seq);
  2167. }
  2168. uint32_t dm_get_event_nr(struct mapped_device *md)
  2169. {
  2170. return atomic_read(&md->event_nr);
  2171. }
  2172. int dm_wait_event(struct mapped_device *md, int event_nr)
  2173. {
  2174. return wait_event_interruptible(md->eventq,
  2175. (event_nr != atomic_read(&md->event_nr)));
  2176. }
  2177. void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
  2178. {
  2179. unsigned long flags;
  2180. spin_lock_irqsave(&md->uevent_lock, flags);
  2181. list_add(elist, &md->uevent_list);
  2182. spin_unlock_irqrestore(&md->uevent_lock, flags);
  2183. }
  2184. /*
  2185. * The gendisk is only valid as long as you have a reference
  2186. * count on 'md'.
  2187. */
  2188. struct gendisk *dm_disk(struct mapped_device *md)
  2189. {
  2190. return md->disk;
  2191. }
  2192. struct kobject *dm_kobject(struct mapped_device *md)
  2193. {
  2194. return &md->kobj_holder.kobj;
  2195. }
  2196. struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
  2197. {
  2198. struct mapped_device *md;
  2199. md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
  2200. if (test_bit(DMF_FREEING, &md->flags) ||
  2201. dm_deleting_md(md))
  2202. return NULL;
  2203. dm_get(md);
  2204. return md;
  2205. }
  2206. int dm_suspended_md(struct mapped_device *md)
  2207. {
  2208. return test_bit(DMF_SUSPENDED, &md->flags);
  2209. }
  2210. int dm_suspended(struct dm_target *ti)
  2211. {
  2212. return dm_suspended_md(dm_table_get_md(ti->table));
  2213. }
  2214. EXPORT_SYMBOL_GPL(dm_suspended);
  2215. int dm_noflush_suspending(struct dm_target *ti)
  2216. {
  2217. return __noflush_suspending(dm_table_get_md(ti->table));
  2218. }
  2219. EXPORT_SYMBOL_GPL(dm_noflush_suspending);
  2220. struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
  2221. {
  2222. struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
  2223. unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
  2224. if (!pools)
  2225. return NULL;
  2226. pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
  2227. mempool_create_slab_pool(MIN_IOS, _io_cache) :
  2228. mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
  2229. if (!pools->io_pool)
  2230. goto free_pools_and_out;
  2231. pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
  2232. mempool_create_slab_pool(MIN_IOS, _tio_cache) :
  2233. mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
  2234. if (!pools->tio_pool)
  2235. goto free_io_pool_and_out;
  2236. pools->bs = bioset_create(pool_size, 0);
  2237. if (!pools->bs)
  2238. goto free_tio_pool_and_out;
  2239. if (integrity && bioset_integrity_create(pools->bs, pool_size))
  2240. goto free_bioset_and_out;
  2241. return pools;
  2242. free_bioset_and_out:
  2243. bioset_free(pools->bs);
  2244. free_tio_pool_and_out:
  2245. mempool_destroy(pools->tio_pool);
  2246. free_io_pool_and_out:
  2247. mempool_destroy(pools->io_pool);
  2248. free_pools_and_out:
  2249. kfree(pools);
  2250. return NULL;
  2251. }
  2252. void dm_free_md_mempools(struct dm_md_mempools *pools)
  2253. {
  2254. if (!pools)
  2255. return;
  2256. if (pools->io_pool)
  2257. mempool_destroy(pools->io_pool);
  2258. if (pools->tio_pool)
  2259. mempool_destroy(pools->tio_pool);
  2260. if (pools->bs)
  2261. bioset_free(pools->bs);
  2262. kfree(pools);
  2263. }
  2264. static const struct block_device_operations dm_blk_dops = {
  2265. .open = dm_blk_open,
  2266. .release = dm_blk_close,
  2267. .ioctl = dm_blk_ioctl,
  2268. .getgeo = dm_blk_getgeo,
  2269. .owner = THIS_MODULE
  2270. };
  2271. EXPORT_SYMBOL(dm_get_mapinfo);
  2272. /*
  2273. * module hooks
  2274. */
  2275. module_init(dm_init);
  2276. module_exit(dm_exit);
  2277. module_param(major, uint, 0);
  2278. MODULE_PARM_DESC(major, "The major number of the device mapper");
  2279. MODULE_DESCRIPTION(DM_NAME " driver");
  2280. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2281. MODULE_LICENSE("GPL");