tsc.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033
  1. #include <linux/kernel.h>
  2. #include <linux/sched.h>
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/timer.h>
  6. #include <linux/acpi_pmtmr.h>
  7. #include <linux/cpufreq.h>
  8. #include <linux/delay.h>
  9. #include <linux/clocksource.h>
  10. #include <linux/percpu.h>
  11. #include <linux/timex.h>
  12. #include <asm/hpet.h>
  13. #include <asm/timer.h>
  14. #include <asm/vgtod.h>
  15. #include <asm/time.h>
  16. #include <asm/delay.h>
  17. #include <asm/hypervisor.h>
  18. #include <asm/nmi.h>
  19. #include <asm/x86_init.h>
  20. #include <asm/geode.h>
  21. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  22. EXPORT_SYMBOL(cpu_khz);
  23. unsigned int __read_mostly tsc_khz;
  24. EXPORT_SYMBOL(tsc_khz);
  25. /*
  26. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  27. */
  28. static int __read_mostly tsc_unstable;
  29. /* native_sched_clock() is called before tsc_init(), so
  30. we must start with the TSC soft disabled to prevent
  31. erroneous rdtsc usage on !cpu_has_tsc processors */
  32. static int __read_mostly tsc_disabled = -1;
  33. int tsc_clocksource_reliable;
  34. /*
  35. * Scheduler clock - returns current time in nanosec units.
  36. */
  37. u64 native_sched_clock(void)
  38. {
  39. u64 this_offset;
  40. /*
  41. * Fall back to jiffies if there's no TSC available:
  42. * ( But note that we still use it if the TSC is marked
  43. * unstable. We do this because unlike Time Of Day,
  44. * the scheduler clock tolerates small errors and it's
  45. * very important for it to be as fast as the platform
  46. * can achieve it. )
  47. */
  48. if (unlikely(tsc_disabled)) {
  49. /* No locking but a rare wrong value is not a big deal: */
  50. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  51. }
  52. /* read the Time Stamp Counter: */
  53. rdtscll(this_offset);
  54. /* return the value in ns */
  55. return __cycles_2_ns(this_offset);
  56. }
  57. /* We need to define a real function for sched_clock, to override the
  58. weak default version */
  59. #ifdef CONFIG_PARAVIRT
  60. unsigned long long sched_clock(void)
  61. {
  62. return paravirt_sched_clock();
  63. }
  64. #else
  65. unsigned long long
  66. sched_clock(void) __attribute__((alias("native_sched_clock")));
  67. #endif
  68. int check_tsc_unstable(void)
  69. {
  70. return tsc_unstable;
  71. }
  72. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  73. #ifdef CONFIG_X86_TSC
  74. int __init notsc_setup(char *str)
  75. {
  76. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  77. "cannot disable TSC completely.\n");
  78. tsc_disabled = 1;
  79. return 1;
  80. }
  81. #else
  82. /*
  83. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  84. * in cpu/common.c
  85. */
  86. int __init notsc_setup(char *str)
  87. {
  88. setup_clear_cpu_cap(X86_FEATURE_TSC);
  89. return 1;
  90. }
  91. #endif
  92. __setup("notsc", notsc_setup);
  93. static int no_sched_irq_time;
  94. static int __init tsc_setup(char *str)
  95. {
  96. if (!strcmp(str, "reliable"))
  97. tsc_clocksource_reliable = 1;
  98. if (!strncmp(str, "noirqtime", 9))
  99. no_sched_irq_time = 1;
  100. return 1;
  101. }
  102. __setup("tsc=", tsc_setup);
  103. #define MAX_RETRIES 5
  104. #define SMI_TRESHOLD 50000
  105. /*
  106. * Read TSC and the reference counters. Take care of SMI disturbance
  107. */
  108. static u64 tsc_read_refs(u64 *p, int hpet)
  109. {
  110. u64 t1, t2;
  111. int i;
  112. for (i = 0; i < MAX_RETRIES; i++) {
  113. t1 = get_cycles();
  114. if (hpet)
  115. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  116. else
  117. *p = acpi_pm_read_early();
  118. t2 = get_cycles();
  119. if ((t2 - t1) < SMI_TRESHOLD)
  120. return t2;
  121. }
  122. return ULLONG_MAX;
  123. }
  124. /*
  125. * Calculate the TSC frequency from HPET reference
  126. */
  127. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  128. {
  129. u64 tmp;
  130. if (hpet2 < hpet1)
  131. hpet2 += 0x100000000ULL;
  132. hpet2 -= hpet1;
  133. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  134. do_div(tmp, 1000000);
  135. do_div(deltatsc, tmp);
  136. return (unsigned long) deltatsc;
  137. }
  138. /*
  139. * Calculate the TSC frequency from PMTimer reference
  140. */
  141. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  142. {
  143. u64 tmp;
  144. if (!pm1 && !pm2)
  145. return ULONG_MAX;
  146. if (pm2 < pm1)
  147. pm2 += (u64)ACPI_PM_OVRRUN;
  148. pm2 -= pm1;
  149. tmp = pm2 * 1000000000LL;
  150. do_div(tmp, PMTMR_TICKS_PER_SEC);
  151. do_div(deltatsc, tmp);
  152. return (unsigned long) deltatsc;
  153. }
  154. #define CAL_MS 10
  155. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  156. #define CAL_PIT_LOOPS 1000
  157. #define CAL2_MS 50
  158. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  159. #define CAL2_PIT_LOOPS 5000
  160. /*
  161. * Try to calibrate the TSC against the Programmable
  162. * Interrupt Timer and return the frequency of the TSC
  163. * in kHz.
  164. *
  165. * Return ULONG_MAX on failure to calibrate.
  166. */
  167. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  168. {
  169. u64 tsc, t1, t2, delta;
  170. unsigned long tscmin, tscmax;
  171. int pitcnt;
  172. /* Set the Gate high, disable speaker */
  173. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  174. /*
  175. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  176. * count mode), binary count. Set the latch register to 50ms
  177. * (LSB then MSB) to begin countdown.
  178. */
  179. outb(0xb0, 0x43);
  180. outb(latch & 0xff, 0x42);
  181. outb(latch >> 8, 0x42);
  182. tsc = t1 = t2 = get_cycles();
  183. pitcnt = 0;
  184. tscmax = 0;
  185. tscmin = ULONG_MAX;
  186. while ((inb(0x61) & 0x20) == 0) {
  187. t2 = get_cycles();
  188. delta = t2 - tsc;
  189. tsc = t2;
  190. if ((unsigned long) delta < tscmin)
  191. tscmin = (unsigned int) delta;
  192. if ((unsigned long) delta > tscmax)
  193. tscmax = (unsigned int) delta;
  194. pitcnt++;
  195. }
  196. /*
  197. * Sanity checks:
  198. *
  199. * If we were not able to read the PIT more than loopmin
  200. * times, then we have been hit by a massive SMI
  201. *
  202. * If the maximum is 10 times larger than the minimum,
  203. * then we got hit by an SMI as well.
  204. */
  205. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  206. return ULONG_MAX;
  207. /* Calculate the PIT value */
  208. delta = t2 - t1;
  209. do_div(delta, ms);
  210. return delta;
  211. }
  212. /*
  213. * This reads the current MSB of the PIT counter, and
  214. * checks if we are running on sufficiently fast and
  215. * non-virtualized hardware.
  216. *
  217. * Our expectations are:
  218. *
  219. * - the PIT is running at roughly 1.19MHz
  220. *
  221. * - each IO is going to take about 1us on real hardware,
  222. * but we allow it to be much faster (by a factor of 10) or
  223. * _slightly_ slower (ie we allow up to a 2us read+counter
  224. * update - anything else implies a unacceptably slow CPU
  225. * or PIT for the fast calibration to work.
  226. *
  227. * - with 256 PIT ticks to read the value, we have 214us to
  228. * see the same MSB (and overhead like doing a single TSC
  229. * read per MSB value etc).
  230. *
  231. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  232. * them each to take about a microsecond on real hardware.
  233. * So we expect a count value of around 100. But we'll be
  234. * generous, and accept anything over 50.
  235. *
  236. * - if the PIT is stuck, and we see *many* more reads, we
  237. * return early (and the next caller of pit_expect_msb()
  238. * then consider it a failure when they don't see the
  239. * next expected value).
  240. *
  241. * These expectations mean that we know that we have seen the
  242. * transition from one expected value to another with a fairly
  243. * high accuracy, and we didn't miss any events. We can thus
  244. * use the TSC value at the transitions to calculate a pretty
  245. * good value for the TSC frequencty.
  246. */
  247. static inline int pit_verify_msb(unsigned char val)
  248. {
  249. /* Ignore LSB */
  250. inb(0x42);
  251. return inb(0x42) == val;
  252. }
  253. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  254. {
  255. int count;
  256. u64 tsc = 0, prev_tsc = 0;
  257. for (count = 0; count < 50000; count++) {
  258. if (!pit_verify_msb(val))
  259. break;
  260. prev_tsc = tsc;
  261. tsc = get_cycles();
  262. }
  263. *deltap = get_cycles() - prev_tsc;
  264. *tscp = tsc;
  265. /*
  266. * We require _some_ success, but the quality control
  267. * will be based on the error terms on the TSC values.
  268. */
  269. return count > 5;
  270. }
  271. /*
  272. * How many MSB values do we want to see? We aim for
  273. * a maximum error rate of 500ppm (in practice the
  274. * real error is much smaller), but refuse to spend
  275. * more than 50ms on it.
  276. */
  277. #define MAX_QUICK_PIT_MS 50
  278. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  279. static unsigned long quick_pit_calibrate(void)
  280. {
  281. int i;
  282. u64 tsc, delta;
  283. unsigned long d1, d2;
  284. /* Set the Gate high, disable speaker */
  285. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  286. /*
  287. * Counter 2, mode 0 (one-shot), binary count
  288. *
  289. * NOTE! Mode 2 decrements by two (and then the
  290. * output is flipped each time, giving the same
  291. * final output frequency as a decrement-by-one),
  292. * so mode 0 is much better when looking at the
  293. * individual counts.
  294. */
  295. outb(0xb0, 0x43);
  296. /* Start at 0xffff */
  297. outb(0xff, 0x42);
  298. outb(0xff, 0x42);
  299. /*
  300. * The PIT starts counting at the next edge, so we
  301. * need to delay for a microsecond. The easiest way
  302. * to do that is to just read back the 16-bit counter
  303. * once from the PIT.
  304. */
  305. pit_verify_msb(0);
  306. if (pit_expect_msb(0xff, &tsc, &d1)) {
  307. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  308. if (!pit_expect_msb(0xff-i, &delta, &d2))
  309. break;
  310. /*
  311. * Iterate until the error is less than 500 ppm
  312. */
  313. delta -= tsc;
  314. if (d1+d2 >= delta >> 11)
  315. continue;
  316. /*
  317. * Check the PIT one more time to verify that
  318. * all TSC reads were stable wrt the PIT.
  319. *
  320. * This also guarantees serialization of the
  321. * last cycle read ('d2') in pit_expect_msb.
  322. */
  323. if (!pit_verify_msb(0xfe - i))
  324. break;
  325. goto success;
  326. }
  327. }
  328. printk("Fast TSC calibration failed\n");
  329. return 0;
  330. success:
  331. /*
  332. * Ok, if we get here, then we've seen the
  333. * MSB of the PIT decrement 'i' times, and the
  334. * error has shrunk to less than 500 ppm.
  335. *
  336. * As a result, we can depend on there not being
  337. * any odd delays anywhere, and the TSC reads are
  338. * reliable (within the error).
  339. *
  340. * kHz = ticks / time-in-seconds / 1000;
  341. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  342. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  343. */
  344. delta *= PIT_TICK_RATE;
  345. do_div(delta, i*256*1000);
  346. printk("Fast TSC calibration using PIT\n");
  347. return delta;
  348. }
  349. /**
  350. * native_calibrate_tsc - calibrate the tsc on boot
  351. */
  352. unsigned long native_calibrate_tsc(void)
  353. {
  354. u64 tsc1, tsc2, delta, ref1, ref2;
  355. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  356. unsigned long flags, latch, ms, fast_calibrate;
  357. int hpet = is_hpet_enabled(), i, loopmin;
  358. local_irq_save(flags);
  359. fast_calibrate = quick_pit_calibrate();
  360. local_irq_restore(flags);
  361. if (fast_calibrate)
  362. return fast_calibrate;
  363. /*
  364. * Run 5 calibration loops to get the lowest frequency value
  365. * (the best estimate). We use two different calibration modes
  366. * here:
  367. *
  368. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  369. * load a timeout of 50ms. We read the time right after we
  370. * started the timer and wait until the PIT count down reaches
  371. * zero. In each wait loop iteration we read the TSC and check
  372. * the delta to the previous read. We keep track of the min
  373. * and max values of that delta. The delta is mostly defined
  374. * by the IO time of the PIT access, so we can detect when a
  375. * SMI/SMM disturbance happened between the two reads. If the
  376. * maximum time is significantly larger than the minimum time,
  377. * then we discard the result and have another try.
  378. *
  379. * 2) Reference counter. If available we use the HPET or the
  380. * PMTIMER as a reference to check the sanity of that value.
  381. * We use separate TSC readouts and check inside of the
  382. * reference read for a SMI/SMM disturbance. We dicard
  383. * disturbed values here as well. We do that around the PIT
  384. * calibration delay loop as we have to wait for a certain
  385. * amount of time anyway.
  386. */
  387. /* Preset PIT loop values */
  388. latch = CAL_LATCH;
  389. ms = CAL_MS;
  390. loopmin = CAL_PIT_LOOPS;
  391. for (i = 0; i < 3; i++) {
  392. unsigned long tsc_pit_khz;
  393. /*
  394. * Read the start value and the reference count of
  395. * hpet/pmtimer when available. Then do the PIT
  396. * calibration, which will take at least 50ms, and
  397. * read the end value.
  398. */
  399. local_irq_save(flags);
  400. tsc1 = tsc_read_refs(&ref1, hpet);
  401. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  402. tsc2 = tsc_read_refs(&ref2, hpet);
  403. local_irq_restore(flags);
  404. /* Pick the lowest PIT TSC calibration so far */
  405. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  406. /* hpet or pmtimer available ? */
  407. if (ref1 == ref2)
  408. continue;
  409. /* Check, whether the sampling was disturbed by an SMI */
  410. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  411. continue;
  412. tsc2 = (tsc2 - tsc1) * 1000000LL;
  413. if (hpet)
  414. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  415. else
  416. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  417. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  418. /* Check the reference deviation */
  419. delta = ((u64) tsc_pit_min) * 100;
  420. do_div(delta, tsc_ref_min);
  421. /*
  422. * If both calibration results are inside a 10% window
  423. * then we can be sure, that the calibration
  424. * succeeded. We break out of the loop right away. We
  425. * use the reference value, as it is more precise.
  426. */
  427. if (delta >= 90 && delta <= 110) {
  428. printk(KERN_INFO
  429. "TSC: PIT calibration matches %s. %d loops\n",
  430. hpet ? "HPET" : "PMTIMER", i + 1);
  431. return tsc_ref_min;
  432. }
  433. /*
  434. * Check whether PIT failed more than once. This
  435. * happens in virtualized environments. We need to
  436. * give the virtual PC a slightly longer timeframe for
  437. * the HPET/PMTIMER to make the result precise.
  438. */
  439. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  440. latch = CAL2_LATCH;
  441. ms = CAL2_MS;
  442. loopmin = CAL2_PIT_LOOPS;
  443. }
  444. }
  445. /*
  446. * Now check the results.
  447. */
  448. if (tsc_pit_min == ULONG_MAX) {
  449. /* PIT gave no useful value */
  450. printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
  451. /* We don't have an alternative source, disable TSC */
  452. if (!hpet && !ref1 && !ref2) {
  453. printk("TSC: No reference (HPET/PMTIMER) available\n");
  454. return 0;
  455. }
  456. /* The alternative source failed as well, disable TSC */
  457. if (tsc_ref_min == ULONG_MAX) {
  458. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
  459. "failed.\n");
  460. return 0;
  461. }
  462. /* Use the alternative source */
  463. printk(KERN_INFO "TSC: using %s reference calibration\n",
  464. hpet ? "HPET" : "PMTIMER");
  465. return tsc_ref_min;
  466. }
  467. /* We don't have an alternative source, use the PIT calibration value */
  468. if (!hpet && !ref1 && !ref2) {
  469. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  470. return tsc_pit_min;
  471. }
  472. /* The alternative source failed, use the PIT calibration value */
  473. if (tsc_ref_min == ULONG_MAX) {
  474. printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
  475. "Using PIT calibration\n");
  476. return tsc_pit_min;
  477. }
  478. /*
  479. * The calibration values differ too much. In doubt, we use
  480. * the PIT value as we know that there are PMTIMERs around
  481. * running at double speed. At least we let the user know:
  482. */
  483. printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
  484. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  485. printk(KERN_INFO "TSC: Using PIT calibration value\n");
  486. return tsc_pit_min;
  487. }
  488. int recalibrate_cpu_khz(void)
  489. {
  490. #ifndef CONFIG_SMP
  491. unsigned long cpu_khz_old = cpu_khz;
  492. if (cpu_has_tsc) {
  493. tsc_khz = x86_platform.calibrate_tsc();
  494. cpu_khz = tsc_khz;
  495. cpu_data(0).loops_per_jiffy =
  496. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  497. cpu_khz_old, cpu_khz);
  498. return 0;
  499. } else
  500. return -ENODEV;
  501. #else
  502. return -ENODEV;
  503. #endif
  504. }
  505. EXPORT_SYMBOL(recalibrate_cpu_khz);
  506. /* Accelerators for sched_clock()
  507. * convert from cycles(64bits) => nanoseconds (64bits)
  508. * basic equation:
  509. * ns = cycles / (freq / ns_per_sec)
  510. * ns = cycles * (ns_per_sec / freq)
  511. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  512. * ns = cycles * (10^6 / cpu_khz)
  513. *
  514. * Then we use scaling math (suggested by george@mvista.com) to get:
  515. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  516. * ns = cycles * cyc2ns_scale / SC
  517. *
  518. * And since SC is a constant power of two, we can convert the div
  519. * into a shift.
  520. *
  521. * We can use khz divisor instead of mhz to keep a better precision, since
  522. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  523. * (mathieu.desnoyers@polymtl.ca)
  524. *
  525. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  526. */
  527. DEFINE_PER_CPU(unsigned long, cyc2ns);
  528. DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
  529. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  530. {
  531. unsigned long long tsc_now, ns_now, *offset;
  532. unsigned long flags, *scale;
  533. local_irq_save(flags);
  534. sched_clock_idle_sleep_event();
  535. scale = &per_cpu(cyc2ns, cpu);
  536. offset = &per_cpu(cyc2ns_offset, cpu);
  537. rdtscll(tsc_now);
  538. ns_now = __cycles_2_ns(tsc_now);
  539. if (cpu_khz) {
  540. *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
  541. *offset = ns_now - mult_frac(tsc_now, *scale,
  542. (1UL << CYC2NS_SCALE_FACTOR));
  543. }
  544. sched_clock_idle_wakeup_event(0);
  545. local_irq_restore(flags);
  546. }
  547. static unsigned long long cyc2ns_suspend;
  548. void tsc_save_sched_clock_state(void)
  549. {
  550. if (!sched_clock_stable)
  551. return;
  552. cyc2ns_suspend = sched_clock();
  553. }
  554. /*
  555. * Even on processors with invariant TSC, TSC gets reset in some the
  556. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  557. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  558. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  559. * that sched_clock() continues from the point where it was left off during
  560. * suspend.
  561. */
  562. void tsc_restore_sched_clock_state(void)
  563. {
  564. unsigned long long offset;
  565. unsigned long flags;
  566. int cpu;
  567. if (!sched_clock_stable)
  568. return;
  569. local_irq_save(flags);
  570. __this_cpu_write(cyc2ns_offset, 0);
  571. offset = cyc2ns_suspend - sched_clock();
  572. for_each_possible_cpu(cpu)
  573. per_cpu(cyc2ns_offset, cpu) = offset;
  574. local_irq_restore(flags);
  575. }
  576. #ifdef CONFIG_CPU_FREQ
  577. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  578. * changes.
  579. *
  580. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  581. * not that important because current Opteron setups do not support
  582. * scaling on SMP anyroads.
  583. *
  584. * Should fix up last_tsc too. Currently gettimeofday in the
  585. * first tick after the change will be slightly wrong.
  586. */
  587. static unsigned int ref_freq;
  588. static unsigned long loops_per_jiffy_ref;
  589. static unsigned long tsc_khz_ref;
  590. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  591. void *data)
  592. {
  593. struct cpufreq_freqs *freq = data;
  594. unsigned long *lpj;
  595. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  596. return 0;
  597. lpj = &boot_cpu_data.loops_per_jiffy;
  598. #ifdef CONFIG_SMP
  599. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  600. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  601. #endif
  602. if (!ref_freq) {
  603. ref_freq = freq->old;
  604. loops_per_jiffy_ref = *lpj;
  605. tsc_khz_ref = tsc_khz;
  606. }
  607. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  608. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  609. (val == CPUFREQ_RESUMECHANGE)) {
  610. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  611. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  612. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  613. mark_tsc_unstable("cpufreq changes");
  614. }
  615. set_cyc2ns_scale(tsc_khz, freq->cpu);
  616. return 0;
  617. }
  618. static struct notifier_block time_cpufreq_notifier_block = {
  619. .notifier_call = time_cpufreq_notifier
  620. };
  621. static int __init cpufreq_tsc(void)
  622. {
  623. if (!cpu_has_tsc)
  624. return 0;
  625. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  626. return 0;
  627. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  628. CPUFREQ_TRANSITION_NOTIFIER);
  629. return 0;
  630. }
  631. core_initcall(cpufreq_tsc);
  632. #endif /* CONFIG_CPU_FREQ */
  633. /* clocksource code */
  634. static struct clocksource clocksource_tsc;
  635. /*
  636. * We compare the TSC to the cycle_last value in the clocksource
  637. * structure to avoid a nasty time-warp. This can be observed in a
  638. * very small window right after one CPU updated cycle_last under
  639. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  640. * is smaller than the cycle_last reference value due to a TSC which
  641. * is slighty behind. This delta is nowhere else observable, but in
  642. * that case it results in a forward time jump in the range of hours
  643. * due to the unsigned delta calculation of the time keeping core
  644. * code, which is necessary to support wrapping clocksources like pm
  645. * timer.
  646. */
  647. static cycle_t read_tsc(struct clocksource *cs)
  648. {
  649. cycle_t ret = (cycle_t)get_cycles();
  650. return ret >= clocksource_tsc.cycle_last ?
  651. ret : clocksource_tsc.cycle_last;
  652. }
  653. static void resume_tsc(struct clocksource *cs)
  654. {
  655. clocksource_tsc.cycle_last = 0;
  656. }
  657. static struct clocksource clocksource_tsc = {
  658. .name = "tsc",
  659. .rating = 300,
  660. .read = read_tsc,
  661. .resume = resume_tsc,
  662. .mask = CLOCKSOURCE_MASK(64),
  663. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  664. CLOCK_SOURCE_MUST_VERIFY,
  665. #ifdef CONFIG_X86_64
  666. .archdata = { .vclock_mode = VCLOCK_TSC },
  667. #endif
  668. };
  669. void mark_tsc_unstable(char *reason)
  670. {
  671. if (!tsc_unstable) {
  672. tsc_unstable = 1;
  673. sched_clock_stable = 0;
  674. disable_sched_clock_irqtime();
  675. printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
  676. /* Change only the rating, when not registered */
  677. if (clocksource_tsc.mult)
  678. clocksource_mark_unstable(&clocksource_tsc);
  679. else {
  680. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  681. clocksource_tsc.rating = 0;
  682. }
  683. }
  684. }
  685. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  686. static void __init check_system_tsc_reliable(void)
  687. {
  688. #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
  689. if (is_geode_lx()) {
  690. /* RTSC counts during suspend */
  691. #define RTSC_SUSP 0x100
  692. unsigned long res_low, res_high;
  693. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  694. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  695. if (res_low & RTSC_SUSP)
  696. tsc_clocksource_reliable = 1;
  697. }
  698. #endif
  699. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  700. tsc_clocksource_reliable = 1;
  701. }
  702. /*
  703. * Make an educated guess if the TSC is trustworthy and synchronized
  704. * over all CPUs.
  705. */
  706. __cpuinit int unsynchronized_tsc(void)
  707. {
  708. if (!cpu_has_tsc || tsc_unstable)
  709. return 1;
  710. #ifdef CONFIG_SMP
  711. if (apic_is_clustered_box())
  712. return 1;
  713. #endif
  714. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  715. return 0;
  716. if (tsc_clocksource_reliable)
  717. return 0;
  718. /*
  719. * Intel systems are normally all synchronized.
  720. * Exceptions must mark TSC as unstable:
  721. */
  722. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  723. /* assume multi socket systems are not synchronized: */
  724. if (num_possible_cpus() > 1)
  725. return 1;
  726. }
  727. return 0;
  728. }
  729. static void tsc_refine_calibration_work(struct work_struct *work);
  730. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  731. /**
  732. * tsc_refine_calibration_work - Further refine tsc freq calibration
  733. * @work - ignored.
  734. *
  735. * This functions uses delayed work over a period of a
  736. * second to further refine the TSC freq value. Since this is
  737. * timer based, instead of loop based, we don't block the boot
  738. * process while this longer calibration is done.
  739. *
  740. * If there are any calibration anomalies (too many SMIs, etc),
  741. * or the refined calibration is off by 1% of the fast early
  742. * calibration, we throw out the new calibration and use the
  743. * early calibration.
  744. */
  745. static void tsc_refine_calibration_work(struct work_struct *work)
  746. {
  747. static u64 tsc_start = -1, ref_start;
  748. static int hpet;
  749. u64 tsc_stop, ref_stop, delta;
  750. unsigned long freq;
  751. /* Don't bother refining TSC on unstable systems */
  752. if (check_tsc_unstable())
  753. goto out;
  754. /*
  755. * Since the work is started early in boot, we may be
  756. * delayed the first time we expire. So set the workqueue
  757. * again once we know timers are working.
  758. */
  759. if (tsc_start == -1) {
  760. /*
  761. * Only set hpet once, to avoid mixing hardware
  762. * if the hpet becomes enabled later.
  763. */
  764. hpet = is_hpet_enabled();
  765. schedule_delayed_work(&tsc_irqwork, HZ);
  766. tsc_start = tsc_read_refs(&ref_start, hpet);
  767. return;
  768. }
  769. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  770. /* hpet or pmtimer available ? */
  771. if (ref_start == ref_stop)
  772. goto out;
  773. /* Check, whether the sampling was disturbed by an SMI */
  774. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  775. goto out;
  776. delta = tsc_stop - tsc_start;
  777. delta *= 1000000LL;
  778. if (hpet)
  779. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  780. else
  781. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  782. /* Make sure we're within 1% */
  783. if (abs(tsc_khz - freq) > tsc_khz/100)
  784. goto out;
  785. tsc_khz = freq;
  786. printk(KERN_INFO "Refined TSC clocksource calibration: "
  787. "%lu.%03lu MHz.\n", (unsigned long)tsc_khz / 1000,
  788. (unsigned long)tsc_khz % 1000);
  789. out:
  790. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  791. }
  792. static int __init init_tsc_clocksource(void)
  793. {
  794. if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
  795. return 0;
  796. if (tsc_clocksource_reliable)
  797. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  798. /* lower the rating if we already know its unstable: */
  799. if (check_tsc_unstable()) {
  800. clocksource_tsc.rating = 0;
  801. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  802. }
  803. /*
  804. * Trust the results of the earlier calibration on systems
  805. * exporting a reliable TSC.
  806. */
  807. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
  808. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  809. return 0;
  810. }
  811. schedule_delayed_work(&tsc_irqwork, 0);
  812. return 0;
  813. }
  814. /*
  815. * We use device_initcall here, to ensure we run after the hpet
  816. * is fully initialized, which may occur at fs_initcall time.
  817. */
  818. device_initcall(init_tsc_clocksource);
  819. void __init tsc_init(void)
  820. {
  821. u64 lpj;
  822. int cpu;
  823. x86_init.timers.tsc_pre_init();
  824. if (!cpu_has_tsc) {
  825. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  826. return;
  827. }
  828. tsc_khz = x86_platform.calibrate_tsc();
  829. cpu_khz = tsc_khz;
  830. if (!tsc_khz) {
  831. mark_tsc_unstable("could not calculate TSC khz");
  832. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  833. return;
  834. }
  835. printk("Detected %lu.%03lu MHz processor.\n",
  836. (unsigned long)cpu_khz / 1000,
  837. (unsigned long)cpu_khz % 1000);
  838. /*
  839. * Secondary CPUs do not run through tsc_init(), so set up
  840. * all the scale factors for all CPUs, assuming the same
  841. * speed as the bootup CPU. (cpufreq notifiers will fix this
  842. * up if their speed diverges)
  843. */
  844. for_each_possible_cpu(cpu)
  845. set_cyc2ns_scale(cpu_khz, cpu);
  846. if (tsc_disabled > 0)
  847. return;
  848. /* now allow native_sched_clock() to use rdtsc */
  849. tsc_disabled = 0;
  850. if (!no_sched_irq_time)
  851. enable_sched_clock_irqtime();
  852. lpj = ((u64)tsc_khz * 1000);
  853. do_div(lpj, HZ);
  854. lpj_fine = lpj;
  855. use_tsc_delay();
  856. if (unsynchronized_tsc())
  857. mark_tsc_unstable("TSCs unsynchronized");
  858. check_system_tsc_reliable();
  859. }
  860. #ifdef CONFIG_SMP
  861. /*
  862. * If we have a constant TSC and are using the TSC for the delay loop,
  863. * we can skip clock calibration if another cpu in the same socket has already
  864. * been calibrated. This assumes that CONSTANT_TSC applies to all
  865. * cpus in the socket - this should be a safe assumption.
  866. */
  867. unsigned long __cpuinit calibrate_delay_is_known(void)
  868. {
  869. int i, cpu = smp_processor_id();
  870. if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
  871. return 0;
  872. for_each_online_cpu(i)
  873. if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
  874. return cpu_data(i).loops_per_jiffy;
  875. return 0;
  876. }
  877. #endif