powernow-k8.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628
  1. /*
  2. * (c) 2003-2012 Advanced Micro Devices, Inc.
  3. * Your use of this code is subject to the terms and conditions of the
  4. * GNU general public license version 2. See "COPYING" or
  5. * http://www.gnu.org/licenses/gpl.html
  6. *
  7. * Maintainer:
  8. * Andreas Herrmann <andreas.herrmann3@amd.com>
  9. *
  10. * Based on the powernow-k7.c module written by Dave Jones.
  11. * (C) 2003 Dave Jones on behalf of SuSE Labs
  12. * (C) 2004 Dominik Brodowski <linux@brodo.de>
  13. * (C) 2004 Pavel Machek <pavel@ucw.cz>
  14. * Licensed under the terms of the GNU GPL License version 2.
  15. * Based upon datasheets & sample CPUs kindly provided by AMD.
  16. *
  17. * Valuable input gratefully received from Dave Jones, Pavel Machek,
  18. * Dominik Brodowski, Jacob Shin, and others.
  19. * Originally developed by Paul Devriendt.
  20. *
  21. * Processor information obtained from Chapter 9 (Power and Thermal
  22. * Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
  23. * the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
  24. * Power Management" in BKDGs for newer AMD CPU families.
  25. *
  26. * Tables for specific CPUs can be inferred from AMD's processor
  27. * power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
  28. */
  29. #include <linux/kernel.h>
  30. #include <linux/smp.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/cpufreq.h>
  34. #include <linux/slab.h>
  35. #include <linux/string.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/io.h>
  38. #include <linux/delay.h>
  39. #include <asm/msr.h>
  40. #include <asm/cpu_device_id.h>
  41. #include <linux/acpi.h>
  42. #include <linux/mutex.h>
  43. #include <acpi/processor.h>
  44. #define PFX "powernow-k8: "
  45. #define VERSION "version 2.20.00"
  46. #include "powernow-k8.h"
  47. #include "mperf.h"
  48. /* serialize freq changes */
  49. static DEFINE_MUTEX(fidvid_mutex);
  50. static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
  51. static int cpu_family = CPU_OPTERON;
  52. /* array to map SW pstate number to acpi state */
  53. static u32 ps_to_as[8];
  54. /* core performance boost */
  55. static bool cpb_capable, cpb_enabled;
  56. static struct msr __percpu *msrs;
  57. static struct cpufreq_driver cpufreq_amd64_driver;
  58. #ifndef CONFIG_SMP
  59. static inline const struct cpumask *cpu_core_mask(int cpu)
  60. {
  61. return cpumask_of(0);
  62. }
  63. #endif
  64. /* Return a frequency in MHz, given an input fid */
  65. static u32 find_freq_from_fid(u32 fid)
  66. {
  67. return 800 + (fid * 100);
  68. }
  69. /* Return a frequency in KHz, given an input fid */
  70. static u32 find_khz_freq_from_fid(u32 fid)
  71. {
  72. return 1000 * find_freq_from_fid(fid);
  73. }
  74. static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
  75. u32 pstate)
  76. {
  77. return data[ps_to_as[pstate]].frequency;
  78. }
  79. /* Return the vco fid for an input fid
  80. *
  81. * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
  82. * only from corresponding high fids. This returns "high" fid corresponding to
  83. * "low" one.
  84. */
  85. static u32 convert_fid_to_vco_fid(u32 fid)
  86. {
  87. if (fid < HI_FID_TABLE_BOTTOM)
  88. return 8 + (2 * fid);
  89. else
  90. return fid;
  91. }
  92. /*
  93. * Return 1 if the pending bit is set. Unless we just instructed the processor
  94. * to transition to a new state, seeing this bit set is really bad news.
  95. */
  96. static int pending_bit_stuck(void)
  97. {
  98. u32 lo, hi;
  99. if (cpu_family == CPU_HW_PSTATE)
  100. return 0;
  101. rdmsr(MSR_FIDVID_STATUS, lo, hi);
  102. return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
  103. }
  104. /*
  105. * Update the global current fid / vid values from the status msr.
  106. * Returns 1 on error.
  107. */
  108. static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
  109. {
  110. u32 lo, hi;
  111. u32 i = 0;
  112. if (cpu_family == CPU_HW_PSTATE) {
  113. rdmsr(MSR_PSTATE_STATUS, lo, hi);
  114. i = lo & HW_PSTATE_MASK;
  115. data->currpstate = i;
  116. /*
  117. * a workaround for family 11h erratum 311 might cause
  118. * an "out-of-range Pstate if the core is in Pstate-0
  119. */
  120. if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
  121. data->currpstate = HW_PSTATE_0;
  122. return 0;
  123. }
  124. do {
  125. if (i++ > 10000) {
  126. pr_debug("detected change pending stuck\n");
  127. return 1;
  128. }
  129. rdmsr(MSR_FIDVID_STATUS, lo, hi);
  130. } while (lo & MSR_S_LO_CHANGE_PENDING);
  131. data->currvid = hi & MSR_S_HI_CURRENT_VID;
  132. data->currfid = lo & MSR_S_LO_CURRENT_FID;
  133. return 0;
  134. }
  135. /* the isochronous relief time */
  136. static void count_off_irt(struct powernow_k8_data *data)
  137. {
  138. udelay((1 << data->irt) * 10);
  139. return;
  140. }
  141. /* the voltage stabilization time */
  142. static void count_off_vst(struct powernow_k8_data *data)
  143. {
  144. udelay(data->vstable * VST_UNITS_20US);
  145. return;
  146. }
  147. /* need to init the control msr to a safe value (for each cpu) */
  148. static void fidvid_msr_init(void)
  149. {
  150. u32 lo, hi;
  151. u8 fid, vid;
  152. rdmsr(MSR_FIDVID_STATUS, lo, hi);
  153. vid = hi & MSR_S_HI_CURRENT_VID;
  154. fid = lo & MSR_S_LO_CURRENT_FID;
  155. lo = fid | (vid << MSR_C_LO_VID_SHIFT);
  156. hi = MSR_C_HI_STP_GNT_BENIGN;
  157. pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
  158. wrmsr(MSR_FIDVID_CTL, lo, hi);
  159. }
  160. /* write the new fid value along with the other control fields to the msr */
  161. static int write_new_fid(struct powernow_k8_data *data, u32 fid)
  162. {
  163. u32 lo;
  164. u32 savevid = data->currvid;
  165. u32 i = 0;
  166. if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
  167. printk(KERN_ERR PFX "internal error - overflow on fid write\n");
  168. return 1;
  169. }
  170. lo = fid;
  171. lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
  172. lo |= MSR_C_LO_INIT_FID_VID;
  173. pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
  174. fid, lo, data->plllock * PLL_LOCK_CONVERSION);
  175. do {
  176. wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
  177. if (i++ > 100) {
  178. printk(KERN_ERR PFX
  179. "Hardware error - pending bit very stuck - "
  180. "no further pstate changes possible\n");
  181. return 1;
  182. }
  183. } while (query_current_values_with_pending_wait(data));
  184. count_off_irt(data);
  185. if (savevid != data->currvid) {
  186. printk(KERN_ERR PFX
  187. "vid change on fid trans, old 0x%x, new 0x%x\n",
  188. savevid, data->currvid);
  189. return 1;
  190. }
  191. if (fid != data->currfid) {
  192. printk(KERN_ERR PFX
  193. "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
  194. data->currfid);
  195. return 1;
  196. }
  197. return 0;
  198. }
  199. /* Write a new vid to the hardware */
  200. static int write_new_vid(struct powernow_k8_data *data, u32 vid)
  201. {
  202. u32 lo;
  203. u32 savefid = data->currfid;
  204. int i = 0;
  205. if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
  206. printk(KERN_ERR PFX "internal error - overflow on vid write\n");
  207. return 1;
  208. }
  209. lo = data->currfid;
  210. lo |= (vid << MSR_C_LO_VID_SHIFT);
  211. lo |= MSR_C_LO_INIT_FID_VID;
  212. pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
  213. vid, lo, STOP_GRANT_5NS);
  214. do {
  215. wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
  216. if (i++ > 100) {
  217. printk(KERN_ERR PFX "internal error - pending bit "
  218. "very stuck - no further pstate "
  219. "changes possible\n");
  220. return 1;
  221. }
  222. } while (query_current_values_with_pending_wait(data));
  223. if (savefid != data->currfid) {
  224. printk(KERN_ERR PFX "fid changed on vid trans, old "
  225. "0x%x new 0x%x\n",
  226. savefid, data->currfid);
  227. return 1;
  228. }
  229. if (vid != data->currvid) {
  230. printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
  231. "curr 0x%x\n",
  232. vid, data->currvid);
  233. return 1;
  234. }
  235. return 0;
  236. }
  237. /*
  238. * Reduce the vid by the max of step or reqvid.
  239. * Decreasing vid codes represent increasing voltages:
  240. * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
  241. */
  242. static int decrease_vid_code_by_step(struct powernow_k8_data *data,
  243. u32 reqvid, u32 step)
  244. {
  245. if ((data->currvid - reqvid) > step)
  246. reqvid = data->currvid - step;
  247. if (write_new_vid(data, reqvid))
  248. return 1;
  249. count_off_vst(data);
  250. return 0;
  251. }
  252. /* Change hardware pstate by single MSR write */
  253. static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
  254. {
  255. wrmsr(MSR_PSTATE_CTRL, pstate, 0);
  256. data->currpstate = pstate;
  257. return 0;
  258. }
  259. /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
  260. static int transition_fid_vid(struct powernow_k8_data *data,
  261. u32 reqfid, u32 reqvid)
  262. {
  263. if (core_voltage_pre_transition(data, reqvid, reqfid))
  264. return 1;
  265. if (core_frequency_transition(data, reqfid))
  266. return 1;
  267. if (core_voltage_post_transition(data, reqvid))
  268. return 1;
  269. if (query_current_values_with_pending_wait(data))
  270. return 1;
  271. if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
  272. printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
  273. "curr 0x%x 0x%x\n",
  274. smp_processor_id(),
  275. reqfid, reqvid, data->currfid, data->currvid);
  276. return 1;
  277. }
  278. pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
  279. smp_processor_id(), data->currfid, data->currvid);
  280. return 0;
  281. }
  282. /* Phase 1 - core voltage transition ... setup voltage */
  283. static int core_voltage_pre_transition(struct powernow_k8_data *data,
  284. u32 reqvid, u32 reqfid)
  285. {
  286. u32 rvosteps = data->rvo;
  287. u32 savefid = data->currfid;
  288. u32 maxvid, lo, rvomult = 1;
  289. pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
  290. "reqvid 0x%x, rvo 0x%x\n",
  291. smp_processor_id(),
  292. data->currfid, data->currvid, reqvid, data->rvo);
  293. if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
  294. rvomult = 2;
  295. rvosteps *= rvomult;
  296. rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
  297. maxvid = 0x1f & (maxvid >> 16);
  298. pr_debug("ph1 maxvid=0x%x\n", maxvid);
  299. if (reqvid < maxvid) /* lower numbers are higher voltages */
  300. reqvid = maxvid;
  301. while (data->currvid > reqvid) {
  302. pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
  303. data->currvid, reqvid);
  304. if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
  305. return 1;
  306. }
  307. while ((rvosteps > 0) &&
  308. ((rvomult * data->rvo + data->currvid) > reqvid)) {
  309. if (data->currvid == maxvid) {
  310. rvosteps = 0;
  311. } else {
  312. pr_debug("ph1: changing vid for rvo, req 0x%x\n",
  313. data->currvid - 1);
  314. if (decrease_vid_code_by_step(data, data->currvid-1, 1))
  315. return 1;
  316. rvosteps--;
  317. }
  318. }
  319. if (query_current_values_with_pending_wait(data))
  320. return 1;
  321. if (savefid != data->currfid) {
  322. printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
  323. data->currfid);
  324. return 1;
  325. }
  326. pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
  327. data->currfid, data->currvid);
  328. return 0;
  329. }
  330. /* Phase 2 - core frequency transition */
  331. static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
  332. {
  333. u32 vcoreqfid, vcocurrfid, vcofiddiff;
  334. u32 fid_interval, savevid = data->currvid;
  335. if (data->currfid == reqfid) {
  336. printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
  337. data->currfid);
  338. return 0;
  339. }
  340. pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
  341. "reqfid 0x%x\n",
  342. smp_processor_id(),
  343. data->currfid, data->currvid, reqfid);
  344. vcoreqfid = convert_fid_to_vco_fid(reqfid);
  345. vcocurrfid = convert_fid_to_vco_fid(data->currfid);
  346. vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
  347. : vcoreqfid - vcocurrfid;
  348. if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
  349. vcofiddiff = 0;
  350. while (vcofiddiff > 2) {
  351. (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
  352. if (reqfid > data->currfid) {
  353. if (data->currfid > LO_FID_TABLE_TOP) {
  354. if (write_new_fid(data,
  355. data->currfid + fid_interval))
  356. return 1;
  357. } else {
  358. if (write_new_fid
  359. (data,
  360. 2 + convert_fid_to_vco_fid(data->currfid)))
  361. return 1;
  362. }
  363. } else {
  364. if (write_new_fid(data, data->currfid - fid_interval))
  365. return 1;
  366. }
  367. vcocurrfid = convert_fid_to_vco_fid(data->currfid);
  368. vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
  369. : vcoreqfid - vcocurrfid;
  370. }
  371. if (write_new_fid(data, reqfid))
  372. return 1;
  373. if (query_current_values_with_pending_wait(data))
  374. return 1;
  375. if (data->currfid != reqfid) {
  376. printk(KERN_ERR PFX
  377. "ph2: mismatch, failed fid transition, "
  378. "curr 0x%x, req 0x%x\n",
  379. data->currfid, reqfid);
  380. return 1;
  381. }
  382. if (savevid != data->currvid) {
  383. printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
  384. savevid, data->currvid);
  385. return 1;
  386. }
  387. pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
  388. data->currfid, data->currvid);
  389. return 0;
  390. }
  391. /* Phase 3 - core voltage transition flow ... jump to the final vid. */
  392. static int core_voltage_post_transition(struct powernow_k8_data *data,
  393. u32 reqvid)
  394. {
  395. u32 savefid = data->currfid;
  396. u32 savereqvid = reqvid;
  397. pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
  398. smp_processor_id(),
  399. data->currfid, data->currvid);
  400. if (reqvid != data->currvid) {
  401. if (write_new_vid(data, reqvid))
  402. return 1;
  403. if (savefid != data->currfid) {
  404. printk(KERN_ERR PFX
  405. "ph3: bad fid change, save 0x%x, curr 0x%x\n",
  406. savefid, data->currfid);
  407. return 1;
  408. }
  409. if (data->currvid != reqvid) {
  410. printk(KERN_ERR PFX
  411. "ph3: failed vid transition\n, "
  412. "req 0x%x, curr 0x%x",
  413. reqvid, data->currvid);
  414. return 1;
  415. }
  416. }
  417. if (query_current_values_with_pending_wait(data))
  418. return 1;
  419. if (savereqvid != data->currvid) {
  420. pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
  421. return 1;
  422. }
  423. if (savefid != data->currfid) {
  424. pr_debug("ph3 failed, currfid changed 0x%x\n",
  425. data->currfid);
  426. return 1;
  427. }
  428. pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
  429. data->currfid, data->currvid);
  430. return 0;
  431. }
  432. static const struct x86_cpu_id powernow_k8_ids[] = {
  433. /* IO based frequency switching */
  434. { X86_VENDOR_AMD, 0xf },
  435. /* MSR based frequency switching supported */
  436. X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
  437. {}
  438. };
  439. MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
  440. static void check_supported_cpu(void *_rc)
  441. {
  442. u32 eax, ebx, ecx, edx;
  443. int *rc = _rc;
  444. *rc = -ENODEV;
  445. eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  446. if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
  447. if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
  448. ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
  449. printk(KERN_INFO PFX
  450. "Processor cpuid %x not supported\n", eax);
  451. return;
  452. }
  453. eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
  454. if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
  455. printk(KERN_INFO PFX
  456. "No frequency change capabilities detected\n");
  457. return;
  458. }
  459. cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
  460. if ((edx & P_STATE_TRANSITION_CAPABLE)
  461. != P_STATE_TRANSITION_CAPABLE) {
  462. printk(KERN_INFO PFX
  463. "Power state transitions not supported\n");
  464. return;
  465. }
  466. } else { /* must be a HW Pstate capable processor */
  467. cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
  468. if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
  469. cpu_family = CPU_HW_PSTATE;
  470. else
  471. return;
  472. }
  473. *rc = 0;
  474. }
  475. static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
  476. u8 maxvid)
  477. {
  478. unsigned int j;
  479. u8 lastfid = 0xff;
  480. for (j = 0; j < data->numps; j++) {
  481. if (pst[j].vid > LEAST_VID) {
  482. printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
  483. j, pst[j].vid);
  484. return -EINVAL;
  485. }
  486. if (pst[j].vid < data->rvo) {
  487. /* vid + rvo >= 0 */
  488. printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
  489. " %d\n", j);
  490. return -ENODEV;
  491. }
  492. if (pst[j].vid < maxvid + data->rvo) {
  493. /* vid + rvo >= maxvid */
  494. printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
  495. " %d\n", j);
  496. return -ENODEV;
  497. }
  498. if (pst[j].fid > MAX_FID) {
  499. printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
  500. " %d\n", j);
  501. return -ENODEV;
  502. }
  503. if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
  504. /* Only first fid is allowed to be in "low" range */
  505. printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
  506. "0x%x\n", j, pst[j].fid);
  507. return -EINVAL;
  508. }
  509. if (pst[j].fid < lastfid)
  510. lastfid = pst[j].fid;
  511. }
  512. if (lastfid & 1) {
  513. printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
  514. return -EINVAL;
  515. }
  516. if (lastfid > LO_FID_TABLE_TOP)
  517. printk(KERN_INFO FW_BUG PFX
  518. "first fid not from lo freq table\n");
  519. return 0;
  520. }
  521. static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
  522. unsigned int entry)
  523. {
  524. powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
  525. }
  526. static void print_basics(struct powernow_k8_data *data)
  527. {
  528. int j;
  529. for (j = 0; j < data->numps; j++) {
  530. if (data->powernow_table[j].frequency !=
  531. CPUFREQ_ENTRY_INVALID) {
  532. if (cpu_family == CPU_HW_PSTATE) {
  533. printk(KERN_INFO PFX
  534. " %d : pstate %d (%d MHz)\n", j,
  535. data->powernow_table[j].index,
  536. data->powernow_table[j].frequency/1000);
  537. } else {
  538. printk(KERN_INFO PFX
  539. "fid 0x%x (%d MHz), vid 0x%x\n",
  540. data->powernow_table[j].index & 0xff,
  541. data->powernow_table[j].frequency/1000,
  542. data->powernow_table[j].index >> 8);
  543. }
  544. }
  545. }
  546. if (data->batps)
  547. printk(KERN_INFO PFX "Only %d pstates on battery\n",
  548. data->batps);
  549. }
  550. static u32 freq_from_fid_did(u32 fid, u32 did)
  551. {
  552. u32 mhz = 0;
  553. if (boot_cpu_data.x86 == 0x10)
  554. mhz = (100 * (fid + 0x10)) >> did;
  555. else if (boot_cpu_data.x86 == 0x11)
  556. mhz = (100 * (fid + 8)) >> did;
  557. else
  558. BUG();
  559. return mhz * 1000;
  560. }
  561. static int fill_powernow_table(struct powernow_k8_data *data,
  562. struct pst_s *pst, u8 maxvid)
  563. {
  564. struct cpufreq_frequency_table *powernow_table;
  565. unsigned int j;
  566. if (data->batps) {
  567. /* use ACPI support to get full speed on mains power */
  568. printk(KERN_WARNING PFX
  569. "Only %d pstates usable (use ACPI driver for full "
  570. "range\n", data->batps);
  571. data->numps = data->batps;
  572. }
  573. for (j = 1; j < data->numps; j++) {
  574. if (pst[j-1].fid >= pst[j].fid) {
  575. printk(KERN_ERR PFX "PST out of sequence\n");
  576. return -EINVAL;
  577. }
  578. }
  579. if (data->numps < 2) {
  580. printk(KERN_ERR PFX "no p states to transition\n");
  581. return -ENODEV;
  582. }
  583. if (check_pst_table(data, pst, maxvid))
  584. return -EINVAL;
  585. powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
  586. * (data->numps + 1)), GFP_KERNEL);
  587. if (!powernow_table) {
  588. printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
  589. return -ENOMEM;
  590. }
  591. for (j = 0; j < data->numps; j++) {
  592. int freq;
  593. powernow_table[j].index = pst[j].fid; /* lower 8 bits */
  594. powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
  595. freq = find_khz_freq_from_fid(pst[j].fid);
  596. powernow_table[j].frequency = freq;
  597. }
  598. powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
  599. powernow_table[data->numps].index = 0;
  600. if (query_current_values_with_pending_wait(data)) {
  601. kfree(powernow_table);
  602. return -EIO;
  603. }
  604. pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
  605. data->powernow_table = powernow_table;
  606. if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
  607. print_basics(data);
  608. for (j = 0; j < data->numps; j++)
  609. if ((pst[j].fid == data->currfid) &&
  610. (pst[j].vid == data->currvid))
  611. return 0;
  612. pr_debug("currfid/vid do not match PST, ignoring\n");
  613. return 0;
  614. }
  615. /* Find and validate the PSB/PST table in BIOS. */
  616. static int find_psb_table(struct powernow_k8_data *data)
  617. {
  618. struct psb_s *psb;
  619. unsigned int i;
  620. u32 mvs;
  621. u8 maxvid;
  622. u32 cpst = 0;
  623. u32 thiscpuid;
  624. for (i = 0xc0000; i < 0xffff0; i += 0x10) {
  625. /* Scan BIOS looking for the signature. */
  626. /* It can not be at ffff0 - it is too big. */
  627. psb = phys_to_virt(i);
  628. if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
  629. continue;
  630. pr_debug("found PSB header at 0x%p\n", psb);
  631. pr_debug("table vers: 0x%x\n", psb->tableversion);
  632. if (psb->tableversion != PSB_VERSION_1_4) {
  633. printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
  634. return -ENODEV;
  635. }
  636. pr_debug("flags: 0x%x\n", psb->flags1);
  637. if (psb->flags1) {
  638. printk(KERN_ERR FW_BUG PFX "unknown flags\n");
  639. return -ENODEV;
  640. }
  641. data->vstable = psb->vstable;
  642. pr_debug("voltage stabilization time: %d(*20us)\n",
  643. data->vstable);
  644. pr_debug("flags2: 0x%x\n", psb->flags2);
  645. data->rvo = psb->flags2 & 3;
  646. data->irt = ((psb->flags2) >> 2) & 3;
  647. mvs = ((psb->flags2) >> 4) & 3;
  648. data->vidmvs = 1 << mvs;
  649. data->batps = ((psb->flags2) >> 6) & 3;
  650. pr_debug("ramp voltage offset: %d\n", data->rvo);
  651. pr_debug("isochronous relief time: %d\n", data->irt);
  652. pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
  653. pr_debug("numpst: 0x%x\n", psb->num_tables);
  654. cpst = psb->num_tables;
  655. if ((psb->cpuid == 0x00000fc0) ||
  656. (psb->cpuid == 0x00000fe0)) {
  657. thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  658. if ((thiscpuid == 0x00000fc0) ||
  659. (thiscpuid == 0x00000fe0))
  660. cpst = 1;
  661. }
  662. if (cpst != 1) {
  663. printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
  664. return -ENODEV;
  665. }
  666. data->plllock = psb->plllocktime;
  667. pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
  668. pr_debug("maxfid: 0x%x\n", psb->maxfid);
  669. pr_debug("maxvid: 0x%x\n", psb->maxvid);
  670. maxvid = psb->maxvid;
  671. data->numps = psb->numps;
  672. pr_debug("numpstates: 0x%x\n", data->numps);
  673. return fill_powernow_table(data,
  674. (struct pst_s *)(psb+1), maxvid);
  675. }
  676. /*
  677. * If you see this message, complain to BIOS manufacturer. If
  678. * he tells you "we do not support Linux" or some similar
  679. * nonsense, remember that Windows 2000 uses the same legacy
  680. * mechanism that the old Linux PSB driver uses. Tell them it
  681. * is broken with Windows 2000.
  682. *
  683. * The reference to the AMD documentation is chapter 9 in the
  684. * BIOS and Kernel Developer's Guide, which is available on
  685. * www.amd.com
  686. */
  687. printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
  688. printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
  689. " and Cool'N'Quiet support is enabled in BIOS setup\n");
  690. return -ENODEV;
  691. }
  692. static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
  693. unsigned int index)
  694. {
  695. u64 control;
  696. if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
  697. return;
  698. control = data->acpi_data.states[index].control;
  699. data->irt = (control >> IRT_SHIFT) & IRT_MASK;
  700. data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
  701. data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
  702. data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
  703. data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
  704. data->vstable = (control >> VST_SHIFT) & VST_MASK;
  705. }
  706. static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
  707. {
  708. struct cpufreq_frequency_table *powernow_table;
  709. int ret_val = -ENODEV;
  710. u64 control, status;
  711. if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
  712. pr_debug("register performance failed: bad ACPI data\n");
  713. return -EIO;
  714. }
  715. /* verify the data contained in the ACPI structures */
  716. if (data->acpi_data.state_count <= 1) {
  717. pr_debug("No ACPI P-States\n");
  718. goto err_out;
  719. }
  720. control = data->acpi_data.control_register.space_id;
  721. status = data->acpi_data.status_register.space_id;
  722. if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
  723. (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
  724. pr_debug("Invalid control/status registers (%llx - %llx)\n",
  725. control, status);
  726. goto err_out;
  727. }
  728. /* fill in data->powernow_table */
  729. powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
  730. * (data->acpi_data.state_count + 1)), GFP_KERNEL);
  731. if (!powernow_table) {
  732. pr_debug("powernow_table memory alloc failure\n");
  733. goto err_out;
  734. }
  735. /* fill in data */
  736. data->numps = data->acpi_data.state_count;
  737. powernow_k8_acpi_pst_values(data, 0);
  738. if (cpu_family == CPU_HW_PSTATE)
  739. ret_val = fill_powernow_table_pstate(data, powernow_table);
  740. else
  741. ret_val = fill_powernow_table_fidvid(data, powernow_table);
  742. if (ret_val)
  743. goto err_out_mem;
  744. powernow_table[data->acpi_data.state_count].frequency =
  745. CPUFREQ_TABLE_END;
  746. powernow_table[data->acpi_data.state_count].index = 0;
  747. data->powernow_table = powernow_table;
  748. if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
  749. print_basics(data);
  750. /* notify BIOS that we exist */
  751. acpi_processor_notify_smm(THIS_MODULE);
  752. if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
  753. printk(KERN_ERR PFX
  754. "unable to alloc powernow_k8_data cpumask\n");
  755. ret_val = -ENOMEM;
  756. goto err_out_mem;
  757. }
  758. return 0;
  759. err_out_mem:
  760. kfree(powernow_table);
  761. err_out:
  762. acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
  763. /* data->acpi_data.state_count informs us at ->exit()
  764. * whether ACPI was used */
  765. data->acpi_data.state_count = 0;
  766. return ret_val;
  767. }
  768. static int fill_powernow_table_pstate(struct powernow_k8_data *data,
  769. struct cpufreq_frequency_table *powernow_table)
  770. {
  771. int i;
  772. u32 hi = 0, lo = 0;
  773. rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
  774. data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
  775. for (i = 0; i < data->acpi_data.state_count; i++) {
  776. u32 index;
  777. index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
  778. if (index > data->max_hw_pstate) {
  779. printk(KERN_ERR PFX "invalid pstate %d - "
  780. "bad value %d.\n", i, index);
  781. printk(KERN_ERR PFX "Please report to BIOS "
  782. "manufacturer\n");
  783. invalidate_entry(powernow_table, i);
  784. continue;
  785. }
  786. ps_to_as[index] = i;
  787. /* Frequency may be rounded for these */
  788. if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
  789. || boot_cpu_data.x86 == 0x11) {
  790. rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
  791. if (!(hi & HW_PSTATE_VALID_MASK)) {
  792. pr_debug("invalid pstate %d, ignoring\n", index);
  793. invalidate_entry(powernow_table, i);
  794. continue;
  795. }
  796. powernow_table[i].frequency =
  797. freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
  798. } else
  799. powernow_table[i].frequency =
  800. data->acpi_data.states[i].core_frequency * 1000;
  801. powernow_table[i].index = index;
  802. }
  803. return 0;
  804. }
  805. static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
  806. struct cpufreq_frequency_table *powernow_table)
  807. {
  808. int i;
  809. for (i = 0; i < data->acpi_data.state_count; i++) {
  810. u32 fid;
  811. u32 vid;
  812. u32 freq, index;
  813. u64 status, control;
  814. if (data->exttype) {
  815. status = data->acpi_data.states[i].status;
  816. fid = status & EXT_FID_MASK;
  817. vid = (status >> VID_SHIFT) & EXT_VID_MASK;
  818. } else {
  819. control = data->acpi_data.states[i].control;
  820. fid = control & FID_MASK;
  821. vid = (control >> VID_SHIFT) & VID_MASK;
  822. }
  823. pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
  824. index = fid | (vid<<8);
  825. powernow_table[i].index = index;
  826. freq = find_khz_freq_from_fid(fid);
  827. powernow_table[i].frequency = freq;
  828. /* verify frequency is OK */
  829. if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
  830. pr_debug("invalid freq %u kHz, ignoring\n", freq);
  831. invalidate_entry(powernow_table, i);
  832. continue;
  833. }
  834. /* verify voltage is OK -
  835. * BIOSs are using "off" to indicate invalid */
  836. if (vid == VID_OFF) {
  837. pr_debug("invalid vid %u, ignoring\n", vid);
  838. invalidate_entry(powernow_table, i);
  839. continue;
  840. }
  841. if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
  842. printk(KERN_INFO PFX "invalid freq entries "
  843. "%u kHz vs. %u kHz\n", freq,
  844. (unsigned int)
  845. (data->acpi_data.states[i].core_frequency
  846. * 1000));
  847. invalidate_entry(powernow_table, i);
  848. continue;
  849. }
  850. }
  851. return 0;
  852. }
  853. static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
  854. {
  855. if (data->acpi_data.state_count)
  856. acpi_processor_unregister_performance(&data->acpi_data,
  857. data->cpu);
  858. free_cpumask_var(data->acpi_data.shared_cpu_map);
  859. }
  860. static int get_transition_latency(struct powernow_k8_data *data)
  861. {
  862. int max_latency = 0;
  863. int i;
  864. for (i = 0; i < data->acpi_data.state_count; i++) {
  865. int cur_latency = data->acpi_data.states[i].transition_latency
  866. + data->acpi_data.states[i].bus_master_latency;
  867. if (cur_latency > max_latency)
  868. max_latency = cur_latency;
  869. }
  870. if (max_latency == 0) {
  871. /*
  872. * Fam 11h and later may return 0 as transition latency. This
  873. * is intended and means "very fast". While cpufreq core and
  874. * governors currently can handle that gracefully, better set it
  875. * to 1 to avoid problems in the future.
  876. */
  877. if (boot_cpu_data.x86 < 0x11)
  878. printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
  879. "latency\n");
  880. max_latency = 1;
  881. }
  882. /* value in usecs, needs to be in nanoseconds */
  883. return 1000 * max_latency;
  884. }
  885. /* Take a frequency, and issue the fid/vid transition command */
  886. static int transition_frequency_fidvid(struct powernow_k8_data *data,
  887. unsigned int index)
  888. {
  889. u32 fid = 0;
  890. u32 vid = 0;
  891. int res, i;
  892. struct cpufreq_freqs freqs;
  893. pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
  894. /* fid/vid correctness check for k8 */
  895. /* fid are the lower 8 bits of the index we stored into
  896. * the cpufreq frequency table in find_psb_table, vid
  897. * are the upper 8 bits.
  898. */
  899. fid = data->powernow_table[index].index & 0xFF;
  900. vid = (data->powernow_table[index].index & 0xFF00) >> 8;
  901. pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
  902. if (query_current_values_with_pending_wait(data))
  903. return 1;
  904. if ((data->currvid == vid) && (data->currfid == fid)) {
  905. pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
  906. fid, vid);
  907. return 0;
  908. }
  909. pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
  910. smp_processor_id(), fid, vid);
  911. freqs.old = find_khz_freq_from_fid(data->currfid);
  912. freqs.new = find_khz_freq_from_fid(fid);
  913. for_each_cpu(i, data->available_cores) {
  914. freqs.cpu = i;
  915. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  916. }
  917. res = transition_fid_vid(data, fid, vid);
  918. if (res)
  919. return res;
  920. freqs.new = find_khz_freq_from_fid(data->currfid);
  921. for_each_cpu(i, data->available_cores) {
  922. freqs.cpu = i;
  923. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  924. }
  925. return res;
  926. }
  927. /* Take a frequency, and issue the hardware pstate transition command */
  928. static int transition_frequency_pstate(struct powernow_k8_data *data,
  929. unsigned int index)
  930. {
  931. u32 pstate = 0;
  932. int res, i;
  933. struct cpufreq_freqs freqs;
  934. pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
  935. /* get MSR index for hardware pstate transition */
  936. pstate = index & HW_PSTATE_MASK;
  937. if (pstate > data->max_hw_pstate)
  938. return -EINVAL;
  939. freqs.old = find_khz_freq_from_pstate(data->powernow_table,
  940. data->currpstate);
  941. freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
  942. for_each_cpu(i, data->available_cores) {
  943. freqs.cpu = i;
  944. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  945. }
  946. res = transition_pstate(data, pstate);
  947. freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
  948. for_each_cpu(i, data->available_cores) {
  949. freqs.cpu = i;
  950. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  951. }
  952. return res;
  953. }
  954. struct powernowk8_target_arg {
  955. struct cpufreq_policy *pol;
  956. unsigned targfreq;
  957. unsigned relation;
  958. };
  959. static long powernowk8_target_fn(void *arg)
  960. {
  961. struct powernowk8_target_arg *pta = arg;
  962. struct cpufreq_policy *pol = pta->pol;
  963. unsigned targfreq = pta->targfreq;
  964. unsigned relation = pta->relation;
  965. struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
  966. u32 checkfid;
  967. u32 checkvid;
  968. unsigned int newstate;
  969. int ret;
  970. if (!data)
  971. return -EINVAL;
  972. checkfid = data->currfid;
  973. checkvid = data->currvid;
  974. if (pending_bit_stuck()) {
  975. printk(KERN_ERR PFX "failing targ, change pending bit set\n");
  976. return -EIO;
  977. }
  978. pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
  979. pol->cpu, targfreq, pol->min, pol->max, relation);
  980. if (query_current_values_with_pending_wait(data))
  981. return -EIO;
  982. if (cpu_family != CPU_HW_PSTATE) {
  983. pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
  984. data->currfid, data->currvid);
  985. if ((checkvid != data->currvid) ||
  986. (checkfid != data->currfid)) {
  987. printk(KERN_INFO PFX
  988. "error - out of sync, fix 0x%x 0x%x, "
  989. "vid 0x%x 0x%x\n",
  990. checkfid, data->currfid,
  991. checkvid, data->currvid);
  992. }
  993. }
  994. if (cpufreq_frequency_table_target(pol, data->powernow_table,
  995. targfreq, relation, &newstate))
  996. return -EIO;
  997. mutex_lock(&fidvid_mutex);
  998. powernow_k8_acpi_pst_values(data, newstate);
  999. if (cpu_family == CPU_HW_PSTATE)
  1000. ret = transition_frequency_pstate(data,
  1001. data->powernow_table[newstate].index);
  1002. else
  1003. ret = transition_frequency_fidvid(data, newstate);
  1004. if (ret) {
  1005. printk(KERN_ERR PFX "transition frequency failed\n");
  1006. mutex_unlock(&fidvid_mutex);
  1007. return 1;
  1008. }
  1009. mutex_unlock(&fidvid_mutex);
  1010. if (cpu_family == CPU_HW_PSTATE)
  1011. pol->cur = find_khz_freq_from_pstate(data->powernow_table,
  1012. data->powernow_table[newstate].index);
  1013. else
  1014. pol->cur = find_khz_freq_from_fid(data->currfid);
  1015. return 0;
  1016. }
  1017. /* Driver entry point to switch to the target frequency */
  1018. static int powernowk8_target(struct cpufreq_policy *pol,
  1019. unsigned targfreq, unsigned relation)
  1020. {
  1021. struct powernowk8_target_arg pta = { .pol = pol, .targfreq = targfreq,
  1022. .relation = relation };
  1023. return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta);
  1024. }
  1025. /* Driver entry point to verify the policy and range of frequencies */
  1026. static int powernowk8_verify(struct cpufreq_policy *pol)
  1027. {
  1028. struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
  1029. if (!data)
  1030. return -EINVAL;
  1031. return cpufreq_frequency_table_verify(pol, data->powernow_table);
  1032. }
  1033. struct init_on_cpu {
  1034. struct powernow_k8_data *data;
  1035. int rc;
  1036. };
  1037. static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
  1038. {
  1039. struct init_on_cpu *init_on_cpu = _init_on_cpu;
  1040. if (pending_bit_stuck()) {
  1041. printk(KERN_ERR PFX "failing init, change pending bit set\n");
  1042. init_on_cpu->rc = -ENODEV;
  1043. return;
  1044. }
  1045. if (query_current_values_with_pending_wait(init_on_cpu->data)) {
  1046. init_on_cpu->rc = -ENODEV;
  1047. return;
  1048. }
  1049. if (cpu_family == CPU_OPTERON)
  1050. fidvid_msr_init();
  1051. init_on_cpu->rc = 0;
  1052. }
  1053. /* per CPU init entry point to the driver */
  1054. static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
  1055. {
  1056. static const char ACPI_PSS_BIOS_BUG_MSG[] =
  1057. KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
  1058. FW_BUG PFX "Try again with latest BIOS.\n";
  1059. struct powernow_k8_data *data;
  1060. struct init_on_cpu init_on_cpu;
  1061. int rc;
  1062. struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
  1063. if (!cpu_online(pol->cpu))
  1064. return -ENODEV;
  1065. smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
  1066. if (rc)
  1067. return -ENODEV;
  1068. data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
  1069. if (!data) {
  1070. printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
  1071. return -ENOMEM;
  1072. }
  1073. data->cpu = pol->cpu;
  1074. data->currpstate = HW_PSTATE_INVALID;
  1075. if (powernow_k8_cpu_init_acpi(data)) {
  1076. /*
  1077. * Use the PSB BIOS structure. This is only available on
  1078. * an UP version, and is deprecated by AMD.
  1079. */
  1080. if (num_online_cpus() != 1) {
  1081. printk_once(ACPI_PSS_BIOS_BUG_MSG);
  1082. goto err_out;
  1083. }
  1084. if (pol->cpu != 0) {
  1085. printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
  1086. "CPU other than CPU0. Complain to your BIOS "
  1087. "vendor.\n");
  1088. goto err_out;
  1089. }
  1090. rc = find_psb_table(data);
  1091. if (rc)
  1092. goto err_out;
  1093. /* Take a crude guess here.
  1094. * That guess was in microseconds, so multiply with 1000 */
  1095. pol->cpuinfo.transition_latency = (
  1096. ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
  1097. ((1 << data->irt) * 30)) * 1000;
  1098. } else /* ACPI _PSS objects available */
  1099. pol->cpuinfo.transition_latency = get_transition_latency(data);
  1100. /* only run on specific CPU from here on */
  1101. init_on_cpu.data = data;
  1102. smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
  1103. &init_on_cpu, 1);
  1104. rc = init_on_cpu.rc;
  1105. if (rc != 0)
  1106. goto err_out_exit_acpi;
  1107. if (cpu_family == CPU_HW_PSTATE)
  1108. cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
  1109. else
  1110. cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
  1111. data->available_cores = pol->cpus;
  1112. if (cpu_family == CPU_HW_PSTATE)
  1113. pol->cur = find_khz_freq_from_pstate(data->powernow_table,
  1114. data->currpstate);
  1115. else
  1116. pol->cur = find_khz_freq_from_fid(data->currfid);
  1117. pr_debug("policy current frequency %d kHz\n", pol->cur);
  1118. /* min/max the cpu is capable of */
  1119. if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
  1120. printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
  1121. powernow_k8_cpu_exit_acpi(data);
  1122. kfree(data->powernow_table);
  1123. kfree(data);
  1124. return -EINVAL;
  1125. }
  1126. /* Check for APERF/MPERF support in hardware */
  1127. if (cpu_has(c, X86_FEATURE_APERFMPERF))
  1128. cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
  1129. cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
  1130. if (cpu_family == CPU_HW_PSTATE)
  1131. pr_debug("cpu_init done, current pstate 0x%x\n",
  1132. data->currpstate);
  1133. else
  1134. pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
  1135. data->currfid, data->currvid);
  1136. per_cpu(powernow_data, pol->cpu) = data;
  1137. return 0;
  1138. err_out_exit_acpi:
  1139. powernow_k8_cpu_exit_acpi(data);
  1140. err_out:
  1141. kfree(data);
  1142. return -ENODEV;
  1143. }
  1144. static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
  1145. {
  1146. struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
  1147. if (!data)
  1148. return -EINVAL;
  1149. powernow_k8_cpu_exit_acpi(data);
  1150. cpufreq_frequency_table_put_attr(pol->cpu);
  1151. kfree(data->powernow_table);
  1152. kfree(data);
  1153. per_cpu(powernow_data, pol->cpu) = NULL;
  1154. return 0;
  1155. }
  1156. static void query_values_on_cpu(void *_err)
  1157. {
  1158. int *err = _err;
  1159. struct powernow_k8_data *data = __this_cpu_read(powernow_data);
  1160. *err = query_current_values_with_pending_wait(data);
  1161. }
  1162. static unsigned int powernowk8_get(unsigned int cpu)
  1163. {
  1164. struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
  1165. unsigned int khz = 0;
  1166. int err;
  1167. if (!data)
  1168. return 0;
  1169. smp_call_function_single(cpu, query_values_on_cpu, &err, true);
  1170. if (err)
  1171. goto out;
  1172. if (cpu_family == CPU_HW_PSTATE)
  1173. khz = find_khz_freq_from_pstate(data->powernow_table,
  1174. data->currpstate);
  1175. else
  1176. khz = find_khz_freq_from_fid(data->currfid);
  1177. out:
  1178. return khz;
  1179. }
  1180. static void _cpb_toggle_msrs(bool t)
  1181. {
  1182. int cpu;
  1183. get_online_cpus();
  1184. rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
  1185. for_each_cpu(cpu, cpu_online_mask) {
  1186. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1187. if (t)
  1188. reg->l &= ~BIT(25);
  1189. else
  1190. reg->l |= BIT(25);
  1191. }
  1192. wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
  1193. put_online_cpus();
  1194. }
  1195. /*
  1196. * Switch on/off core performance boosting.
  1197. *
  1198. * 0=disable
  1199. * 1=enable.
  1200. */
  1201. static void cpb_toggle(bool t)
  1202. {
  1203. if (!cpb_capable)
  1204. return;
  1205. if (t && !cpb_enabled) {
  1206. cpb_enabled = true;
  1207. _cpb_toggle_msrs(t);
  1208. printk(KERN_INFO PFX "Core Boosting enabled.\n");
  1209. } else if (!t && cpb_enabled) {
  1210. cpb_enabled = false;
  1211. _cpb_toggle_msrs(t);
  1212. printk(KERN_INFO PFX "Core Boosting disabled.\n");
  1213. }
  1214. }
  1215. static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
  1216. size_t count)
  1217. {
  1218. int ret = -EINVAL;
  1219. unsigned long val = 0;
  1220. ret = strict_strtoul(buf, 10, &val);
  1221. if (!ret && (val == 0 || val == 1) && cpb_capable)
  1222. cpb_toggle(val);
  1223. else
  1224. return -EINVAL;
  1225. return count;
  1226. }
  1227. static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
  1228. {
  1229. return sprintf(buf, "%u\n", cpb_enabled);
  1230. }
  1231. #define define_one_rw(_name) \
  1232. static struct freq_attr _name = \
  1233. __ATTR(_name, 0644, show_##_name, store_##_name)
  1234. define_one_rw(cpb);
  1235. static struct freq_attr *powernow_k8_attr[] = {
  1236. &cpufreq_freq_attr_scaling_available_freqs,
  1237. &cpb,
  1238. NULL,
  1239. };
  1240. static struct cpufreq_driver cpufreq_amd64_driver = {
  1241. .verify = powernowk8_verify,
  1242. .target = powernowk8_target,
  1243. .bios_limit = acpi_processor_get_bios_limit,
  1244. .init = powernowk8_cpu_init,
  1245. .exit = __devexit_p(powernowk8_cpu_exit),
  1246. .get = powernowk8_get,
  1247. .name = "powernow-k8",
  1248. .owner = THIS_MODULE,
  1249. .attr = powernow_k8_attr,
  1250. };
  1251. /*
  1252. * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
  1253. * cannot block the remaining ones from boosting. On the CPU_UP path we
  1254. * simply keep the boost-disable flag in sync with the current global
  1255. * state.
  1256. */
  1257. static int cpb_notify(struct notifier_block *nb, unsigned long action,
  1258. void *hcpu)
  1259. {
  1260. unsigned cpu = (long)hcpu;
  1261. u32 lo, hi;
  1262. switch (action) {
  1263. case CPU_UP_PREPARE:
  1264. case CPU_UP_PREPARE_FROZEN:
  1265. if (!cpb_enabled) {
  1266. rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
  1267. lo |= BIT(25);
  1268. wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
  1269. }
  1270. break;
  1271. case CPU_DOWN_PREPARE:
  1272. case CPU_DOWN_PREPARE_FROZEN:
  1273. rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
  1274. lo &= ~BIT(25);
  1275. wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
  1276. break;
  1277. default:
  1278. break;
  1279. }
  1280. return NOTIFY_OK;
  1281. }
  1282. static struct notifier_block cpb_nb = {
  1283. .notifier_call = cpb_notify,
  1284. };
  1285. /* driver entry point for init */
  1286. static int __cpuinit powernowk8_init(void)
  1287. {
  1288. unsigned int i, supported_cpus = 0, cpu;
  1289. int rv;
  1290. if (!x86_match_cpu(powernow_k8_ids))
  1291. return -ENODEV;
  1292. for_each_online_cpu(i) {
  1293. int rc;
  1294. smp_call_function_single(i, check_supported_cpu, &rc, 1);
  1295. if (rc == 0)
  1296. supported_cpus++;
  1297. }
  1298. if (supported_cpus != num_online_cpus())
  1299. return -ENODEV;
  1300. printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
  1301. num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
  1302. if (boot_cpu_has(X86_FEATURE_CPB)) {
  1303. cpb_capable = true;
  1304. msrs = msrs_alloc();
  1305. if (!msrs) {
  1306. printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
  1307. return -ENOMEM;
  1308. }
  1309. register_cpu_notifier(&cpb_nb);
  1310. rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
  1311. for_each_cpu(cpu, cpu_online_mask) {
  1312. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1313. cpb_enabled |= !(!!(reg->l & BIT(25)));
  1314. }
  1315. printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
  1316. (cpb_enabled ? "on" : "off"));
  1317. }
  1318. rv = cpufreq_register_driver(&cpufreq_amd64_driver);
  1319. if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
  1320. unregister_cpu_notifier(&cpb_nb);
  1321. msrs_free(msrs);
  1322. msrs = NULL;
  1323. }
  1324. return rv;
  1325. }
  1326. /* driver entry point for term */
  1327. static void __exit powernowk8_exit(void)
  1328. {
  1329. pr_debug("exit\n");
  1330. if (boot_cpu_has(X86_FEATURE_CPB)) {
  1331. msrs_free(msrs);
  1332. msrs = NULL;
  1333. unregister_cpu_notifier(&cpb_nb);
  1334. }
  1335. cpufreq_unregister_driver(&cpufreq_amd64_driver);
  1336. }
  1337. MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
  1338. "Mark Langsdorf <mark.langsdorf@amd.com>");
  1339. MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
  1340. MODULE_LICENSE("GPL");
  1341. late_initcall(powernowk8_init);
  1342. module_exit(powernowk8_exit);