e_powersaver.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. /*
  2. * Based on documentation provided by Dave Jones. Thanks!
  3. *
  4. * Licensed under the terms of the GNU GPL License version 2.
  5. *
  6. * BIG FAT DISCLAIMER: Work in progress code. Possibly *dangerous*
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/module.h>
  10. #include <linux/init.h>
  11. #include <linux/cpufreq.h>
  12. #include <linux/ioport.h>
  13. #include <linux/slab.h>
  14. #include <linux/timex.h>
  15. #include <linux/io.h>
  16. #include <linux/delay.h>
  17. #include <asm/cpu_device_id.h>
  18. #include <asm/msr.h>
  19. #include <asm/tsc.h>
  20. #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
  21. #include <linux/acpi.h>
  22. #include <acpi/processor.h>
  23. #endif
  24. #define EPS_BRAND_C7M 0
  25. #define EPS_BRAND_C7 1
  26. #define EPS_BRAND_EDEN 2
  27. #define EPS_BRAND_C3 3
  28. #define EPS_BRAND_C7D 4
  29. struct eps_cpu_data {
  30. u32 fsb;
  31. #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
  32. u32 bios_limit;
  33. #endif
  34. struct cpufreq_frequency_table freq_table[];
  35. };
  36. static struct eps_cpu_data *eps_cpu[NR_CPUS];
  37. /* Module parameters */
  38. static int freq_failsafe_off;
  39. static int voltage_failsafe_off;
  40. static int set_max_voltage;
  41. #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
  42. static int ignore_acpi_limit;
  43. static struct acpi_processor_performance *eps_acpi_cpu_perf;
  44. /* Minimum necessary to get acpi_processor_get_bios_limit() working */
  45. static int eps_acpi_init(void)
  46. {
  47. eps_acpi_cpu_perf = kzalloc(sizeof(struct acpi_processor_performance),
  48. GFP_KERNEL);
  49. if (!eps_acpi_cpu_perf)
  50. return -ENOMEM;
  51. if (!zalloc_cpumask_var(&eps_acpi_cpu_perf->shared_cpu_map,
  52. GFP_KERNEL)) {
  53. kfree(eps_acpi_cpu_perf);
  54. eps_acpi_cpu_perf = NULL;
  55. return -ENOMEM;
  56. }
  57. if (acpi_processor_register_performance(eps_acpi_cpu_perf, 0)) {
  58. free_cpumask_var(eps_acpi_cpu_perf->shared_cpu_map);
  59. kfree(eps_acpi_cpu_perf);
  60. eps_acpi_cpu_perf = NULL;
  61. return -EIO;
  62. }
  63. return 0;
  64. }
  65. static int eps_acpi_exit(struct cpufreq_policy *policy)
  66. {
  67. if (eps_acpi_cpu_perf) {
  68. acpi_processor_unregister_performance(eps_acpi_cpu_perf, 0);
  69. free_cpumask_var(eps_acpi_cpu_perf->shared_cpu_map);
  70. kfree(eps_acpi_cpu_perf);
  71. eps_acpi_cpu_perf = NULL;
  72. }
  73. return 0;
  74. }
  75. #endif
  76. static unsigned int eps_get(unsigned int cpu)
  77. {
  78. struct eps_cpu_data *centaur;
  79. u32 lo, hi;
  80. if (cpu)
  81. return 0;
  82. centaur = eps_cpu[cpu];
  83. if (centaur == NULL)
  84. return 0;
  85. /* Return current frequency */
  86. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  87. return centaur->fsb * ((lo >> 8) & 0xff);
  88. }
  89. static int eps_set_state(struct eps_cpu_data *centaur,
  90. unsigned int cpu,
  91. u32 dest_state)
  92. {
  93. struct cpufreq_freqs freqs;
  94. u32 lo, hi;
  95. int err = 0;
  96. int i;
  97. freqs.old = eps_get(cpu);
  98. freqs.new = centaur->fsb * ((dest_state >> 8) & 0xff);
  99. freqs.cpu = cpu;
  100. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  101. /* Wait while CPU is busy */
  102. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  103. i = 0;
  104. while (lo & ((1 << 16) | (1 << 17))) {
  105. udelay(16);
  106. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  107. i++;
  108. if (unlikely(i > 64)) {
  109. err = -ENODEV;
  110. goto postchange;
  111. }
  112. }
  113. /* Set new multiplier and voltage */
  114. wrmsr(MSR_IA32_PERF_CTL, dest_state & 0xffff, 0);
  115. /* Wait until transition end */
  116. i = 0;
  117. do {
  118. udelay(16);
  119. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  120. i++;
  121. if (unlikely(i > 64)) {
  122. err = -ENODEV;
  123. goto postchange;
  124. }
  125. } while (lo & ((1 << 16) | (1 << 17)));
  126. /* Return current frequency */
  127. postchange:
  128. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  129. freqs.new = centaur->fsb * ((lo >> 8) & 0xff);
  130. #ifdef DEBUG
  131. {
  132. u8 current_multiplier, current_voltage;
  133. /* Print voltage and multiplier */
  134. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  135. current_voltage = lo & 0xff;
  136. printk(KERN_INFO "eps: Current voltage = %dmV\n",
  137. current_voltage * 16 + 700);
  138. current_multiplier = (lo >> 8) & 0xff;
  139. printk(KERN_INFO "eps: Current multiplier = %d\n",
  140. current_multiplier);
  141. }
  142. #endif
  143. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  144. return err;
  145. }
  146. static int eps_target(struct cpufreq_policy *policy,
  147. unsigned int target_freq,
  148. unsigned int relation)
  149. {
  150. struct eps_cpu_data *centaur;
  151. unsigned int newstate = 0;
  152. unsigned int cpu = policy->cpu;
  153. unsigned int dest_state;
  154. int ret;
  155. if (unlikely(eps_cpu[cpu] == NULL))
  156. return -ENODEV;
  157. centaur = eps_cpu[cpu];
  158. if (unlikely(cpufreq_frequency_table_target(policy,
  159. &eps_cpu[cpu]->freq_table[0],
  160. target_freq,
  161. relation,
  162. &newstate))) {
  163. return -EINVAL;
  164. }
  165. /* Make frequency transition */
  166. dest_state = centaur->freq_table[newstate].index & 0xffff;
  167. ret = eps_set_state(centaur, cpu, dest_state);
  168. if (ret)
  169. printk(KERN_ERR "eps: Timeout!\n");
  170. return ret;
  171. }
  172. static int eps_verify(struct cpufreq_policy *policy)
  173. {
  174. return cpufreq_frequency_table_verify(policy,
  175. &eps_cpu[policy->cpu]->freq_table[0]);
  176. }
  177. static int eps_cpu_init(struct cpufreq_policy *policy)
  178. {
  179. unsigned int i;
  180. u32 lo, hi;
  181. u64 val;
  182. u8 current_multiplier, current_voltage;
  183. u8 max_multiplier, max_voltage;
  184. u8 min_multiplier, min_voltage;
  185. u8 brand = 0;
  186. u32 fsb;
  187. struct eps_cpu_data *centaur;
  188. struct cpuinfo_x86 *c = &cpu_data(0);
  189. struct cpufreq_frequency_table *f_table;
  190. int k, step, voltage;
  191. int ret;
  192. int states;
  193. #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
  194. unsigned int limit;
  195. #endif
  196. if (policy->cpu != 0)
  197. return -ENODEV;
  198. /* Check brand */
  199. printk(KERN_INFO "eps: Detected VIA ");
  200. switch (c->x86_model) {
  201. case 10:
  202. rdmsr(0x1153, lo, hi);
  203. brand = (((lo >> 2) ^ lo) >> 18) & 3;
  204. printk(KERN_CONT "Model A ");
  205. break;
  206. case 13:
  207. rdmsr(0x1154, lo, hi);
  208. brand = (((lo >> 4) ^ (lo >> 2))) & 0x000000ff;
  209. printk(KERN_CONT "Model D ");
  210. break;
  211. }
  212. switch (brand) {
  213. case EPS_BRAND_C7M:
  214. printk(KERN_CONT "C7-M\n");
  215. break;
  216. case EPS_BRAND_C7:
  217. printk(KERN_CONT "C7\n");
  218. break;
  219. case EPS_BRAND_EDEN:
  220. printk(KERN_CONT "Eden\n");
  221. break;
  222. case EPS_BRAND_C7D:
  223. printk(KERN_CONT "C7-D\n");
  224. break;
  225. case EPS_BRAND_C3:
  226. printk(KERN_CONT "C3\n");
  227. return -ENODEV;
  228. break;
  229. }
  230. /* Enable Enhanced PowerSaver */
  231. rdmsrl(MSR_IA32_MISC_ENABLE, val);
  232. if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
  233. val |= MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP;
  234. wrmsrl(MSR_IA32_MISC_ENABLE, val);
  235. /* Can be locked at 0 */
  236. rdmsrl(MSR_IA32_MISC_ENABLE, val);
  237. if (!(val & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP)) {
  238. printk(KERN_INFO "eps: Can't enable Enhanced PowerSaver\n");
  239. return -ENODEV;
  240. }
  241. }
  242. /* Print voltage and multiplier */
  243. rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
  244. current_voltage = lo & 0xff;
  245. printk(KERN_INFO "eps: Current voltage = %dmV\n",
  246. current_voltage * 16 + 700);
  247. current_multiplier = (lo >> 8) & 0xff;
  248. printk(KERN_INFO "eps: Current multiplier = %d\n", current_multiplier);
  249. /* Print limits */
  250. max_voltage = hi & 0xff;
  251. printk(KERN_INFO "eps: Highest voltage = %dmV\n",
  252. max_voltage * 16 + 700);
  253. max_multiplier = (hi >> 8) & 0xff;
  254. printk(KERN_INFO "eps: Highest multiplier = %d\n", max_multiplier);
  255. min_voltage = (hi >> 16) & 0xff;
  256. printk(KERN_INFO "eps: Lowest voltage = %dmV\n",
  257. min_voltage * 16 + 700);
  258. min_multiplier = (hi >> 24) & 0xff;
  259. printk(KERN_INFO "eps: Lowest multiplier = %d\n", min_multiplier);
  260. /* Sanity checks */
  261. if (current_multiplier == 0 || max_multiplier == 0
  262. || min_multiplier == 0)
  263. return -EINVAL;
  264. if (current_multiplier > max_multiplier
  265. || max_multiplier <= min_multiplier)
  266. return -EINVAL;
  267. if (current_voltage > 0x1f || max_voltage > 0x1f)
  268. return -EINVAL;
  269. if (max_voltage < min_voltage
  270. || current_voltage < min_voltage
  271. || current_voltage > max_voltage)
  272. return -EINVAL;
  273. /* Check for systems using underclocked CPU */
  274. if (!freq_failsafe_off && max_multiplier != current_multiplier) {
  275. printk(KERN_INFO "eps: Your processor is running at different "
  276. "frequency then its maximum. Aborting.\n");
  277. printk(KERN_INFO "eps: You can use freq_failsafe_off option "
  278. "to disable this check.\n");
  279. return -EINVAL;
  280. }
  281. if (!voltage_failsafe_off && max_voltage != current_voltage) {
  282. printk(KERN_INFO "eps: Your processor is running at different "
  283. "voltage then its maximum. Aborting.\n");
  284. printk(KERN_INFO "eps: You can use voltage_failsafe_off "
  285. "option to disable this check.\n");
  286. return -EINVAL;
  287. }
  288. /* Calc FSB speed */
  289. fsb = cpu_khz / current_multiplier;
  290. #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
  291. /* Check for ACPI processor speed limit */
  292. if (!ignore_acpi_limit && !eps_acpi_init()) {
  293. if (!acpi_processor_get_bios_limit(policy->cpu, &limit)) {
  294. printk(KERN_INFO "eps: ACPI limit %u.%uGHz\n",
  295. limit/1000000,
  296. (limit%1000000)/10000);
  297. eps_acpi_exit(policy);
  298. /* Check if max_multiplier is in BIOS limits */
  299. if (limit && max_multiplier * fsb > limit) {
  300. printk(KERN_INFO "eps: Aborting.\n");
  301. return -EINVAL;
  302. }
  303. }
  304. }
  305. #endif
  306. /* Allow user to set lower maximum voltage then that reported
  307. * by processor */
  308. if (brand == EPS_BRAND_C7M && set_max_voltage) {
  309. u32 v;
  310. /* Change mV to something hardware can use */
  311. v = (set_max_voltage - 700) / 16;
  312. /* Check if voltage is within limits */
  313. if (v >= min_voltage && v <= max_voltage) {
  314. printk(KERN_INFO "eps: Setting %dmV as maximum.\n",
  315. v * 16 + 700);
  316. max_voltage = v;
  317. }
  318. }
  319. /* Calc number of p-states supported */
  320. if (brand == EPS_BRAND_C7M)
  321. states = max_multiplier - min_multiplier + 1;
  322. else
  323. states = 2;
  324. /* Allocate private data and frequency table for current cpu */
  325. centaur = kzalloc(sizeof(struct eps_cpu_data)
  326. + (states + 1) * sizeof(struct cpufreq_frequency_table),
  327. GFP_KERNEL);
  328. if (!centaur)
  329. return -ENOMEM;
  330. eps_cpu[0] = centaur;
  331. /* Copy basic values */
  332. centaur->fsb = fsb;
  333. #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
  334. centaur->bios_limit = limit;
  335. #endif
  336. /* Fill frequency and MSR value table */
  337. f_table = &centaur->freq_table[0];
  338. if (brand != EPS_BRAND_C7M) {
  339. f_table[0].frequency = fsb * min_multiplier;
  340. f_table[0].index = (min_multiplier << 8) | min_voltage;
  341. f_table[1].frequency = fsb * max_multiplier;
  342. f_table[1].index = (max_multiplier << 8) | max_voltage;
  343. f_table[2].frequency = CPUFREQ_TABLE_END;
  344. } else {
  345. k = 0;
  346. step = ((max_voltage - min_voltage) * 256)
  347. / (max_multiplier - min_multiplier);
  348. for (i = min_multiplier; i <= max_multiplier; i++) {
  349. voltage = (k * step) / 256 + min_voltage;
  350. f_table[k].frequency = fsb * i;
  351. f_table[k].index = (i << 8) | voltage;
  352. k++;
  353. }
  354. f_table[k].frequency = CPUFREQ_TABLE_END;
  355. }
  356. policy->cpuinfo.transition_latency = 140000; /* 844mV -> 700mV in ns */
  357. policy->cur = fsb * current_multiplier;
  358. ret = cpufreq_frequency_table_cpuinfo(policy, &centaur->freq_table[0]);
  359. if (ret) {
  360. kfree(centaur);
  361. return ret;
  362. }
  363. cpufreq_frequency_table_get_attr(&centaur->freq_table[0], policy->cpu);
  364. return 0;
  365. }
  366. static int eps_cpu_exit(struct cpufreq_policy *policy)
  367. {
  368. unsigned int cpu = policy->cpu;
  369. /* Bye */
  370. cpufreq_frequency_table_put_attr(policy->cpu);
  371. kfree(eps_cpu[cpu]);
  372. eps_cpu[cpu] = NULL;
  373. return 0;
  374. }
  375. static struct freq_attr *eps_attr[] = {
  376. &cpufreq_freq_attr_scaling_available_freqs,
  377. NULL,
  378. };
  379. static struct cpufreq_driver eps_driver = {
  380. .verify = eps_verify,
  381. .target = eps_target,
  382. .init = eps_cpu_init,
  383. .exit = eps_cpu_exit,
  384. .get = eps_get,
  385. .name = "e_powersaver",
  386. .owner = THIS_MODULE,
  387. .attr = eps_attr,
  388. };
  389. /* This driver will work only on Centaur C7 processors with
  390. * Enhanced SpeedStep/PowerSaver registers */
  391. static const struct x86_cpu_id eps_cpu_id[] = {
  392. { X86_VENDOR_CENTAUR, 6, X86_MODEL_ANY, X86_FEATURE_EST },
  393. {}
  394. };
  395. MODULE_DEVICE_TABLE(x86cpu, eps_cpu_id);
  396. static int __init eps_init(void)
  397. {
  398. if (!x86_match_cpu(eps_cpu_id) || boot_cpu_data.x86_model < 10)
  399. return -ENODEV;
  400. if (cpufreq_register_driver(&eps_driver))
  401. return -EINVAL;
  402. return 0;
  403. }
  404. static void __exit eps_exit(void)
  405. {
  406. cpufreq_unregister_driver(&eps_driver);
  407. }
  408. /* Allow user to overclock his machine or to change frequency to higher after
  409. * unloading module */
  410. module_param(freq_failsafe_off, int, 0644);
  411. MODULE_PARM_DESC(freq_failsafe_off, "Disable current vs max frequency check");
  412. module_param(voltage_failsafe_off, int, 0644);
  413. MODULE_PARM_DESC(voltage_failsafe_off, "Disable current vs max voltage check");
  414. #if defined CONFIG_ACPI_PROCESSOR || defined CONFIG_ACPI_PROCESSOR_MODULE
  415. module_param(ignore_acpi_limit, int, 0644);
  416. MODULE_PARM_DESC(ignore_acpi_limit, "Don't check ACPI's processor speed limit");
  417. #endif
  418. module_param(set_max_voltage, int, 0644);
  419. MODULE_PARM_DESC(set_max_voltage, "Set maximum CPU voltage (mV) C7-M only");
  420. MODULE_AUTHOR("Rafal Bilski <rafalbilski@interia.pl>");
  421. MODULE_DESCRIPTION("Enhanced PowerSaver driver for VIA C7 CPU's.");
  422. MODULE_LICENSE("GPL");
  423. module_init(eps_init);
  424. module_exit(eps_exit);