posix-timers.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078
  1. /*
  2. * linux/kernel/posix-timers.c
  3. *
  4. *
  5. * 2002-10-15 Posix Clocks & timers
  6. * by George Anzinger george@mvista.com
  7. *
  8. * Copyright (C) 2002 2003 by MontaVista Software.
  9. *
  10. * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
  11. * Copyright (C) 2004 Boris Hu
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2 of the License, or (at
  16. * your option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful, but
  19. * WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21. * General Public License for more details.
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. *
  26. * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
  27. */
  28. /* These are all the functions necessary to implement
  29. * POSIX clocks & timers
  30. */
  31. #include <linux/mm.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/slab.h>
  34. #include <linux/time.h>
  35. #include <linux/mutex.h>
  36. #include <asm/uaccess.h>
  37. #include <linux/list.h>
  38. #include <linux/init.h>
  39. #include <linux/compiler.h>
  40. #include <linux/idr.h>
  41. #include <linux/posix-clock.h>
  42. #include <linux/posix-timers.h>
  43. #include <linux/syscalls.h>
  44. #include <linux/wait.h>
  45. #include <linux/workqueue.h>
  46. #include <linux/export.h>
  47. /*
  48. * Management arrays for POSIX timers. Timers are kept in slab memory
  49. * Timer ids are allocated by an external routine that keeps track of the
  50. * id and the timer. The external interface is:
  51. *
  52. * void *idr_find(struct idr *idp, int id); to find timer_id <id>
  53. * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
  54. * related it to <ptr>
  55. * void idr_remove(struct idr *idp, int id); to release <id>
  56. * void idr_init(struct idr *idp); to initialize <idp>
  57. * which we supply.
  58. * The idr_get_new *may* call slab for more memory so it must not be
  59. * called under a spin lock. Likewise idr_remore may release memory
  60. * (but it may be ok to do this under a lock...).
  61. * idr_find is just a memory look up and is quite fast. A -1 return
  62. * indicates that the requested id does not exist.
  63. */
  64. /*
  65. * Lets keep our timers in a slab cache :-)
  66. */
  67. static struct kmem_cache *posix_timers_cache;
  68. static struct idr posix_timers_id;
  69. static DEFINE_SPINLOCK(idr_lock);
  70. /*
  71. * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  72. * SIGEV values. Here we put out an error if this assumption fails.
  73. */
  74. #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  75. ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  76. #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  77. #endif
  78. /*
  79. * parisc wants ENOTSUP instead of EOPNOTSUPP
  80. */
  81. #ifndef ENOTSUP
  82. # define ENANOSLEEP_NOTSUP EOPNOTSUPP
  83. #else
  84. # define ENANOSLEEP_NOTSUP ENOTSUP
  85. #endif
  86. /*
  87. * The timer ID is turned into a timer address by idr_find().
  88. * Verifying a valid ID consists of:
  89. *
  90. * a) checking that idr_find() returns other than -1.
  91. * b) checking that the timer id matches the one in the timer itself.
  92. * c) that the timer owner is in the callers thread group.
  93. */
  94. /*
  95. * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
  96. * to implement others. This structure defines the various
  97. * clocks.
  98. *
  99. * RESOLUTION: Clock resolution is used to round up timer and interval
  100. * times, NOT to report clock times, which are reported with as
  101. * much resolution as the system can muster. In some cases this
  102. * resolution may depend on the underlying clock hardware and
  103. * may not be quantifiable until run time, and only then is the
  104. * necessary code is written. The standard says we should say
  105. * something about this issue in the documentation...
  106. *
  107. * FUNCTIONS: The CLOCKs structure defines possible functions to
  108. * handle various clock functions.
  109. *
  110. * The standard POSIX timer management code assumes the
  111. * following: 1.) The k_itimer struct (sched.h) is used for
  112. * the timer. 2.) The list, it_lock, it_clock, it_id and
  113. * it_pid fields are not modified by timer code.
  114. *
  115. * Permissions: It is assumed that the clock_settime() function defined
  116. * for each clock will take care of permission checks. Some
  117. * clocks may be set able by any user (i.e. local process
  118. * clocks) others not. Currently the only set able clock we
  119. * have is CLOCK_REALTIME and its high res counter part, both of
  120. * which we beg off on and pass to do_sys_settimeofday().
  121. */
  122. static struct k_clock posix_clocks[MAX_CLOCKS];
  123. /*
  124. * These ones are defined below.
  125. */
  126. static int common_nsleep(const clockid_t, int flags, struct timespec *t,
  127. struct timespec __user *rmtp);
  128. static int common_timer_create(struct k_itimer *new_timer);
  129. static void common_timer_get(struct k_itimer *, struct itimerspec *);
  130. static int common_timer_set(struct k_itimer *, int,
  131. struct itimerspec *, struct itimerspec *);
  132. static int common_timer_del(struct k_itimer *timer);
  133. static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
  134. static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
  135. #define lock_timer(tid, flags) \
  136. ({ struct k_itimer *__timr; \
  137. __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
  138. __timr; \
  139. })
  140. static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
  141. {
  142. spin_unlock_irqrestore(&timr->it_lock, flags);
  143. }
  144. /* Get clock_realtime */
  145. static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
  146. {
  147. ktime_get_real_ts(tp);
  148. return 0;
  149. }
  150. /* Set clock_realtime */
  151. static int posix_clock_realtime_set(const clockid_t which_clock,
  152. const struct timespec *tp)
  153. {
  154. return do_sys_settimeofday(tp, NULL);
  155. }
  156. static int posix_clock_realtime_adj(const clockid_t which_clock,
  157. struct timex *t)
  158. {
  159. return do_adjtimex(t);
  160. }
  161. /*
  162. * Get monotonic time for posix timers
  163. */
  164. static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
  165. {
  166. ktime_get_ts(tp);
  167. return 0;
  168. }
  169. /*
  170. * Get monotonic-raw time for posix timers
  171. */
  172. static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
  173. {
  174. getrawmonotonic(tp);
  175. return 0;
  176. }
  177. static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
  178. {
  179. *tp = current_kernel_time();
  180. return 0;
  181. }
  182. static int posix_get_monotonic_coarse(clockid_t which_clock,
  183. struct timespec *tp)
  184. {
  185. *tp = get_monotonic_coarse();
  186. return 0;
  187. }
  188. static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
  189. {
  190. *tp = ktime_to_timespec(KTIME_LOW_RES);
  191. return 0;
  192. }
  193. static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
  194. {
  195. get_monotonic_boottime(tp);
  196. return 0;
  197. }
  198. /*
  199. * Initialize everything, well, just everything in Posix clocks/timers ;)
  200. */
  201. static __init int init_posix_timers(void)
  202. {
  203. struct k_clock clock_realtime = {
  204. .clock_getres = hrtimer_get_res,
  205. .clock_get = posix_clock_realtime_get,
  206. .clock_set = posix_clock_realtime_set,
  207. .clock_adj = posix_clock_realtime_adj,
  208. .nsleep = common_nsleep,
  209. .nsleep_restart = hrtimer_nanosleep_restart,
  210. .timer_create = common_timer_create,
  211. .timer_set = common_timer_set,
  212. .timer_get = common_timer_get,
  213. .timer_del = common_timer_del,
  214. };
  215. struct k_clock clock_monotonic = {
  216. .clock_getres = hrtimer_get_res,
  217. .clock_get = posix_ktime_get_ts,
  218. .nsleep = common_nsleep,
  219. .nsleep_restart = hrtimer_nanosleep_restart,
  220. .timer_create = common_timer_create,
  221. .timer_set = common_timer_set,
  222. .timer_get = common_timer_get,
  223. .timer_del = common_timer_del,
  224. };
  225. struct k_clock clock_monotonic_raw = {
  226. .clock_getres = hrtimer_get_res,
  227. .clock_get = posix_get_monotonic_raw,
  228. };
  229. struct k_clock clock_realtime_coarse = {
  230. .clock_getres = posix_get_coarse_res,
  231. .clock_get = posix_get_realtime_coarse,
  232. };
  233. struct k_clock clock_monotonic_coarse = {
  234. .clock_getres = posix_get_coarse_res,
  235. .clock_get = posix_get_monotonic_coarse,
  236. };
  237. struct k_clock clock_boottime = {
  238. .clock_getres = hrtimer_get_res,
  239. .clock_get = posix_get_boottime,
  240. .nsleep = common_nsleep,
  241. .nsleep_restart = hrtimer_nanosleep_restart,
  242. .timer_create = common_timer_create,
  243. .timer_set = common_timer_set,
  244. .timer_get = common_timer_get,
  245. .timer_del = common_timer_del,
  246. };
  247. posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
  248. posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
  249. posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
  250. posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
  251. posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
  252. posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
  253. posix_timers_cache = kmem_cache_create("posix_timers_cache",
  254. sizeof (struct k_itimer), 0, SLAB_PANIC,
  255. NULL);
  256. idr_init(&posix_timers_id);
  257. return 0;
  258. }
  259. __initcall(init_posix_timers);
  260. static void schedule_next_timer(struct k_itimer *timr)
  261. {
  262. struct hrtimer *timer = &timr->it.real.timer;
  263. if (timr->it.real.interval.tv64 == 0)
  264. return;
  265. timr->it_overrun += (unsigned int) hrtimer_forward(timer,
  266. timer->base->get_time(),
  267. timr->it.real.interval);
  268. timr->it_overrun_last = timr->it_overrun;
  269. timr->it_overrun = -1;
  270. ++timr->it_requeue_pending;
  271. hrtimer_restart(timer);
  272. }
  273. /*
  274. * This function is exported for use by the signal deliver code. It is
  275. * called just prior to the info block being released and passes that
  276. * block to us. It's function is to update the overrun entry AND to
  277. * restart the timer. It should only be called if the timer is to be
  278. * restarted (i.e. we have flagged this in the sys_private entry of the
  279. * info block).
  280. *
  281. * To protect against the timer going away while the interrupt is queued,
  282. * we require that the it_requeue_pending flag be set.
  283. */
  284. void do_schedule_next_timer(struct siginfo *info)
  285. {
  286. struct k_itimer *timr;
  287. unsigned long flags;
  288. timr = lock_timer(info->si_tid, &flags);
  289. if (timr && timr->it_requeue_pending == info->si_sys_private) {
  290. if (timr->it_clock < 0)
  291. posix_cpu_timer_schedule(timr);
  292. else
  293. schedule_next_timer(timr);
  294. info->si_overrun += timr->it_overrun_last;
  295. }
  296. if (timr)
  297. unlock_timer(timr, flags);
  298. }
  299. int posix_timer_event(struct k_itimer *timr, int si_private)
  300. {
  301. struct task_struct *task;
  302. int shared, ret = -1;
  303. /*
  304. * FIXME: if ->sigq is queued we can race with
  305. * dequeue_signal()->do_schedule_next_timer().
  306. *
  307. * If dequeue_signal() sees the "right" value of
  308. * si_sys_private it calls do_schedule_next_timer().
  309. * We re-queue ->sigq and drop ->it_lock().
  310. * do_schedule_next_timer() locks the timer
  311. * and re-schedules it while ->sigq is pending.
  312. * Not really bad, but not that we want.
  313. */
  314. timr->sigq->info.si_sys_private = si_private;
  315. rcu_read_lock();
  316. task = pid_task(timr->it_pid, PIDTYPE_PID);
  317. if (task) {
  318. shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
  319. ret = send_sigqueue(timr->sigq, task, shared);
  320. }
  321. rcu_read_unlock();
  322. /* If we failed to send the signal the timer stops. */
  323. return ret > 0;
  324. }
  325. EXPORT_SYMBOL_GPL(posix_timer_event);
  326. /*
  327. * This function gets called when a POSIX.1b interval timer expires. It
  328. * is used as a callback from the kernel internal timer. The
  329. * run_timer_list code ALWAYS calls with interrupts on.
  330. * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
  331. */
  332. static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
  333. {
  334. struct k_itimer *timr;
  335. unsigned long flags;
  336. int si_private = 0;
  337. enum hrtimer_restart ret = HRTIMER_NORESTART;
  338. timr = container_of(timer, struct k_itimer, it.real.timer);
  339. spin_lock_irqsave(&timr->it_lock, flags);
  340. if (timr->it.real.interval.tv64 != 0)
  341. si_private = ++timr->it_requeue_pending;
  342. if (posix_timer_event(timr, si_private)) {
  343. /*
  344. * signal was not sent because of sig_ignor
  345. * we will not get a call back to restart it AND
  346. * it should be restarted.
  347. */
  348. if (timr->it.real.interval.tv64 != 0) {
  349. ktime_t now = hrtimer_cb_get_time(timer);
  350. /*
  351. * FIXME: What we really want, is to stop this
  352. * timer completely and restart it in case the
  353. * SIG_IGN is removed. This is a non trivial
  354. * change which involves sighand locking
  355. * (sigh !), which we don't want to do late in
  356. * the release cycle.
  357. *
  358. * For now we just let timers with an interval
  359. * less than a jiffie expire every jiffie to
  360. * avoid softirq starvation in case of SIG_IGN
  361. * and a very small interval, which would put
  362. * the timer right back on the softirq pending
  363. * list. By moving now ahead of time we trick
  364. * hrtimer_forward() to expire the timer
  365. * later, while we still maintain the overrun
  366. * accuracy, but have some inconsistency in
  367. * the timer_gettime() case. This is at least
  368. * better than a starved softirq. A more
  369. * complex fix which solves also another related
  370. * inconsistency is already in the pipeline.
  371. */
  372. #ifdef CONFIG_HIGH_RES_TIMERS
  373. {
  374. ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
  375. if (timr->it.real.interval.tv64 < kj.tv64)
  376. now = ktime_add(now, kj);
  377. }
  378. #endif
  379. timr->it_overrun += (unsigned int)
  380. hrtimer_forward(timer, now,
  381. timr->it.real.interval);
  382. ret = HRTIMER_RESTART;
  383. ++timr->it_requeue_pending;
  384. }
  385. }
  386. unlock_timer(timr, flags);
  387. return ret;
  388. }
  389. static struct pid *good_sigevent(sigevent_t * event)
  390. {
  391. struct task_struct *rtn = current->group_leader;
  392. if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
  393. (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
  394. !same_thread_group(rtn, current) ||
  395. (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
  396. return NULL;
  397. if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
  398. ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
  399. return NULL;
  400. return task_pid(rtn);
  401. }
  402. void posix_timers_register_clock(const clockid_t clock_id,
  403. struct k_clock *new_clock)
  404. {
  405. if ((unsigned) clock_id >= MAX_CLOCKS) {
  406. printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
  407. clock_id);
  408. return;
  409. }
  410. if (!new_clock->clock_get) {
  411. printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
  412. clock_id);
  413. return;
  414. }
  415. if (!new_clock->clock_getres) {
  416. printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
  417. clock_id);
  418. return;
  419. }
  420. posix_clocks[clock_id] = *new_clock;
  421. }
  422. EXPORT_SYMBOL_GPL(posix_timers_register_clock);
  423. static struct k_itimer * alloc_posix_timer(void)
  424. {
  425. struct k_itimer *tmr;
  426. tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
  427. if (!tmr)
  428. return tmr;
  429. if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
  430. kmem_cache_free(posix_timers_cache, tmr);
  431. return NULL;
  432. }
  433. memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
  434. return tmr;
  435. }
  436. static void k_itimer_rcu_free(struct rcu_head *head)
  437. {
  438. struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
  439. kmem_cache_free(posix_timers_cache, tmr);
  440. }
  441. #define IT_ID_SET 1
  442. #define IT_ID_NOT_SET 0
  443. static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
  444. {
  445. if (it_id_set) {
  446. unsigned long flags;
  447. spin_lock_irqsave(&idr_lock, flags);
  448. idr_remove(&posix_timers_id, tmr->it_id);
  449. spin_unlock_irqrestore(&idr_lock, flags);
  450. }
  451. put_pid(tmr->it_pid);
  452. sigqueue_free(tmr->sigq);
  453. call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
  454. }
  455. static struct k_clock *clockid_to_kclock(const clockid_t id)
  456. {
  457. if (id < 0)
  458. return (id & CLOCKFD_MASK) == CLOCKFD ?
  459. &clock_posix_dynamic : &clock_posix_cpu;
  460. if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
  461. return NULL;
  462. return &posix_clocks[id];
  463. }
  464. static int common_timer_create(struct k_itimer *new_timer)
  465. {
  466. hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
  467. return 0;
  468. }
  469. /* Create a POSIX.1b interval timer. */
  470. SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
  471. struct sigevent __user *, timer_event_spec,
  472. timer_t __user *, created_timer_id)
  473. {
  474. struct k_clock *kc = clockid_to_kclock(which_clock);
  475. struct k_itimer *new_timer;
  476. int error, new_timer_id;
  477. sigevent_t event;
  478. int it_id_set = IT_ID_NOT_SET;
  479. if (!kc)
  480. return -EINVAL;
  481. if (!kc->timer_create)
  482. return -EOPNOTSUPP;
  483. new_timer = alloc_posix_timer();
  484. if (unlikely(!new_timer))
  485. return -EAGAIN;
  486. spin_lock_init(&new_timer->it_lock);
  487. retry:
  488. if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
  489. error = -EAGAIN;
  490. goto out;
  491. }
  492. spin_lock_irq(&idr_lock);
  493. error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
  494. spin_unlock_irq(&idr_lock);
  495. if (error) {
  496. if (error == -EAGAIN)
  497. goto retry;
  498. /*
  499. * Weird looking, but we return EAGAIN if the IDR is
  500. * full (proper POSIX return value for this)
  501. */
  502. error = -EAGAIN;
  503. goto out;
  504. }
  505. it_id_set = IT_ID_SET;
  506. new_timer->it_id = (timer_t) new_timer_id;
  507. new_timer->it_clock = which_clock;
  508. new_timer->it_overrun = -1;
  509. if (timer_event_spec) {
  510. if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
  511. error = -EFAULT;
  512. goto out;
  513. }
  514. rcu_read_lock();
  515. new_timer->it_pid = get_pid(good_sigevent(&event));
  516. rcu_read_unlock();
  517. if (!new_timer->it_pid) {
  518. error = -EINVAL;
  519. goto out;
  520. }
  521. } else {
  522. memset(&event.sigev_value, 0, sizeof(event.sigev_value));
  523. event.sigev_notify = SIGEV_SIGNAL;
  524. event.sigev_signo = SIGALRM;
  525. event.sigev_value.sival_int = new_timer->it_id;
  526. new_timer->it_pid = get_pid(task_tgid(current));
  527. }
  528. new_timer->it_sigev_notify = event.sigev_notify;
  529. new_timer->sigq->info.si_signo = event.sigev_signo;
  530. new_timer->sigq->info.si_value = event.sigev_value;
  531. new_timer->sigq->info.si_tid = new_timer->it_id;
  532. new_timer->sigq->info.si_code = SI_TIMER;
  533. if (copy_to_user(created_timer_id,
  534. &new_timer_id, sizeof (new_timer_id))) {
  535. error = -EFAULT;
  536. goto out;
  537. }
  538. error = kc->timer_create(new_timer);
  539. if (error)
  540. goto out;
  541. spin_lock_irq(&current->sighand->siglock);
  542. new_timer->it_signal = current->signal;
  543. list_add(&new_timer->list, &current->signal->posix_timers);
  544. spin_unlock_irq(&current->sighand->siglock);
  545. return 0;
  546. /*
  547. * In the case of the timer belonging to another task, after
  548. * the task is unlocked, the timer is owned by the other task
  549. * and may cease to exist at any time. Don't use or modify
  550. * new_timer after the unlock call.
  551. */
  552. out:
  553. release_posix_timer(new_timer, it_id_set);
  554. return error;
  555. }
  556. /*
  557. * Locking issues: We need to protect the result of the id look up until
  558. * we get the timer locked down so it is not deleted under us. The
  559. * removal is done under the idr spinlock so we use that here to bridge
  560. * the find to the timer lock. To avoid a dead lock, the timer id MUST
  561. * be release with out holding the timer lock.
  562. */
  563. static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
  564. {
  565. struct k_itimer *timr;
  566. /*
  567. * timer_t could be any type >= int and we want to make sure any
  568. * @timer_id outside positive int range fails lookup.
  569. */
  570. if ((unsigned long long)timer_id > INT_MAX)
  571. return NULL;
  572. rcu_read_lock();
  573. timr = idr_find(&posix_timers_id, (int)timer_id);
  574. if (timr) {
  575. spin_lock_irqsave(&timr->it_lock, *flags);
  576. if (timr->it_signal == current->signal) {
  577. rcu_read_unlock();
  578. return timr;
  579. }
  580. spin_unlock_irqrestore(&timr->it_lock, *flags);
  581. }
  582. rcu_read_unlock();
  583. return NULL;
  584. }
  585. /*
  586. * Get the time remaining on a POSIX.1b interval timer. This function
  587. * is ALWAYS called with spin_lock_irq on the timer, thus it must not
  588. * mess with irq.
  589. *
  590. * We have a couple of messes to clean up here. First there is the case
  591. * of a timer that has a requeue pending. These timers should appear to
  592. * be in the timer list with an expiry as if we were to requeue them
  593. * now.
  594. *
  595. * The second issue is the SIGEV_NONE timer which may be active but is
  596. * not really ever put in the timer list (to save system resources).
  597. * This timer may be expired, and if so, we will do it here. Otherwise
  598. * it is the same as a requeue pending timer WRT to what we should
  599. * report.
  600. */
  601. static void
  602. common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
  603. {
  604. ktime_t now, remaining, iv;
  605. struct hrtimer *timer = &timr->it.real.timer;
  606. memset(cur_setting, 0, sizeof(struct itimerspec));
  607. iv = timr->it.real.interval;
  608. /* interval timer ? */
  609. if (iv.tv64)
  610. cur_setting->it_interval = ktime_to_timespec(iv);
  611. else if (!hrtimer_active(timer) &&
  612. (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
  613. return;
  614. now = timer->base->get_time();
  615. /*
  616. * When a requeue is pending or this is a SIGEV_NONE
  617. * timer move the expiry time forward by intervals, so
  618. * expiry is > now.
  619. */
  620. if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
  621. (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
  622. timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
  623. remaining = ktime_sub(hrtimer_get_expires(timer), now);
  624. /* Return 0 only, when the timer is expired and not pending */
  625. if (remaining.tv64 <= 0) {
  626. /*
  627. * A single shot SIGEV_NONE timer must return 0, when
  628. * it is expired !
  629. */
  630. if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
  631. cur_setting->it_value.tv_nsec = 1;
  632. } else
  633. cur_setting->it_value = ktime_to_timespec(remaining);
  634. }
  635. /* Get the time remaining on a POSIX.1b interval timer. */
  636. SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
  637. struct itimerspec __user *, setting)
  638. {
  639. struct itimerspec cur_setting;
  640. struct k_itimer *timr;
  641. struct k_clock *kc;
  642. unsigned long flags;
  643. int ret = 0;
  644. timr = lock_timer(timer_id, &flags);
  645. if (!timr)
  646. return -EINVAL;
  647. kc = clockid_to_kclock(timr->it_clock);
  648. if (WARN_ON_ONCE(!kc || !kc->timer_get))
  649. ret = -EINVAL;
  650. else
  651. kc->timer_get(timr, &cur_setting);
  652. unlock_timer(timr, flags);
  653. if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
  654. return -EFAULT;
  655. return ret;
  656. }
  657. /*
  658. * Get the number of overruns of a POSIX.1b interval timer. This is to
  659. * be the overrun of the timer last delivered. At the same time we are
  660. * accumulating overruns on the next timer. The overrun is frozen when
  661. * the signal is delivered, either at the notify time (if the info block
  662. * is not queued) or at the actual delivery time (as we are informed by
  663. * the call back to do_schedule_next_timer(). So all we need to do is
  664. * to pick up the frozen overrun.
  665. */
  666. SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
  667. {
  668. struct k_itimer *timr;
  669. int overrun;
  670. unsigned long flags;
  671. timr = lock_timer(timer_id, &flags);
  672. if (!timr)
  673. return -EINVAL;
  674. overrun = timr->it_overrun_last;
  675. unlock_timer(timr, flags);
  676. return overrun;
  677. }
  678. /* Set a POSIX.1b interval timer. */
  679. /* timr->it_lock is taken. */
  680. static int
  681. common_timer_set(struct k_itimer *timr, int flags,
  682. struct itimerspec *new_setting, struct itimerspec *old_setting)
  683. {
  684. struct hrtimer *timer = &timr->it.real.timer;
  685. enum hrtimer_mode mode;
  686. if (old_setting)
  687. common_timer_get(timr, old_setting);
  688. /* disable the timer */
  689. timr->it.real.interval.tv64 = 0;
  690. /*
  691. * careful here. If smp we could be in the "fire" routine which will
  692. * be spinning as we hold the lock. But this is ONLY an SMP issue.
  693. */
  694. if (hrtimer_try_to_cancel(timer) < 0)
  695. return TIMER_RETRY;
  696. timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
  697. ~REQUEUE_PENDING;
  698. timr->it_overrun_last = 0;
  699. /* switch off the timer when it_value is zero */
  700. if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
  701. return 0;
  702. mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
  703. hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
  704. timr->it.real.timer.function = posix_timer_fn;
  705. hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
  706. /* Convert interval */
  707. timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
  708. /* SIGEV_NONE timers are not queued ! See common_timer_get */
  709. if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
  710. /* Setup correct expiry time for relative timers */
  711. if (mode == HRTIMER_MODE_REL) {
  712. hrtimer_add_expires(timer, timer->base->get_time());
  713. }
  714. return 0;
  715. }
  716. hrtimer_start_expires(timer, mode);
  717. return 0;
  718. }
  719. /* Set a POSIX.1b interval timer */
  720. SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
  721. const struct itimerspec __user *, new_setting,
  722. struct itimerspec __user *, old_setting)
  723. {
  724. struct k_itimer *timr;
  725. struct itimerspec new_spec, old_spec;
  726. int error = 0;
  727. unsigned long flag;
  728. struct itimerspec *rtn = old_setting ? &old_spec : NULL;
  729. struct k_clock *kc;
  730. if (!new_setting)
  731. return -EINVAL;
  732. if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
  733. return -EFAULT;
  734. if (!timespec_valid(&new_spec.it_interval) ||
  735. !timespec_valid(&new_spec.it_value))
  736. return -EINVAL;
  737. retry:
  738. timr = lock_timer(timer_id, &flag);
  739. if (!timr)
  740. return -EINVAL;
  741. kc = clockid_to_kclock(timr->it_clock);
  742. if (WARN_ON_ONCE(!kc || !kc->timer_set))
  743. error = -EINVAL;
  744. else
  745. error = kc->timer_set(timr, flags, &new_spec, rtn);
  746. unlock_timer(timr, flag);
  747. if (error == TIMER_RETRY) {
  748. rtn = NULL; // We already got the old time...
  749. goto retry;
  750. }
  751. if (old_setting && !error &&
  752. copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
  753. error = -EFAULT;
  754. return error;
  755. }
  756. static int common_timer_del(struct k_itimer *timer)
  757. {
  758. timer->it.real.interval.tv64 = 0;
  759. if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
  760. return TIMER_RETRY;
  761. return 0;
  762. }
  763. static inline int timer_delete_hook(struct k_itimer *timer)
  764. {
  765. struct k_clock *kc = clockid_to_kclock(timer->it_clock);
  766. if (WARN_ON_ONCE(!kc || !kc->timer_del))
  767. return -EINVAL;
  768. return kc->timer_del(timer);
  769. }
  770. /* Delete a POSIX.1b interval timer. */
  771. SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
  772. {
  773. struct k_itimer *timer;
  774. unsigned long flags;
  775. retry_delete:
  776. timer = lock_timer(timer_id, &flags);
  777. if (!timer)
  778. return -EINVAL;
  779. if (timer_delete_hook(timer) == TIMER_RETRY) {
  780. unlock_timer(timer, flags);
  781. goto retry_delete;
  782. }
  783. spin_lock(&current->sighand->siglock);
  784. list_del(&timer->list);
  785. spin_unlock(&current->sighand->siglock);
  786. /*
  787. * This keeps any tasks waiting on the spin lock from thinking
  788. * they got something (see the lock code above).
  789. */
  790. timer->it_signal = NULL;
  791. unlock_timer(timer, flags);
  792. release_posix_timer(timer, IT_ID_SET);
  793. return 0;
  794. }
  795. /*
  796. * return timer owned by the process, used by exit_itimers
  797. */
  798. static void itimer_delete(struct k_itimer *timer)
  799. {
  800. unsigned long flags;
  801. retry_delete:
  802. spin_lock_irqsave(&timer->it_lock, flags);
  803. if (timer_delete_hook(timer) == TIMER_RETRY) {
  804. unlock_timer(timer, flags);
  805. goto retry_delete;
  806. }
  807. list_del(&timer->list);
  808. /*
  809. * This keeps any tasks waiting on the spin lock from thinking
  810. * they got something (see the lock code above).
  811. */
  812. timer->it_signal = NULL;
  813. unlock_timer(timer, flags);
  814. release_posix_timer(timer, IT_ID_SET);
  815. }
  816. /*
  817. * This is called by do_exit or de_thread, only when there are no more
  818. * references to the shared signal_struct.
  819. */
  820. void exit_itimers(struct signal_struct *sig)
  821. {
  822. struct k_itimer *tmr;
  823. while (!list_empty(&sig->posix_timers)) {
  824. tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
  825. itimer_delete(tmr);
  826. }
  827. }
  828. SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
  829. const struct timespec __user *, tp)
  830. {
  831. struct k_clock *kc = clockid_to_kclock(which_clock);
  832. struct timespec new_tp;
  833. if (!kc || !kc->clock_set)
  834. return -EINVAL;
  835. if (copy_from_user(&new_tp, tp, sizeof (*tp)))
  836. return -EFAULT;
  837. return kc->clock_set(which_clock, &new_tp);
  838. }
  839. SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
  840. struct timespec __user *,tp)
  841. {
  842. struct k_clock *kc = clockid_to_kclock(which_clock);
  843. struct timespec kernel_tp;
  844. int error;
  845. if (!kc)
  846. return -EINVAL;
  847. error = kc->clock_get(which_clock, &kernel_tp);
  848. if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
  849. error = -EFAULT;
  850. return error;
  851. }
  852. SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
  853. struct timex __user *, utx)
  854. {
  855. struct k_clock *kc = clockid_to_kclock(which_clock);
  856. struct timex ktx;
  857. int err;
  858. if (!kc)
  859. return -EINVAL;
  860. if (!kc->clock_adj)
  861. return -EOPNOTSUPP;
  862. if (copy_from_user(&ktx, utx, sizeof(ktx)))
  863. return -EFAULT;
  864. err = kc->clock_adj(which_clock, &ktx);
  865. if (!err && copy_to_user(utx, &ktx, sizeof(ktx)))
  866. return -EFAULT;
  867. return err;
  868. }
  869. SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
  870. struct timespec __user *, tp)
  871. {
  872. struct k_clock *kc = clockid_to_kclock(which_clock);
  873. struct timespec rtn_tp;
  874. int error;
  875. if (!kc)
  876. return -EINVAL;
  877. error = kc->clock_getres(which_clock, &rtn_tp);
  878. if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
  879. error = -EFAULT;
  880. return error;
  881. }
  882. /*
  883. * nanosleep for monotonic and realtime clocks
  884. */
  885. static int common_nsleep(const clockid_t which_clock, int flags,
  886. struct timespec *tsave, struct timespec __user *rmtp)
  887. {
  888. return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
  889. HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
  890. which_clock);
  891. }
  892. SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
  893. const struct timespec __user *, rqtp,
  894. struct timespec __user *, rmtp)
  895. {
  896. struct k_clock *kc = clockid_to_kclock(which_clock);
  897. struct timespec t;
  898. if (!kc)
  899. return -EINVAL;
  900. if (!kc->nsleep)
  901. return -ENANOSLEEP_NOTSUP;
  902. if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
  903. return -EFAULT;
  904. if (!timespec_valid(&t))
  905. return -EINVAL;
  906. return kc->nsleep(which_clock, flags, &t, rmtp);
  907. }
  908. /*
  909. * This will restart clock_nanosleep. This is required only by
  910. * compat_clock_nanosleep_restart for now.
  911. */
  912. long clock_nanosleep_restart(struct restart_block *restart_block)
  913. {
  914. clockid_t which_clock = restart_block->nanosleep.clockid;
  915. struct k_clock *kc = clockid_to_kclock(which_clock);
  916. if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
  917. return -EINVAL;
  918. return kc->nsleep_restart(restart_block);
  919. }