svc_rdma_recvfrom.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688
  1. /*
  2. * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the BSD-type
  8. * license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or without
  11. * modification, are permitted provided that the following conditions
  12. * are met:
  13. *
  14. * Redistributions of source code must retain the above copyright
  15. * notice, this list of conditions and the following disclaimer.
  16. *
  17. * Redistributions in binary form must reproduce the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer in the documentation and/or other materials provided
  20. * with the distribution.
  21. *
  22. * Neither the name of the Network Appliance, Inc. nor the names of
  23. * its contributors may be used to endorse or promote products
  24. * derived from this software without specific prior written
  25. * permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  30. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  32. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  33. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  34. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  35. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  36. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  37. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38. *
  39. * Author: Tom Tucker <tom@opengridcomputing.com>
  40. */
  41. #include <linux/sunrpc/debug.h>
  42. #include <linux/sunrpc/rpc_rdma.h>
  43. #include <linux/spinlock.h>
  44. #include <asm/unaligned.h>
  45. #include <rdma/ib_verbs.h>
  46. #include <rdma/rdma_cm.h>
  47. #include <linux/sunrpc/svc_rdma.h>
  48. #define RPCDBG_FACILITY RPCDBG_SVCXPRT
  49. /*
  50. * Replace the pages in the rq_argpages array with the pages from the SGE in
  51. * the RDMA_RECV completion. The SGL should contain full pages up until the
  52. * last one.
  53. */
  54. static void rdma_build_arg_xdr(struct svc_rqst *rqstp,
  55. struct svc_rdma_op_ctxt *ctxt,
  56. u32 byte_count)
  57. {
  58. struct page *page;
  59. u32 bc;
  60. int sge_no;
  61. /* Swap the page in the SGE with the page in argpages */
  62. page = ctxt->pages[0];
  63. put_page(rqstp->rq_pages[0]);
  64. rqstp->rq_pages[0] = page;
  65. /* Set up the XDR head */
  66. rqstp->rq_arg.head[0].iov_base = page_address(page);
  67. rqstp->rq_arg.head[0].iov_len = min(byte_count, ctxt->sge[0].length);
  68. rqstp->rq_arg.len = byte_count;
  69. rqstp->rq_arg.buflen = byte_count;
  70. /* Compute bytes past head in the SGL */
  71. bc = byte_count - rqstp->rq_arg.head[0].iov_len;
  72. /* If data remains, store it in the pagelist */
  73. rqstp->rq_arg.page_len = bc;
  74. rqstp->rq_arg.page_base = 0;
  75. rqstp->rq_arg.pages = &rqstp->rq_pages[1];
  76. sge_no = 1;
  77. while (bc && sge_no < ctxt->count) {
  78. page = ctxt->pages[sge_no];
  79. put_page(rqstp->rq_pages[sge_no]);
  80. rqstp->rq_pages[sge_no] = page;
  81. bc -= min(bc, ctxt->sge[sge_no].length);
  82. rqstp->rq_arg.buflen += ctxt->sge[sge_no].length;
  83. sge_no++;
  84. }
  85. rqstp->rq_respages = &rqstp->rq_pages[sge_no];
  86. /* We should never run out of SGE because the limit is defined to
  87. * support the max allowed RPC data length
  88. */
  89. BUG_ON(bc && (sge_no == ctxt->count));
  90. BUG_ON((rqstp->rq_arg.head[0].iov_len + rqstp->rq_arg.page_len)
  91. != byte_count);
  92. BUG_ON(rqstp->rq_arg.len != byte_count);
  93. /* If not all pages were used from the SGL, free the remaining ones */
  94. bc = sge_no;
  95. while (sge_no < ctxt->count) {
  96. page = ctxt->pages[sge_no++];
  97. put_page(page);
  98. }
  99. ctxt->count = bc;
  100. /* Set up tail */
  101. rqstp->rq_arg.tail[0].iov_base = NULL;
  102. rqstp->rq_arg.tail[0].iov_len = 0;
  103. }
  104. /* Encode a read-chunk-list as an array of IB SGE
  105. *
  106. * Assumptions:
  107. * - chunk[0]->position points to pages[0] at an offset of 0
  108. * - pages[] is not physically or virtually contiguous and consists of
  109. * PAGE_SIZE elements.
  110. *
  111. * Output:
  112. * - sge array pointing into pages[] array.
  113. * - chunk_sge array specifying sge index and count for each
  114. * chunk in the read list
  115. *
  116. */
  117. static int map_read_chunks(struct svcxprt_rdma *xprt,
  118. struct svc_rqst *rqstp,
  119. struct svc_rdma_op_ctxt *head,
  120. struct rpcrdma_msg *rmsgp,
  121. struct svc_rdma_req_map *rpl_map,
  122. struct svc_rdma_req_map *chl_map,
  123. int ch_count,
  124. int byte_count)
  125. {
  126. int sge_no;
  127. int sge_bytes;
  128. int page_off;
  129. int page_no;
  130. int ch_bytes;
  131. int ch_no;
  132. struct rpcrdma_read_chunk *ch;
  133. sge_no = 0;
  134. page_no = 0;
  135. page_off = 0;
  136. ch = (struct rpcrdma_read_chunk *)&rmsgp->rm_body.rm_chunks[0];
  137. ch_no = 0;
  138. ch_bytes = ntohl(ch->rc_target.rs_length);
  139. head->arg.head[0] = rqstp->rq_arg.head[0];
  140. head->arg.tail[0] = rqstp->rq_arg.tail[0];
  141. head->arg.pages = &head->pages[head->count];
  142. head->hdr_count = head->count; /* save count of hdr pages */
  143. head->arg.page_base = 0;
  144. head->arg.page_len = ch_bytes;
  145. head->arg.len = rqstp->rq_arg.len + ch_bytes;
  146. head->arg.buflen = rqstp->rq_arg.buflen + ch_bytes;
  147. head->count++;
  148. chl_map->ch[0].start = 0;
  149. while (byte_count) {
  150. rpl_map->sge[sge_no].iov_base =
  151. page_address(rqstp->rq_arg.pages[page_no]) + page_off;
  152. sge_bytes = min_t(int, PAGE_SIZE-page_off, ch_bytes);
  153. rpl_map->sge[sge_no].iov_len = sge_bytes;
  154. /*
  155. * Don't bump head->count here because the same page
  156. * may be used by multiple SGE.
  157. */
  158. head->arg.pages[page_no] = rqstp->rq_arg.pages[page_no];
  159. rqstp->rq_respages = &rqstp->rq_arg.pages[page_no+1];
  160. byte_count -= sge_bytes;
  161. ch_bytes -= sge_bytes;
  162. sge_no++;
  163. /*
  164. * If all bytes for this chunk have been mapped to an
  165. * SGE, move to the next SGE
  166. */
  167. if (ch_bytes == 0) {
  168. chl_map->ch[ch_no].count =
  169. sge_no - chl_map->ch[ch_no].start;
  170. ch_no++;
  171. ch++;
  172. chl_map->ch[ch_no].start = sge_no;
  173. ch_bytes = ntohl(ch->rc_target.rs_length);
  174. /* If bytes remaining account for next chunk */
  175. if (byte_count) {
  176. head->arg.page_len += ch_bytes;
  177. head->arg.len += ch_bytes;
  178. head->arg.buflen += ch_bytes;
  179. }
  180. }
  181. /*
  182. * If this SGE consumed all of the page, move to the
  183. * next page
  184. */
  185. if ((sge_bytes + page_off) == PAGE_SIZE) {
  186. page_no++;
  187. page_off = 0;
  188. /*
  189. * If there are still bytes left to map, bump
  190. * the page count
  191. */
  192. if (byte_count)
  193. head->count++;
  194. } else
  195. page_off += sge_bytes;
  196. }
  197. BUG_ON(byte_count != 0);
  198. return sge_no;
  199. }
  200. /* Map a read-chunk-list to an XDR and fast register the page-list.
  201. *
  202. * Assumptions:
  203. * - chunk[0] position points to pages[0] at an offset of 0
  204. * - pages[] will be made physically contiguous by creating a one-off memory
  205. * region using the fastreg verb.
  206. * - byte_count is # of bytes in read-chunk-list
  207. * - ch_count is # of chunks in read-chunk-list
  208. *
  209. * Output:
  210. * - sge array pointing into pages[] array.
  211. * - chunk_sge array specifying sge index and count for each
  212. * chunk in the read list
  213. */
  214. static int fast_reg_read_chunks(struct svcxprt_rdma *xprt,
  215. struct svc_rqst *rqstp,
  216. struct svc_rdma_op_ctxt *head,
  217. struct rpcrdma_msg *rmsgp,
  218. struct svc_rdma_req_map *rpl_map,
  219. struct svc_rdma_req_map *chl_map,
  220. int ch_count,
  221. int byte_count)
  222. {
  223. int page_no;
  224. int ch_no;
  225. u32 offset;
  226. struct rpcrdma_read_chunk *ch;
  227. struct svc_rdma_fastreg_mr *frmr;
  228. int ret = 0;
  229. frmr = svc_rdma_get_frmr(xprt);
  230. if (IS_ERR(frmr))
  231. return -ENOMEM;
  232. head->frmr = frmr;
  233. head->arg.head[0] = rqstp->rq_arg.head[0];
  234. head->arg.tail[0] = rqstp->rq_arg.tail[0];
  235. head->arg.pages = &head->pages[head->count];
  236. head->hdr_count = head->count; /* save count of hdr pages */
  237. head->arg.page_base = 0;
  238. head->arg.page_len = byte_count;
  239. head->arg.len = rqstp->rq_arg.len + byte_count;
  240. head->arg.buflen = rqstp->rq_arg.buflen + byte_count;
  241. /* Fast register the page list */
  242. frmr->kva = page_address(rqstp->rq_arg.pages[0]);
  243. frmr->direction = DMA_FROM_DEVICE;
  244. frmr->access_flags = (IB_ACCESS_LOCAL_WRITE|IB_ACCESS_REMOTE_WRITE);
  245. frmr->map_len = byte_count;
  246. frmr->page_list_len = PAGE_ALIGN(byte_count) >> PAGE_SHIFT;
  247. for (page_no = 0; page_no < frmr->page_list_len; page_no++) {
  248. frmr->page_list->page_list[page_no] =
  249. ib_dma_map_page(xprt->sc_cm_id->device,
  250. rqstp->rq_arg.pages[page_no], 0,
  251. PAGE_SIZE, DMA_FROM_DEVICE);
  252. if (ib_dma_mapping_error(xprt->sc_cm_id->device,
  253. frmr->page_list->page_list[page_no]))
  254. goto fatal_err;
  255. atomic_inc(&xprt->sc_dma_used);
  256. head->arg.pages[page_no] = rqstp->rq_arg.pages[page_no];
  257. }
  258. head->count += page_no;
  259. /* rq_respages points one past arg pages */
  260. rqstp->rq_respages = &rqstp->rq_arg.pages[page_no];
  261. /* Create the reply and chunk maps */
  262. offset = 0;
  263. ch = (struct rpcrdma_read_chunk *)&rmsgp->rm_body.rm_chunks[0];
  264. for (ch_no = 0; ch_no < ch_count; ch_no++) {
  265. int len = ntohl(ch->rc_target.rs_length);
  266. rpl_map->sge[ch_no].iov_base = frmr->kva + offset;
  267. rpl_map->sge[ch_no].iov_len = len;
  268. chl_map->ch[ch_no].count = 1;
  269. chl_map->ch[ch_no].start = ch_no;
  270. offset += len;
  271. ch++;
  272. }
  273. ret = svc_rdma_fastreg(xprt, frmr);
  274. if (ret)
  275. goto fatal_err;
  276. return ch_no;
  277. fatal_err:
  278. printk("svcrdma: error fast registering xdr for xprt %p", xprt);
  279. svc_rdma_put_frmr(xprt, frmr);
  280. return -EIO;
  281. }
  282. static int rdma_set_ctxt_sge(struct svcxprt_rdma *xprt,
  283. struct svc_rdma_op_ctxt *ctxt,
  284. struct svc_rdma_fastreg_mr *frmr,
  285. struct kvec *vec,
  286. u64 *sgl_offset,
  287. int count)
  288. {
  289. int i;
  290. unsigned long off;
  291. ctxt->count = count;
  292. ctxt->direction = DMA_FROM_DEVICE;
  293. for (i = 0; i < count; i++) {
  294. ctxt->sge[i].length = 0; /* in case map fails */
  295. if (!frmr) {
  296. BUG_ON(!virt_to_page(vec[i].iov_base));
  297. off = (unsigned long)vec[i].iov_base & ~PAGE_MASK;
  298. ctxt->sge[i].addr =
  299. ib_dma_map_page(xprt->sc_cm_id->device,
  300. virt_to_page(vec[i].iov_base),
  301. off,
  302. vec[i].iov_len,
  303. DMA_FROM_DEVICE);
  304. if (ib_dma_mapping_error(xprt->sc_cm_id->device,
  305. ctxt->sge[i].addr))
  306. return -EINVAL;
  307. ctxt->sge[i].lkey = xprt->sc_dma_lkey;
  308. atomic_inc(&xprt->sc_dma_used);
  309. } else {
  310. ctxt->sge[i].addr = (unsigned long)vec[i].iov_base;
  311. ctxt->sge[i].lkey = frmr->mr->lkey;
  312. }
  313. ctxt->sge[i].length = vec[i].iov_len;
  314. *sgl_offset = *sgl_offset + vec[i].iov_len;
  315. }
  316. return 0;
  317. }
  318. static int rdma_read_max_sge(struct svcxprt_rdma *xprt, int sge_count)
  319. {
  320. if ((rdma_node_get_transport(xprt->sc_cm_id->device->node_type) ==
  321. RDMA_TRANSPORT_IWARP) &&
  322. sge_count > 1)
  323. return 1;
  324. else
  325. return min_t(int, sge_count, xprt->sc_max_sge);
  326. }
  327. /*
  328. * Use RDMA_READ to read data from the advertised client buffer into the
  329. * XDR stream starting at rq_arg.head[0].iov_base.
  330. * Each chunk in the array
  331. * contains the following fields:
  332. * discrim - '1', This isn't used for data placement
  333. * position - The xdr stream offset (the same for every chunk)
  334. * handle - RMR for client memory region
  335. * length - data transfer length
  336. * offset - 64 bit tagged offset in remote memory region
  337. *
  338. * On our side, we need to read into a pagelist. The first page immediately
  339. * follows the RPC header.
  340. *
  341. * This function returns:
  342. * 0 - No error and no read-list found.
  343. *
  344. * 1 - Successful read-list processing. The data is not yet in
  345. * the pagelist and therefore the RPC request must be deferred. The
  346. * I/O completion will enqueue the transport again and
  347. * svc_rdma_recvfrom will complete the request.
  348. *
  349. * <0 - Error processing/posting read-list.
  350. *
  351. * NOTE: The ctxt must not be touched after the last WR has been posted
  352. * because the I/O completion processing may occur on another
  353. * processor and free / modify the context. Ne touche pas!
  354. */
  355. static int rdma_read_xdr(struct svcxprt_rdma *xprt,
  356. struct rpcrdma_msg *rmsgp,
  357. struct svc_rqst *rqstp,
  358. struct svc_rdma_op_ctxt *hdr_ctxt)
  359. {
  360. struct ib_send_wr read_wr;
  361. struct ib_send_wr inv_wr;
  362. int err = 0;
  363. int ch_no;
  364. int ch_count;
  365. int byte_count;
  366. int sge_count;
  367. u64 sgl_offset;
  368. struct rpcrdma_read_chunk *ch;
  369. struct svc_rdma_op_ctxt *ctxt = NULL;
  370. struct svc_rdma_req_map *rpl_map;
  371. struct svc_rdma_req_map *chl_map;
  372. /* If no read list is present, return 0 */
  373. ch = svc_rdma_get_read_chunk(rmsgp);
  374. if (!ch)
  375. return 0;
  376. svc_rdma_rcl_chunk_counts(ch, &ch_count, &byte_count);
  377. if (ch_count > RPCSVC_MAXPAGES)
  378. return -EINVAL;
  379. /* Allocate temporary reply and chunk maps */
  380. rpl_map = svc_rdma_get_req_map();
  381. chl_map = svc_rdma_get_req_map();
  382. if (!xprt->sc_frmr_pg_list_len)
  383. sge_count = map_read_chunks(xprt, rqstp, hdr_ctxt, rmsgp,
  384. rpl_map, chl_map, ch_count,
  385. byte_count);
  386. else
  387. sge_count = fast_reg_read_chunks(xprt, rqstp, hdr_ctxt, rmsgp,
  388. rpl_map, chl_map, ch_count,
  389. byte_count);
  390. if (sge_count < 0) {
  391. err = -EIO;
  392. goto out;
  393. }
  394. sgl_offset = 0;
  395. ch_no = 0;
  396. for (ch = (struct rpcrdma_read_chunk *)&rmsgp->rm_body.rm_chunks[0];
  397. ch->rc_discrim != 0; ch++, ch_no++) {
  398. u64 rs_offset;
  399. next_sge:
  400. ctxt = svc_rdma_get_context(xprt);
  401. ctxt->direction = DMA_FROM_DEVICE;
  402. ctxt->frmr = hdr_ctxt->frmr;
  403. ctxt->read_hdr = NULL;
  404. clear_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags);
  405. clear_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags);
  406. /* Prepare READ WR */
  407. memset(&read_wr, 0, sizeof read_wr);
  408. read_wr.wr_id = (unsigned long)ctxt;
  409. read_wr.opcode = IB_WR_RDMA_READ;
  410. ctxt->wr_op = read_wr.opcode;
  411. read_wr.send_flags = IB_SEND_SIGNALED;
  412. read_wr.wr.rdma.rkey = ntohl(ch->rc_target.rs_handle);
  413. xdr_decode_hyper((__be32 *)&ch->rc_target.rs_offset,
  414. &rs_offset);
  415. read_wr.wr.rdma.remote_addr = rs_offset + sgl_offset;
  416. read_wr.sg_list = ctxt->sge;
  417. read_wr.num_sge =
  418. rdma_read_max_sge(xprt, chl_map->ch[ch_no].count);
  419. err = rdma_set_ctxt_sge(xprt, ctxt, hdr_ctxt->frmr,
  420. &rpl_map->sge[chl_map->ch[ch_no].start],
  421. &sgl_offset,
  422. read_wr.num_sge);
  423. if (err) {
  424. svc_rdma_unmap_dma(ctxt);
  425. svc_rdma_put_context(ctxt, 0);
  426. goto out;
  427. }
  428. if (((ch+1)->rc_discrim == 0) &&
  429. (read_wr.num_sge == chl_map->ch[ch_no].count)) {
  430. /*
  431. * Mark the last RDMA_READ with a bit to
  432. * indicate all RPC data has been fetched from
  433. * the client and the RPC needs to be enqueued.
  434. */
  435. set_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags);
  436. if (hdr_ctxt->frmr) {
  437. set_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags);
  438. /*
  439. * Invalidate the local MR used to map the data
  440. * sink.
  441. */
  442. if (xprt->sc_dev_caps &
  443. SVCRDMA_DEVCAP_READ_W_INV) {
  444. read_wr.opcode =
  445. IB_WR_RDMA_READ_WITH_INV;
  446. ctxt->wr_op = read_wr.opcode;
  447. read_wr.ex.invalidate_rkey =
  448. ctxt->frmr->mr->lkey;
  449. } else {
  450. /* Prepare INVALIDATE WR */
  451. memset(&inv_wr, 0, sizeof inv_wr);
  452. inv_wr.opcode = IB_WR_LOCAL_INV;
  453. inv_wr.send_flags = IB_SEND_SIGNALED;
  454. inv_wr.ex.invalidate_rkey =
  455. hdr_ctxt->frmr->mr->lkey;
  456. read_wr.next = &inv_wr;
  457. }
  458. }
  459. ctxt->read_hdr = hdr_ctxt;
  460. }
  461. /* Post the read */
  462. err = svc_rdma_send(xprt, &read_wr);
  463. if (err) {
  464. printk(KERN_ERR "svcrdma: Error %d posting RDMA_READ\n",
  465. err);
  466. set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
  467. svc_rdma_unmap_dma(ctxt);
  468. svc_rdma_put_context(ctxt, 0);
  469. goto out;
  470. }
  471. atomic_inc(&rdma_stat_read);
  472. if (read_wr.num_sge < chl_map->ch[ch_no].count) {
  473. chl_map->ch[ch_no].count -= read_wr.num_sge;
  474. chl_map->ch[ch_no].start += read_wr.num_sge;
  475. goto next_sge;
  476. }
  477. sgl_offset = 0;
  478. err = 1;
  479. }
  480. out:
  481. svc_rdma_put_req_map(rpl_map);
  482. svc_rdma_put_req_map(chl_map);
  483. /* Detach arg pages. svc_recv will replenish them */
  484. for (ch_no = 0; &rqstp->rq_pages[ch_no] < rqstp->rq_respages; ch_no++)
  485. rqstp->rq_pages[ch_no] = NULL;
  486. /*
  487. * Detach res pages. svc_release must see a resused count of
  488. * zero or it will attempt to put them.
  489. */
  490. while (rqstp->rq_resused)
  491. rqstp->rq_respages[--rqstp->rq_resused] = NULL;
  492. return err;
  493. }
  494. static int rdma_read_complete(struct svc_rqst *rqstp,
  495. struct svc_rdma_op_ctxt *head)
  496. {
  497. int page_no;
  498. int ret;
  499. BUG_ON(!head);
  500. /* Copy RPC pages */
  501. for (page_no = 0; page_no < head->count; page_no++) {
  502. put_page(rqstp->rq_pages[page_no]);
  503. rqstp->rq_pages[page_no] = head->pages[page_no];
  504. }
  505. /* Point rq_arg.pages past header */
  506. rqstp->rq_arg.pages = &rqstp->rq_pages[head->hdr_count];
  507. rqstp->rq_arg.page_len = head->arg.page_len;
  508. rqstp->rq_arg.page_base = head->arg.page_base;
  509. /* rq_respages starts after the last arg page */
  510. rqstp->rq_respages = &rqstp->rq_arg.pages[page_no];
  511. rqstp->rq_resused = 0;
  512. /* Rebuild rq_arg head and tail. */
  513. rqstp->rq_arg.head[0] = head->arg.head[0];
  514. rqstp->rq_arg.tail[0] = head->arg.tail[0];
  515. rqstp->rq_arg.len = head->arg.len;
  516. rqstp->rq_arg.buflen = head->arg.buflen;
  517. /* Free the context */
  518. svc_rdma_put_context(head, 0);
  519. /* XXX: What should this be? */
  520. rqstp->rq_prot = IPPROTO_MAX;
  521. svc_xprt_copy_addrs(rqstp, rqstp->rq_xprt);
  522. ret = rqstp->rq_arg.head[0].iov_len
  523. + rqstp->rq_arg.page_len
  524. + rqstp->rq_arg.tail[0].iov_len;
  525. dprintk("svcrdma: deferred read ret=%d, rq_arg.len =%d, "
  526. "rq_arg.head[0].iov_base=%p, rq_arg.head[0].iov_len = %zd\n",
  527. ret, rqstp->rq_arg.len, rqstp->rq_arg.head[0].iov_base,
  528. rqstp->rq_arg.head[0].iov_len);
  529. return ret;
  530. }
  531. /*
  532. * Set up the rqstp thread context to point to the RQ buffer. If
  533. * necessary, pull additional data from the client with an RDMA_READ
  534. * request.
  535. */
  536. int svc_rdma_recvfrom(struct svc_rqst *rqstp)
  537. {
  538. struct svc_xprt *xprt = rqstp->rq_xprt;
  539. struct svcxprt_rdma *rdma_xprt =
  540. container_of(xprt, struct svcxprt_rdma, sc_xprt);
  541. struct svc_rdma_op_ctxt *ctxt = NULL;
  542. struct rpcrdma_msg *rmsgp;
  543. int ret = 0;
  544. int len;
  545. dprintk("svcrdma: rqstp=%p\n", rqstp);
  546. spin_lock_bh(&rdma_xprt->sc_rq_dto_lock);
  547. if (!list_empty(&rdma_xprt->sc_read_complete_q)) {
  548. ctxt = list_entry(rdma_xprt->sc_read_complete_q.next,
  549. struct svc_rdma_op_ctxt,
  550. dto_q);
  551. list_del_init(&ctxt->dto_q);
  552. }
  553. if (ctxt) {
  554. spin_unlock_bh(&rdma_xprt->sc_rq_dto_lock);
  555. return rdma_read_complete(rqstp, ctxt);
  556. }
  557. if (!list_empty(&rdma_xprt->sc_rq_dto_q)) {
  558. ctxt = list_entry(rdma_xprt->sc_rq_dto_q.next,
  559. struct svc_rdma_op_ctxt,
  560. dto_q);
  561. list_del_init(&ctxt->dto_q);
  562. } else {
  563. atomic_inc(&rdma_stat_rq_starve);
  564. clear_bit(XPT_DATA, &xprt->xpt_flags);
  565. ctxt = NULL;
  566. }
  567. spin_unlock_bh(&rdma_xprt->sc_rq_dto_lock);
  568. if (!ctxt) {
  569. /* This is the EAGAIN path. The svc_recv routine will
  570. * return -EAGAIN, the nfsd thread will go to call into
  571. * svc_recv again and we shouldn't be on the active
  572. * transport list
  573. */
  574. if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
  575. goto close_out;
  576. BUG_ON(ret);
  577. goto out;
  578. }
  579. dprintk("svcrdma: processing ctxt=%p on xprt=%p, rqstp=%p, status=%d\n",
  580. ctxt, rdma_xprt, rqstp, ctxt->wc_status);
  581. BUG_ON(ctxt->wc_status != IB_WC_SUCCESS);
  582. atomic_inc(&rdma_stat_recv);
  583. /* Build up the XDR from the receive buffers. */
  584. rdma_build_arg_xdr(rqstp, ctxt, ctxt->byte_len);
  585. /* Decode the RDMA header. */
  586. len = svc_rdma_xdr_decode_req(&rmsgp, rqstp);
  587. rqstp->rq_xprt_hlen = len;
  588. /* If the request is invalid, reply with an error */
  589. if (len < 0) {
  590. if (len == -ENOSYS)
  591. svc_rdma_send_error(rdma_xprt, rmsgp, ERR_VERS);
  592. goto close_out;
  593. }
  594. /* Read read-list data. */
  595. ret = rdma_read_xdr(rdma_xprt, rmsgp, rqstp, ctxt);
  596. if (ret > 0) {
  597. /* read-list posted, defer until data received from client. */
  598. goto defer;
  599. }
  600. if (ret < 0) {
  601. /* Post of read-list failed, free context. */
  602. svc_rdma_put_context(ctxt, 1);
  603. return 0;
  604. }
  605. ret = rqstp->rq_arg.head[0].iov_len
  606. + rqstp->rq_arg.page_len
  607. + rqstp->rq_arg.tail[0].iov_len;
  608. svc_rdma_put_context(ctxt, 0);
  609. out:
  610. dprintk("svcrdma: ret = %d, rq_arg.len =%d, "
  611. "rq_arg.head[0].iov_base=%p, rq_arg.head[0].iov_len = %zd\n",
  612. ret, rqstp->rq_arg.len,
  613. rqstp->rq_arg.head[0].iov_base,
  614. rqstp->rq_arg.head[0].iov_len);
  615. rqstp->rq_prot = IPPROTO_MAX;
  616. svc_xprt_copy_addrs(rqstp, xprt);
  617. return ret;
  618. close_out:
  619. if (ctxt)
  620. svc_rdma_put_context(ctxt, 1);
  621. dprintk("svcrdma: transport %p is closing\n", xprt);
  622. /*
  623. * Set the close bit and enqueue it. svc_recv will see the
  624. * close bit and call svc_xprt_delete
  625. */
  626. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  627. defer:
  628. return 0;
  629. }