aesbs-glue.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435
  1. /*
  2. * linux/arch/arm/crypto/aesbs-glue.c - glue code for NEON bit sliced AES
  3. *
  4. * Copyright (C) 2013 Linaro Ltd <ard.biesheuvel@linaro.org>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <asm/neon.h>
  11. #include <crypto/aes.h>
  12. #include <crypto/ablk_helper.h>
  13. #include <crypto/algapi.h>
  14. #include <linux/module.h>
  15. #include "aes_glue.h"
  16. #define BIT_SLICED_KEY_MAXSIZE (128 * (AES_MAXNR - 1) + 2 * AES_BLOCK_SIZE)
  17. struct BS_KEY {
  18. struct AES_KEY rk;
  19. int converted;
  20. u8 __aligned(8) bs[BIT_SLICED_KEY_MAXSIZE];
  21. } __aligned(8);
  22. asmlinkage void bsaes_enc_key_convert(u8 out[], struct AES_KEY const *in);
  23. asmlinkage void bsaes_dec_key_convert(u8 out[], struct AES_KEY const *in);
  24. asmlinkage void bsaes_cbc_encrypt(u8 const in[], u8 out[], u32 bytes,
  25. struct BS_KEY *key, u8 iv[]);
  26. asmlinkage void bsaes_ctr32_encrypt_blocks(u8 const in[], u8 out[], u32 blocks,
  27. struct BS_KEY *key, u8 const iv[]);
  28. asmlinkage void bsaes_xts_encrypt(u8 const in[], u8 out[], u32 bytes,
  29. struct BS_KEY *key, u8 tweak[]);
  30. asmlinkage void bsaes_xts_decrypt(u8 const in[], u8 out[], u32 bytes,
  31. struct BS_KEY *key, u8 tweak[]);
  32. struct aesbs_cbc_ctx {
  33. struct AES_KEY enc;
  34. struct BS_KEY dec;
  35. };
  36. struct aesbs_ctr_ctx {
  37. struct BS_KEY enc;
  38. };
  39. struct aesbs_xts_ctx {
  40. struct BS_KEY enc;
  41. struct BS_KEY dec;
  42. struct AES_KEY twkey;
  43. };
  44. static int aesbs_cbc_set_key(struct crypto_tfm *tfm, const u8 *in_key,
  45. unsigned int key_len)
  46. {
  47. struct aesbs_cbc_ctx *ctx = crypto_tfm_ctx(tfm);
  48. int bits = key_len * 8;
  49. if (private_AES_set_encrypt_key(in_key, bits, &ctx->enc)) {
  50. tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  51. return -EINVAL;
  52. }
  53. ctx->dec.rk = ctx->enc;
  54. private_AES_set_decrypt_key(in_key, bits, &ctx->dec.rk);
  55. ctx->dec.converted = 0;
  56. return 0;
  57. }
  58. static int aesbs_ctr_set_key(struct crypto_tfm *tfm, const u8 *in_key,
  59. unsigned int key_len)
  60. {
  61. struct aesbs_ctr_ctx *ctx = crypto_tfm_ctx(tfm);
  62. int bits = key_len * 8;
  63. if (private_AES_set_encrypt_key(in_key, bits, &ctx->enc.rk)) {
  64. tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  65. return -EINVAL;
  66. }
  67. ctx->enc.converted = 0;
  68. return 0;
  69. }
  70. static int aesbs_xts_set_key(struct crypto_tfm *tfm, const u8 *in_key,
  71. unsigned int key_len)
  72. {
  73. struct aesbs_xts_ctx *ctx = crypto_tfm_ctx(tfm);
  74. int bits = key_len * 4;
  75. if (private_AES_set_encrypt_key(in_key, bits, &ctx->enc.rk)) {
  76. tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
  77. return -EINVAL;
  78. }
  79. ctx->dec.rk = ctx->enc.rk;
  80. private_AES_set_decrypt_key(in_key, bits, &ctx->dec.rk);
  81. private_AES_set_encrypt_key(in_key + key_len / 2, bits, &ctx->twkey);
  82. ctx->enc.converted = ctx->dec.converted = 0;
  83. return 0;
  84. }
  85. static int aesbs_cbc_encrypt(struct blkcipher_desc *desc,
  86. struct scatterlist *dst,
  87. struct scatterlist *src, unsigned int nbytes)
  88. {
  89. struct aesbs_cbc_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  90. struct blkcipher_walk walk;
  91. int err;
  92. blkcipher_walk_init(&walk, dst, src, nbytes);
  93. err = blkcipher_walk_virt(desc, &walk);
  94. while (walk.nbytes) {
  95. u32 blocks = walk.nbytes / AES_BLOCK_SIZE;
  96. u8 *src = walk.src.virt.addr;
  97. if (walk.dst.virt.addr == walk.src.virt.addr) {
  98. u8 *iv = walk.iv;
  99. do {
  100. crypto_xor(src, iv, AES_BLOCK_SIZE);
  101. AES_encrypt(src, src, &ctx->enc);
  102. iv = src;
  103. src += AES_BLOCK_SIZE;
  104. } while (--blocks);
  105. memcpy(walk.iv, iv, AES_BLOCK_SIZE);
  106. } else {
  107. u8 *dst = walk.dst.virt.addr;
  108. do {
  109. crypto_xor(walk.iv, src, AES_BLOCK_SIZE);
  110. AES_encrypt(walk.iv, dst, &ctx->enc);
  111. memcpy(walk.iv, dst, AES_BLOCK_SIZE);
  112. src += AES_BLOCK_SIZE;
  113. dst += AES_BLOCK_SIZE;
  114. } while (--blocks);
  115. }
  116. err = blkcipher_walk_done(desc, &walk, walk.nbytes % AES_BLOCK_SIZE);
  117. }
  118. return err;
  119. }
  120. static int aesbs_cbc_decrypt(struct blkcipher_desc *desc,
  121. struct scatterlist *dst,
  122. struct scatterlist *src, unsigned int nbytes)
  123. {
  124. struct aesbs_cbc_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  125. struct blkcipher_walk walk;
  126. int err;
  127. blkcipher_walk_init(&walk, dst, src, nbytes);
  128. err = blkcipher_walk_virt_block(desc, &walk, 8 * AES_BLOCK_SIZE);
  129. while ((walk.nbytes / AES_BLOCK_SIZE) >= 8) {
  130. kernel_neon_begin();
  131. bsaes_cbc_encrypt(walk.src.virt.addr, walk.dst.virt.addr,
  132. walk.nbytes, &ctx->dec, walk.iv);
  133. kernel_neon_end();
  134. err = blkcipher_walk_done(desc, &walk, walk.nbytes % AES_BLOCK_SIZE);
  135. }
  136. while (walk.nbytes) {
  137. u32 blocks = walk.nbytes / AES_BLOCK_SIZE;
  138. u8 *dst = walk.dst.virt.addr;
  139. u8 *src = walk.src.virt.addr;
  140. u8 bk[2][AES_BLOCK_SIZE];
  141. u8 *iv = walk.iv;
  142. do {
  143. if (walk.dst.virt.addr == walk.src.virt.addr)
  144. memcpy(bk[blocks & 1], src, AES_BLOCK_SIZE);
  145. AES_decrypt(src, dst, &ctx->dec.rk);
  146. crypto_xor(dst, iv, AES_BLOCK_SIZE);
  147. if (walk.dst.virt.addr == walk.src.virt.addr)
  148. iv = bk[blocks & 1];
  149. else
  150. iv = src;
  151. dst += AES_BLOCK_SIZE;
  152. src += AES_BLOCK_SIZE;
  153. } while (--blocks);
  154. err = blkcipher_walk_done(desc, &walk, walk.nbytes % AES_BLOCK_SIZE);
  155. }
  156. return err;
  157. }
  158. static void inc_be128_ctr(__be32 ctr[], u32 addend)
  159. {
  160. int i;
  161. for (i = 3; i >= 0; i--, addend = 1) {
  162. u32 n = be32_to_cpu(ctr[i]) + addend;
  163. ctr[i] = cpu_to_be32(n);
  164. if (n >= addend)
  165. break;
  166. }
  167. }
  168. static int aesbs_ctr_encrypt(struct blkcipher_desc *desc,
  169. struct scatterlist *dst, struct scatterlist *src,
  170. unsigned int nbytes)
  171. {
  172. struct aesbs_ctr_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  173. struct blkcipher_walk walk;
  174. u32 blocks;
  175. int err;
  176. blkcipher_walk_init(&walk, dst, src, nbytes);
  177. err = blkcipher_walk_virt_block(desc, &walk, 8 * AES_BLOCK_SIZE);
  178. while ((blocks = walk.nbytes / AES_BLOCK_SIZE)) {
  179. u32 tail = walk.nbytes % AES_BLOCK_SIZE;
  180. __be32 *ctr = (__be32 *)walk.iv;
  181. u32 headroom = UINT_MAX - be32_to_cpu(ctr[3]);
  182. /* avoid 32 bit counter overflow in the NEON code */
  183. if (unlikely(headroom < blocks)) {
  184. blocks = headroom + 1;
  185. tail = walk.nbytes - blocks * AES_BLOCK_SIZE;
  186. }
  187. kernel_neon_begin();
  188. bsaes_ctr32_encrypt_blocks(walk.src.virt.addr,
  189. walk.dst.virt.addr, blocks,
  190. &ctx->enc, walk.iv);
  191. kernel_neon_end();
  192. inc_be128_ctr(ctr, blocks);
  193. nbytes -= blocks * AES_BLOCK_SIZE;
  194. if (nbytes && nbytes == tail && nbytes <= AES_BLOCK_SIZE)
  195. break;
  196. err = blkcipher_walk_done(desc, &walk, tail);
  197. }
  198. if (walk.nbytes) {
  199. u8 *tdst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
  200. u8 *tsrc = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
  201. u8 ks[AES_BLOCK_SIZE];
  202. AES_encrypt(walk.iv, ks, &ctx->enc.rk);
  203. if (tdst != tsrc)
  204. memcpy(tdst, tsrc, nbytes);
  205. crypto_xor(tdst, ks, nbytes);
  206. err = blkcipher_walk_done(desc, &walk, 0);
  207. }
  208. return err;
  209. }
  210. static int aesbs_xts_encrypt(struct blkcipher_desc *desc,
  211. struct scatterlist *dst,
  212. struct scatterlist *src, unsigned int nbytes)
  213. {
  214. struct aesbs_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  215. struct blkcipher_walk walk;
  216. int err;
  217. blkcipher_walk_init(&walk, dst, src, nbytes);
  218. err = blkcipher_walk_virt_block(desc, &walk, 8 * AES_BLOCK_SIZE);
  219. /* generate the initial tweak */
  220. AES_encrypt(walk.iv, walk.iv, &ctx->twkey);
  221. while (walk.nbytes) {
  222. kernel_neon_begin();
  223. bsaes_xts_encrypt(walk.src.virt.addr, walk.dst.virt.addr,
  224. walk.nbytes, &ctx->enc, walk.iv);
  225. kernel_neon_end();
  226. err = blkcipher_walk_done(desc, &walk, walk.nbytes % AES_BLOCK_SIZE);
  227. }
  228. return err;
  229. }
  230. static int aesbs_xts_decrypt(struct blkcipher_desc *desc,
  231. struct scatterlist *dst,
  232. struct scatterlist *src, unsigned int nbytes)
  233. {
  234. struct aesbs_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
  235. struct blkcipher_walk walk;
  236. int err;
  237. blkcipher_walk_init(&walk, dst, src, nbytes);
  238. err = blkcipher_walk_virt_block(desc, &walk, 8 * AES_BLOCK_SIZE);
  239. /* generate the initial tweak */
  240. AES_encrypt(walk.iv, walk.iv, &ctx->twkey);
  241. while (walk.nbytes) {
  242. kernel_neon_begin();
  243. bsaes_xts_decrypt(walk.src.virt.addr, walk.dst.virt.addr,
  244. walk.nbytes, &ctx->dec, walk.iv);
  245. kernel_neon_end();
  246. err = blkcipher_walk_done(desc, &walk, walk.nbytes % AES_BLOCK_SIZE);
  247. }
  248. return err;
  249. }
  250. static struct crypto_alg aesbs_algs[] = { {
  251. .cra_name = "__cbc-aes-neonbs",
  252. .cra_driver_name = "__driver-cbc-aes-neonbs",
  253. .cra_priority = 0,
  254. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  255. .cra_blocksize = AES_BLOCK_SIZE,
  256. .cra_ctxsize = sizeof(struct aesbs_cbc_ctx),
  257. .cra_alignmask = 7,
  258. .cra_type = &crypto_blkcipher_type,
  259. .cra_module = THIS_MODULE,
  260. .cra_blkcipher = {
  261. .min_keysize = AES_MIN_KEY_SIZE,
  262. .max_keysize = AES_MAX_KEY_SIZE,
  263. .ivsize = AES_BLOCK_SIZE,
  264. .setkey = aesbs_cbc_set_key,
  265. .encrypt = aesbs_cbc_encrypt,
  266. .decrypt = aesbs_cbc_decrypt,
  267. },
  268. }, {
  269. .cra_name = "__ctr-aes-neonbs",
  270. .cra_driver_name = "__driver-ctr-aes-neonbs",
  271. .cra_priority = 0,
  272. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  273. .cra_blocksize = 1,
  274. .cra_ctxsize = sizeof(struct aesbs_ctr_ctx),
  275. .cra_alignmask = 7,
  276. .cra_type = &crypto_blkcipher_type,
  277. .cra_module = THIS_MODULE,
  278. .cra_blkcipher = {
  279. .min_keysize = AES_MIN_KEY_SIZE,
  280. .max_keysize = AES_MAX_KEY_SIZE,
  281. .ivsize = AES_BLOCK_SIZE,
  282. .setkey = aesbs_ctr_set_key,
  283. .encrypt = aesbs_ctr_encrypt,
  284. .decrypt = aesbs_ctr_encrypt,
  285. },
  286. }, {
  287. .cra_name = "__xts-aes-neonbs",
  288. .cra_driver_name = "__driver-xts-aes-neonbs",
  289. .cra_priority = 0,
  290. .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
  291. .cra_blocksize = AES_BLOCK_SIZE,
  292. .cra_ctxsize = sizeof(struct aesbs_xts_ctx),
  293. .cra_alignmask = 7,
  294. .cra_type = &crypto_blkcipher_type,
  295. .cra_module = THIS_MODULE,
  296. .cra_blkcipher = {
  297. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  298. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  299. .ivsize = AES_BLOCK_SIZE,
  300. .setkey = aesbs_xts_set_key,
  301. .encrypt = aesbs_xts_encrypt,
  302. .decrypt = aesbs_xts_decrypt,
  303. },
  304. }, {
  305. .cra_name = "cbc(aes)",
  306. .cra_driver_name = "cbc-aes-neonbs",
  307. .cra_priority = 300,
  308. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  309. .cra_blocksize = AES_BLOCK_SIZE,
  310. .cra_ctxsize = sizeof(struct async_helper_ctx),
  311. .cra_alignmask = 7,
  312. .cra_type = &crypto_ablkcipher_type,
  313. .cra_module = THIS_MODULE,
  314. .cra_init = ablk_init,
  315. .cra_exit = ablk_exit,
  316. .cra_ablkcipher = {
  317. .min_keysize = AES_MIN_KEY_SIZE,
  318. .max_keysize = AES_MAX_KEY_SIZE,
  319. .ivsize = AES_BLOCK_SIZE,
  320. .setkey = ablk_set_key,
  321. .encrypt = __ablk_encrypt,
  322. .decrypt = ablk_decrypt,
  323. }
  324. }, {
  325. .cra_name = "ctr(aes)",
  326. .cra_driver_name = "ctr-aes-neonbs",
  327. .cra_priority = 300,
  328. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  329. .cra_blocksize = 1,
  330. .cra_ctxsize = sizeof(struct async_helper_ctx),
  331. .cra_alignmask = 7,
  332. .cra_type = &crypto_ablkcipher_type,
  333. .cra_module = THIS_MODULE,
  334. .cra_init = ablk_init,
  335. .cra_exit = ablk_exit,
  336. .cra_ablkcipher = {
  337. .min_keysize = AES_MIN_KEY_SIZE,
  338. .max_keysize = AES_MAX_KEY_SIZE,
  339. .ivsize = AES_BLOCK_SIZE,
  340. .setkey = ablk_set_key,
  341. .encrypt = ablk_encrypt,
  342. .decrypt = ablk_decrypt,
  343. }
  344. }, {
  345. .cra_name = "xts(aes)",
  346. .cra_driver_name = "xts-aes-neonbs",
  347. .cra_priority = 300,
  348. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER|CRYPTO_ALG_ASYNC,
  349. .cra_blocksize = AES_BLOCK_SIZE,
  350. .cra_ctxsize = sizeof(struct async_helper_ctx),
  351. .cra_alignmask = 7,
  352. .cra_type = &crypto_ablkcipher_type,
  353. .cra_module = THIS_MODULE,
  354. .cra_init = ablk_init,
  355. .cra_exit = ablk_exit,
  356. .cra_ablkcipher = {
  357. .min_keysize = 2 * AES_MIN_KEY_SIZE,
  358. .max_keysize = 2 * AES_MAX_KEY_SIZE,
  359. .ivsize = AES_BLOCK_SIZE,
  360. .setkey = ablk_set_key,
  361. .encrypt = ablk_encrypt,
  362. .decrypt = ablk_decrypt,
  363. }
  364. } };
  365. static int __init aesbs_mod_init(void)
  366. {
  367. if (!cpu_has_neon())
  368. return -ENODEV;
  369. return crypto_register_algs(aesbs_algs, ARRAY_SIZE(aesbs_algs));
  370. }
  371. static void __exit aesbs_mod_exit(void)
  372. {
  373. crypto_unregister_algs(aesbs_algs, ARRAY_SIZE(aesbs_algs));
  374. }
  375. module_init(aesbs_mod_init);
  376. module_exit(aesbs_mod_exit);
  377. MODULE_DESCRIPTION("Bit sliced AES in CBC/CTR/XTS modes using NEON");
  378. MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
  379. MODULE_LICENSE("GPL");