ring_buffer.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407
  1. /*
  2. * Performance events ring-buffer code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/perf_event.h>
  12. #include <linux/vmalloc.h>
  13. #include <linux/slab.h>
  14. #include "internal.h"
  15. static bool perf_output_space(struct ring_buffer *rb, unsigned long tail,
  16. unsigned long offset, unsigned long head)
  17. {
  18. unsigned long mask;
  19. if (!rb->writable)
  20. return true;
  21. mask = perf_data_size(rb) - 1;
  22. offset = (offset - tail) & mask;
  23. head = (head - tail) & mask;
  24. if ((int)(head - offset) < 0)
  25. return false;
  26. return true;
  27. }
  28. static void perf_output_wakeup(struct perf_output_handle *handle)
  29. {
  30. atomic_set(&handle->rb->poll, POLL_IN);
  31. handle->event->pending_wakeup = 1;
  32. irq_work_queue(&handle->event->pending);
  33. }
  34. /*
  35. * We need to ensure a later event_id doesn't publish a head when a former
  36. * event isn't done writing. However since we need to deal with NMIs we
  37. * cannot fully serialize things.
  38. *
  39. * We only publish the head (and generate a wakeup) when the outer-most
  40. * event completes.
  41. */
  42. static void perf_output_get_handle(struct perf_output_handle *handle)
  43. {
  44. struct ring_buffer *rb = handle->rb;
  45. preempt_disable();
  46. local_inc(&rb->nest);
  47. handle->wakeup = local_read(&rb->wakeup);
  48. }
  49. static void perf_output_put_handle(struct perf_output_handle *handle)
  50. {
  51. struct ring_buffer *rb = handle->rb;
  52. unsigned long head;
  53. again:
  54. head = local_read(&rb->head);
  55. /*
  56. * IRQ/NMI can happen here, which means we can miss a head update.
  57. */
  58. if (!local_dec_and_test(&rb->nest))
  59. goto out;
  60. /*
  61. * Since the mmap() consumer (userspace) can run on a different CPU:
  62. *
  63. * kernel user
  64. *
  65. * READ ->data_tail READ ->data_head
  66. * smp_mb() (A) smp_rmb() (C)
  67. * WRITE $data READ $data
  68. * smp_wmb() (B) smp_mb() (D)
  69. * STORE ->data_head WRITE ->data_tail
  70. *
  71. * Where A pairs with D, and B pairs with C.
  72. *
  73. * I don't think A needs to be a full barrier because we won't in fact
  74. * write data until we see the store from userspace. So we simply don't
  75. * issue the data WRITE until we observe it. Be conservative for now.
  76. *
  77. * OTOH, D needs to be a full barrier since it separates the data READ
  78. * from the tail WRITE.
  79. *
  80. * For B a WMB is sufficient since it separates two WRITEs, and for C
  81. * an RMB is sufficient since it separates two READs.
  82. *
  83. * See perf_output_begin().
  84. */
  85. smp_wmb();
  86. rb->user_page->data_head = head;
  87. /*
  88. * Now check if we missed an update, rely on the (compiler)
  89. * barrier in atomic_dec_and_test() to re-read rb->head.
  90. */
  91. if (unlikely(head != local_read(&rb->head))) {
  92. local_inc(&rb->nest);
  93. goto again;
  94. }
  95. if (handle->wakeup != local_read(&rb->wakeup))
  96. perf_output_wakeup(handle);
  97. out:
  98. preempt_enable();
  99. }
  100. int perf_output_begin(struct perf_output_handle *handle,
  101. struct perf_event *event, unsigned int size)
  102. {
  103. struct ring_buffer *rb;
  104. unsigned long tail, offset, head;
  105. int have_lost;
  106. struct perf_sample_data sample_data;
  107. struct {
  108. struct perf_event_header header;
  109. u64 id;
  110. u64 lost;
  111. } lost_event;
  112. rcu_read_lock();
  113. /*
  114. * For inherited events we send all the output towards the parent.
  115. */
  116. if (event->parent)
  117. event = event->parent;
  118. rb = rcu_dereference(event->rb);
  119. if (!rb)
  120. goto out;
  121. handle->rb = rb;
  122. handle->event = event;
  123. if (!rb->nr_pages)
  124. goto out;
  125. have_lost = local_read(&rb->lost);
  126. if (have_lost) {
  127. lost_event.header.size = sizeof(lost_event);
  128. perf_event_header__init_id(&lost_event.header, &sample_data,
  129. event);
  130. size += lost_event.header.size;
  131. }
  132. perf_output_get_handle(handle);
  133. do {
  134. /*
  135. * Userspace could choose to issue a mb() before updating the
  136. * tail pointer. So that all reads will be completed before the
  137. * write is issued.
  138. *
  139. * See perf_output_put_handle().
  140. */
  141. tail = ACCESS_ONCE(rb->user_page->data_tail);
  142. smp_mb();
  143. offset = head = local_read(&rb->head);
  144. head += size;
  145. if (unlikely(!perf_output_space(rb, tail, offset, head)))
  146. goto fail;
  147. } while (local_cmpxchg(&rb->head, offset, head) != offset);
  148. if (head - local_read(&rb->wakeup) > rb->watermark)
  149. local_add(rb->watermark, &rb->wakeup);
  150. handle->page = offset >> (PAGE_SHIFT + page_order(rb));
  151. handle->page &= rb->nr_pages - 1;
  152. handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
  153. handle->addr = rb->data_pages[handle->page];
  154. handle->addr += handle->size;
  155. handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;
  156. if (have_lost) {
  157. lost_event.header.type = PERF_RECORD_LOST;
  158. lost_event.header.misc = 0;
  159. lost_event.id = event->id;
  160. lost_event.lost = local_xchg(&rb->lost, 0);
  161. perf_output_put(handle, lost_event);
  162. perf_event__output_id_sample(event, handle, &sample_data);
  163. }
  164. return 0;
  165. fail:
  166. local_inc(&rb->lost);
  167. perf_output_put_handle(handle);
  168. out:
  169. rcu_read_unlock();
  170. return -ENOSPC;
  171. }
  172. void perf_output_copy(struct perf_output_handle *handle,
  173. const void *buf, unsigned int len)
  174. {
  175. __output_copy(handle, buf, len);
  176. }
  177. void perf_output_end(struct perf_output_handle *handle)
  178. {
  179. perf_output_put_handle(handle);
  180. rcu_read_unlock();
  181. }
  182. static void
  183. ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
  184. {
  185. long max_size = perf_data_size(rb);
  186. if (watermark)
  187. rb->watermark = min(max_size, watermark);
  188. if (!rb->watermark)
  189. rb->watermark = max_size / 2;
  190. if (flags & RING_BUFFER_WRITABLE)
  191. rb->writable = 1;
  192. atomic_set(&rb->refcount, 1);
  193. INIT_LIST_HEAD(&rb->event_list);
  194. spin_lock_init(&rb->event_lock);
  195. }
  196. #ifndef CONFIG_PERF_USE_VMALLOC
  197. /*
  198. * Back perf_mmap() with regular GFP_KERNEL-0 pages.
  199. */
  200. struct page *
  201. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  202. {
  203. if (pgoff > rb->nr_pages)
  204. return NULL;
  205. if (pgoff == 0)
  206. return virt_to_page(rb->user_page);
  207. return virt_to_page(rb->data_pages[pgoff - 1]);
  208. }
  209. static void *perf_mmap_alloc_page(int cpu)
  210. {
  211. struct page *page;
  212. int node;
  213. node = (cpu == -1) ? cpu : cpu_to_node(cpu);
  214. page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
  215. if (!page)
  216. return NULL;
  217. return page_address(page);
  218. }
  219. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  220. {
  221. struct ring_buffer *rb;
  222. unsigned long size;
  223. int i;
  224. size = sizeof(struct ring_buffer);
  225. size += nr_pages * sizeof(void *);
  226. rb = kzalloc(size, GFP_KERNEL);
  227. if (!rb)
  228. goto fail;
  229. rb->user_page = perf_mmap_alloc_page(cpu);
  230. if (!rb->user_page)
  231. goto fail_user_page;
  232. for (i = 0; i < nr_pages; i++) {
  233. rb->data_pages[i] = perf_mmap_alloc_page(cpu);
  234. if (!rb->data_pages[i])
  235. goto fail_data_pages;
  236. }
  237. rb->nr_pages = nr_pages;
  238. ring_buffer_init(rb, watermark, flags);
  239. return rb;
  240. fail_data_pages:
  241. for (i--; i >= 0; i--)
  242. free_page((unsigned long)rb->data_pages[i]);
  243. free_page((unsigned long)rb->user_page);
  244. fail_user_page:
  245. kfree(rb);
  246. fail:
  247. return NULL;
  248. }
  249. static void perf_mmap_free_page(unsigned long addr)
  250. {
  251. struct page *page = virt_to_page((void *)addr);
  252. page->mapping = NULL;
  253. __free_page(page);
  254. }
  255. void rb_free(struct ring_buffer *rb)
  256. {
  257. int i;
  258. perf_mmap_free_page((unsigned long)rb->user_page);
  259. for (i = 0; i < rb->nr_pages; i++)
  260. perf_mmap_free_page((unsigned long)rb->data_pages[i]);
  261. kfree(rb);
  262. }
  263. #else
  264. struct page *
  265. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  266. {
  267. if (pgoff > (1UL << page_order(rb)))
  268. return NULL;
  269. return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
  270. }
  271. static void perf_mmap_unmark_page(void *addr)
  272. {
  273. struct page *page = vmalloc_to_page(addr);
  274. page->mapping = NULL;
  275. }
  276. static void rb_free_work(struct work_struct *work)
  277. {
  278. struct ring_buffer *rb;
  279. void *base;
  280. int i, nr;
  281. rb = container_of(work, struct ring_buffer, work);
  282. nr = 1 << page_order(rb);
  283. base = rb->user_page;
  284. for (i = 0; i < nr + 1; i++)
  285. perf_mmap_unmark_page(base + (i * PAGE_SIZE));
  286. vfree(base);
  287. kfree(rb);
  288. }
  289. void rb_free(struct ring_buffer *rb)
  290. {
  291. schedule_work(&rb->work);
  292. }
  293. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  294. {
  295. struct ring_buffer *rb;
  296. unsigned long size;
  297. void *all_buf;
  298. size = sizeof(struct ring_buffer);
  299. size += sizeof(void *);
  300. rb = kzalloc(size, GFP_KERNEL);
  301. if (!rb)
  302. goto fail;
  303. INIT_WORK(&rb->work, rb_free_work);
  304. all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
  305. if (!all_buf)
  306. goto fail_all_buf;
  307. rb->user_page = all_buf;
  308. rb->data_pages[0] = all_buf + PAGE_SIZE;
  309. rb->page_order = ilog2(nr_pages);
  310. rb->nr_pages = 1;
  311. ring_buffer_init(rb, watermark, flags);
  312. return rb;
  313. fail_all_buf:
  314. kfree(rb);
  315. fail:
  316. return NULL;
  317. }
  318. #endif