1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066 |
- #[versions]
- primary = "#define MODE_DIRECT_LIGHT";
- secondary = "#define MODE_BOUNCE_LIGHT";
- dilate = "#define MODE_DILATE";
- unocclude = "#define MODE_UNOCCLUDE";
- light_probes = "#define MODE_LIGHT_PROBES";
- denoise = "#define MODE_DENOISE";
- pack_coeffs = "#define MODE_PACK_L1_COEFFS";
- #[compute]
- #version 450
- #VERSION_DEFINES
- #extension GL_EXT_samplerless_texture_functions : enable
- // One 2D local group focusing in one layer at a time, though all
- // in parallel (no barriers) makes more sense than a 3D local group
- // as this can take more advantage of the cache for each group.
- #ifdef MODE_LIGHT_PROBES
- layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
- #else
- layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
- #endif
- #include "lm_common_inc.glsl"
- #ifdef MODE_LIGHT_PROBES
- layout(set = 1, binding = 0, std430) restrict buffer LightProbeData {
- vec4 data[];
- }
- light_probes;
- layout(set = 1, binding = 1) uniform texture2DArray source_light;
- layout(set = 1, binding = 2) uniform texture2D environment;
- #endif
- #ifdef MODE_UNOCCLUDE
- layout(rgba32f, set = 1, binding = 0) uniform restrict image2DArray position;
- layout(rgba32f, set = 1, binding = 1) uniform restrict readonly image2DArray unocclude;
- #endif
- #if defined(MODE_DIRECT_LIGHT) || defined(MODE_BOUNCE_LIGHT)
- layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_light;
- layout(set = 1, binding = 1) uniform texture2DArray source_light;
- layout(set = 1, binding = 2) uniform texture2DArray source_position;
- layout(set = 1, binding = 3) uniform texture2DArray source_normal;
- layout(rgba16f, set = 1, binding = 4) uniform restrict image2DArray accum_light;
- #endif
- #ifdef MODE_BOUNCE_LIGHT
- layout(set = 1, binding = 5) uniform texture2D environment;
- #endif
- #if defined(MODE_DILATE) || defined(MODE_DENOISE) || defined(MODE_PACK_L1_COEFFS)
- layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_light;
- layout(set = 1, binding = 1) uniform texture2DArray source_light;
- #endif
- #ifdef MODE_DENOISE
- layout(set = 1, binding = 2) uniform texture2DArray source_normal;
- layout(set = 1, binding = 3) uniform DenoiseParams {
- float spatial_bandwidth;
- float light_bandwidth;
- float albedo_bandwidth;
- float normal_bandwidth;
- int half_search_window;
- float filter_strength;
- }
- denoise_params;
- #endif
- layout(push_constant, std430) uniform Params {
- uint atlas_slice;
- uint ray_count;
- uint ray_from;
- uint ray_to;
- ivec2 region_ofs;
- uint probe_count;
- }
- params;
- //check it, but also return distance and barycentric coords (for uv lookup)
- bool ray_hits_triangle(vec3 from, vec3 dir, float max_dist, vec3 p0, vec3 p1, vec3 p2, out float r_distance, out vec3 r_barycentric) {
- const float EPSILON = 0.00001;
- const vec3 e0 = p1 - p0;
- const vec3 e1 = p0 - p2;
- vec3 triangle_normal = cross(e1, e0);
- float n_dot_dir = dot(triangle_normal, dir);
- if (abs(n_dot_dir) < EPSILON) {
- return false;
- }
- const vec3 e2 = (p0 - from) / n_dot_dir;
- const vec3 i = cross(dir, e2);
- r_barycentric.y = dot(i, e1);
- r_barycentric.z = dot(i, e0);
- r_barycentric.x = 1.0 - (r_barycentric.z + r_barycentric.y);
- r_distance = dot(triangle_normal, e2);
- return (r_distance > bake_params.bias) && (r_distance < max_dist) && all(greaterThanEqual(r_barycentric, vec3(0.0)));
- }
- const uint RAY_MISS = 0;
- const uint RAY_FRONT = 1;
- const uint RAY_BACK = 2;
- const uint RAY_ANY = 3;
- bool ray_box_test(vec3 p_from, vec3 p_inv_dir, vec3 p_box_min, vec3 p_box_max) {
- vec3 t0 = (p_box_min - p_from) * p_inv_dir;
- vec3 t1 = (p_box_max - p_from) * p_inv_dir;
- vec3 tmin = min(t0, t1), tmax = max(t0, t1);
- return max(tmin.x, max(tmin.y, tmin.z)) <= min(tmax.x, min(tmax.y, tmax.z));
- }
- #if CLUSTER_SIZE > 32
- #define CLUSTER_TRIANGLE_ITERATION
- #endif
- uint trace_ray(vec3 p_from, vec3 p_to, bool p_any_hit, out float r_distance, out vec3 r_normal, out uint r_triangle, out vec3 r_barycentric) {
- // World coordinates.
- vec3 rel = p_to - p_from;
- float rel_len = length(rel);
- vec3 dir = normalize(rel);
- vec3 inv_dir = 1.0 / dir;
- // Cell coordinates.
- vec3 from_cell = (p_from - bake_params.to_cell_offset) * bake_params.to_cell_size;
- vec3 to_cell = (p_to - bake_params.to_cell_offset) * bake_params.to_cell_size;
- // Prepare DDA.
- vec3 rel_cell = to_cell - from_cell;
- ivec3 icell = ivec3(from_cell);
- ivec3 iendcell = ivec3(to_cell);
- vec3 dir_cell = normalize(rel_cell);
- vec3 delta = min(abs(1.0 / dir_cell), bake_params.grid_size); // Use bake_params.grid_size as max to prevent infinity values.
- ivec3 step = ivec3(sign(rel_cell));
- vec3 side = (sign(rel_cell) * (vec3(icell) - from_cell) + (sign(rel_cell) * 0.5) + 0.5) * delta;
- uint iters = 0;
- while (all(greaterThanEqual(icell, ivec3(0))) && all(lessThan(icell, ivec3(bake_params.grid_size))) && (iters < 1000)) {
- uvec2 cell_data = texelFetch(grid, icell, 0).xy;
- uint triangle_count = cell_data.x;
- if (triangle_count > 0) {
- uint hit = RAY_MISS;
- float best_distance = 1e20;
- uint cluster_start = cluster_indices.data[cell_data.y * 2];
- uint cell_triangle_start = cluster_indices.data[cell_data.y * 2 + 1];
- uint cluster_count = (triangle_count + CLUSTER_SIZE - 1) / CLUSTER_SIZE;
- uint cluster_base_index = 0;
- while (cluster_base_index < cluster_count) {
- // To minimize divergence, all Ray-AABB tests on the clusters contained in the cell are performed
- // before checking against the triangles. We do this 32 clusters at a time and store the intersected
- // clusters on each bit of the 32-bit integer.
- uint cluster_test_count = min(32, cluster_count - cluster_base_index);
- uint cluster_hits = 0;
- for (uint i = 0; i < cluster_test_count; i++) {
- uint cluster_index = cluster_start + cluster_base_index + i;
- ClusterAABB cluster_aabb = cluster_aabbs.data[cluster_index];
- if (ray_box_test(p_from, inv_dir, cluster_aabb.min_bounds, cluster_aabb.max_bounds)) {
- cluster_hits |= (1 << i);
- }
- }
- // Check the triangles in any of the clusters that were intersected by toggling off the bits in the
- // 32-bit integer counter until no bits are left.
- while (cluster_hits > 0) {
- uint cluster_index = findLSB(cluster_hits);
- cluster_hits &= ~(1 << cluster_index);
- cluster_index += cluster_base_index;
- // Do the same divergence execution trick with triangles as well.
- uint triangle_base_index = 0;
- #ifdef CLUSTER_TRIANGLE_ITERATION
- while (triangle_base_index < triangle_count)
- #endif
- {
- uint triangle_start_index = cell_triangle_start + cluster_index * CLUSTER_SIZE + triangle_base_index;
- uint triangle_test_count = min(CLUSTER_SIZE, triangle_count - triangle_base_index);
- uint triangle_hits = 0;
- for (uint i = 0; i < triangle_test_count; i++) {
- uint triangle_index = triangle_indices.data[triangle_start_index + i];
- if (ray_box_test(p_from, inv_dir, triangles.data[triangle_index].min_bounds, triangles.data[triangle_index].max_bounds)) {
- triangle_hits |= (1 << i);
- }
- }
- while (triangle_hits > 0) {
- uint cluster_triangle_index = findLSB(triangle_hits);
- triangle_hits &= ~(1 << cluster_triangle_index);
- cluster_triangle_index += triangle_start_index;
- uint triangle_index = triangle_indices.data[cluster_triangle_index];
- Triangle triangle = triangles.data[triangle_index];
- // Gather the triangle vertex positions.
- vec3 vtx0 = vertices.data[triangle.indices.x].position;
- vec3 vtx1 = vertices.data[triangle.indices.y].position;
- vec3 vtx2 = vertices.data[triangle.indices.z].position;
- vec3 normal = -normalize(cross((vtx0 - vtx1), (vtx0 - vtx2)));
- bool backface = dot(normal, dir) >= 0.0;
- float distance;
- vec3 barycentric;
- if (ray_hits_triangle(p_from, dir, rel_len, vtx0, vtx1, vtx2, distance, barycentric)) {
- if (p_any_hit) {
- // Return early if any hit was requested.
- return RAY_ANY;
- }
- vec3 position = p_from + dir * distance;
- vec3 hit_cell = (position - bake_params.to_cell_offset) * bake_params.to_cell_size;
- if (icell != ivec3(hit_cell)) {
- // It's possible for the ray to hit a triangle in a position outside the bounds of the cell
- // if it's large enough to cover multiple ones. The hit must be ignored if this is the case.
- continue;
- }
- if (!backface) {
- // The case of meshes having both a front and back face in the same plane is more common than
- // expected, so if this is a front-face, bias it closer to the ray origin, so it always wins
- // over the back-face.
- distance = max(bake_params.bias, distance - bake_params.bias);
- }
- if (distance < best_distance) {
- hit = backface ? RAY_BACK : RAY_FRONT;
- best_distance = distance;
- r_distance = distance;
- r_normal = normal;
- r_triangle = triangle_index;
- r_barycentric = barycentric;
- }
- }
- }
- #ifdef CLUSTER_TRIANGLE_ITERATION
- triangle_base_index += CLUSTER_SIZE;
- #endif
- }
- }
- cluster_base_index += 32;
- }
- if (hit != RAY_MISS) {
- return hit;
- }
- }
- if (icell == iendcell) {
- break;
- }
- // There should be only one axis updated at a time for DDA to work properly.
- bvec3 mask = bvec3(true, false, false);
- float m = side.x;
- if (side.y < m) {
- m = side.y;
- mask = bvec3(false, true, false);
- }
- if (side.z < m) {
- mask = bvec3(false, false, true);
- }
- side += vec3(mask) * delta;
- icell += ivec3(vec3(mask)) * step;
- iters++;
- }
- return RAY_MISS;
- }
- uint trace_ray_closest_hit_triangle(vec3 p_from, vec3 p_to, out uint r_triangle, out vec3 r_barycentric) {
- float distance;
- vec3 normal;
- return trace_ray(p_from, p_to, false, distance, normal, r_triangle, r_barycentric);
- }
- uint trace_ray_closest_hit_distance(vec3 p_from, vec3 p_to, out float r_distance, out vec3 r_normal) {
- uint triangle;
- vec3 barycentric;
- return trace_ray(p_from, p_to, false, r_distance, r_normal, triangle, barycentric);
- }
- uint trace_ray_any_hit(vec3 p_from, vec3 p_to) {
- float distance;
- vec3 normal;
- uint triangle;
- vec3 barycentric;
- return trace_ray(p_from, p_to, true, distance, normal, triangle, barycentric);
- }
- // https://www.reedbeta.com/blog/hash-functions-for-gpu-rendering/
- uint hash(uint value) {
- uint state = value * 747796405u + 2891336453u;
- uint word = ((state >> ((state >> 28u) + 4u)) ^ state) * 277803737u;
- return (word >> 22u) ^ word;
- }
- uint random_seed(ivec3 seed) {
- return hash(seed.x ^ hash(seed.y ^ hash(seed.z)));
- }
- // generates a random value in range [0.0, 1.0)
- float randomize(inout uint value) {
- value = hash(value);
- return float(value / 4294967296.0);
- }
- const float PI = 3.14159265f;
- // http://www.realtimerendering.com/raytracinggems/unofficial_RayTracingGems_v1.4.pdf (chapter 15)
- vec3 generate_hemisphere_cosine_weighted_direction(inout uint noise) {
- float noise1 = randomize(noise);
- float noise2 = randomize(noise) * 2.0 * PI;
- return vec3(sqrt(noise1) * cos(noise2), sqrt(noise1) * sin(noise2), sqrt(1.0 - noise1));
- }
- // Distribution generation adapted from "Generating uniformly distributed numbers on a sphere"
- // <http://corysimon.github.io/articles/uniformdistn-on-sphere/>
- vec3 generate_sphere_uniform_direction(inout uint noise) {
- float theta = 2.0 * PI * randomize(noise);
- float phi = acos(1.0 - 2.0 * randomize(noise));
- return vec3(sin(phi) * cos(theta), sin(phi) * sin(theta), cos(phi));
- }
- vec3 generate_ray_dir_from_normal(vec3 normal, inout uint noise) {
- vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
- vec3 tangent = normalize(cross(v0, normal));
- vec3 bitangent = normalize(cross(tangent, normal));
- mat3 normal_mat = mat3(tangent, bitangent, normal);
- return normal_mat * generate_hemisphere_cosine_weighted_direction(noise);
- }
- #if defined(MODE_DIRECT_LIGHT) || defined(MODE_BOUNCE_LIGHT) || defined(MODE_LIGHT_PROBES)
- float get_omni_attenuation(float distance, float inv_range, float decay) {
- float nd = distance * inv_range;
- nd *= nd;
- nd *= nd; // nd^4
- nd = max(1.0 - nd, 0.0);
- nd *= nd; // nd^2
- return nd * pow(max(distance, 0.0001), -decay);
- }
- const int AA_SAMPLES = 16;
- const vec2 halton_map[AA_SAMPLES] = vec2[](
- vec2(0.5, 0.33333333),
- vec2(0.25, 0.66666667),
- vec2(0.75, 0.11111111),
- vec2(0.125, 0.44444444),
- vec2(0.625, 0.77777778),
- vec2(0.375, 0.22222222),
- vec2(0.875, 0.55555556),
- vec2(0.0625, 0.88888889),
- vec2(0.5625, 0.03703704),
- vec2(0.3125, 0.37037037),
- vec2(0.8125, 0.7037037),
- vec2(0.1875, 0.14814815),
- vec2(0.6875, 0.48148148),
- vec2(0.4375, 0.81481481),
- vec2(0.9375, 0.25925926),
- vec2(0.03125, 0.59259259));
- vec2 get_vogel_disk(float p_i, float p_rotation, float p_sample_count_sqrt) {
- const float golden_angle = 2.4;
- float r = sqrt(p_i + 0.5) / p_sample_count_sqrt;
- float theta = p_i * golden_angle + p_rotation;
- return vec2(cos(theta), sin(theta)) * r;
- }
- void trace_direct_light(vec3 p_position, vec3 p_normal, uint p_light_index, bool p_soft_shadowing, out vec3 r_light, out vec3 r_light_dir, inout uint r_noise, float p_texel_size) {
- r_light = vec3(0.0f);
- vec3 light_pos;
- float dist;
- float attenuation;
- float soft_shadowing_disk_size;
- Light light_data = lights.data[p_light_index];
- if (light_data.type == LIGHT_TYPE_DIRECTIONAL) {
- vec3 light_vec = light_data.direction;
- light_pos = p_position - light_vec * length(bake_params.world_size);
- r_light_dir = normalize(light_pos - p_position);
- dist = length(bake_params.world_size);
- attenuation = 1.0;
- soft_shadowing_disk_size = light_data.size;
- } else {
- light_pos = light_data.position;
- r_light_dir = normalize(light_pos - p_position);
- dist = distance(p_position, light_pos);
- if (dist > light_data.range) {
- return;
- }
- soft_shadowing_disk_size = light_data.size / dist;
- attenuation = get_omni_attenuation(dist, 1.0 / light_data.range, light_data.attenuation);
- if (light_data.type == LIGHT_TYPE_SPOT) {
- vec3 rel = normalize(p_position - light_pos);
- float cos_spot_angle = light_data.cos_spot_angle;
- float cos_angle = dot(rel, light_data.direction);
- if (cos_angle < cos_spot_angle) {
- return;
- }
- float scos = max(cos_angle, cos_spot_angle);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - cos_spot_angle));
- attenuation *= 1.0 - pow(spot_rim, light_data.inv_spot_attenuation);
- }
- }
- attenuation *= max(0.0, dot(p_normal, r_light_dir));
- if (attenuation <= 0.0001) {
- return;
- }
- float penumbra = 0.0;
- if (p_soft_shadowing) {
- const bool use_soft_shadows = (light_data.size > 0.0);
- const uint ray_count = AA_SAMPLES;
- const uint total_ray_count = use_soft_shadows ? params.ray_count : ray_count;
- const uint shadowing_rays_check_penumbra_denom = 2;
- const uint shadowing_ray_count = max(1, params.ray_count / ray_count);
- const float shadowing_ray_count_sqrt = sqrt(float(total_ray_count));
- // Setup tangent pass to calculate AA samples over the current texel.
- vec3 aux = p_normal.y < 0.777 ? vec3(0.0, 1.0, 0.0) : vec3(1.0, 0.0, 0.0);
- vec3 tangent = normalize(cross(p_normal, aux));
- vec3 bitan = normalize(cross(p_normal, tangent));
- // Setup light tangent pass to calculate samples over disk aligned towards the light
- vec3 light_to_point = -r_light_dir;
- vec3 light_aux = light_to_point.y < 0.777 ? vec3(0.0, 1.0, 0.0) : vec3(1.0, 0.0, 0.0);
- vec3 light_to_point_tan = normalize(cross(light_to_point, light_aux));
- vec3 light_to_point_bitan = normalize(cross(light_to_point, light_to_point_tan));
- uint hits = 0;
- for (uint i = 0; i < ray_count; i++) {
- // Create a random sample within the texel.
- vec2 disk_sample = (halton_map[i] - vec2(0.5)) * p_texel_size * light_data.shadow_blur;
- // Align the sample to world space.
- vec3 disk_aligned = (disk_sample.x * tangent + disk_sample.y * bitan);
- vec3 origin = p_position - disk_aligned;
- vec3 light_dir = normalize(light_pos - origin);
- if (use_soft_shadows) {
- uint soft_shadow_hits = 0;
- for (uint j = 0; j < shadowing_ray_count; j++) {
- // Optimization:
- // Once already traced an important proportion of rays, if all are hits or misses,
- // assume we're not in the penumbra so we can infer the rest would have the same result.
- if (j == shadowing_ray_count / shadowing_rays_check_penumbra_denom) {
- if (soft_shadow_hits == j) {
- // Assume totally lit
- soft_shadow_hits = shadowing_ray_count;
- break;
- } else if (soft_shadow_hits == 0) {
- // Assume totally dark
- soft_shadow_hits = 0;
- break;
- }
- }
- float a = randomize(r_noise) * 2.0 * PI;
- float vogel_index = float(total_ray_count - 1 - (i * shadowing_ray_count + j)); // Start from (total_ray_count - 1) so we check the outer points first.
- vec2 light_disk_sample = get_vogel_disk(vogel_index, a, shadowing_ray_count_sqrt) * soft_shadowing_disk_size * light_data.shadow_blur;
- vec3 light_disk_to_point = normalize(light_to_point + light_disk_sample.x * light_to_point_tan + light_disk_sample.y * light_to_point_bitan);
- // Offset the ray origin for AA, offset the light position for soft shadows.
- if (trace_ray_any_hit(origin - light_disk_to_point * (bake_params.bias + length(disk_sample)), p_position - light_disk_to_point * dist) == RAY_MISS) {
- soft_shadow_hits++;
- }
- }
- hits += soft_shadow_hits;
- } else {
- // Offset the ray origin based on the disk. Also increase the bias for further samples to avoid bleeding.
- if (trace_ray_any_hit(origin + light_dir * (bake_params.bias + length(disk_sample)), light_pos) == RAY_MISS) {
- hits++;
- }
- }
- }
- penumbra = float(hits) / float(total_ray_count);
- } else {
- if (trace_ray_any_hit(p_position + r_light_dir * bake_params.bias, light_pos) == RAY_MISS) {
- penumbra = 1.0;
- }
- }
- r_light = light_data.color * light_data.energy * attenuation * penumbra;
- }
- #endif
- #if defined(MODE_BOUNCE_LIGHT) || defined(MODE_LIGHT_PROBES)
- vec3 trace_environment_color(vec3 ray_dir) {
- vec3 sky_dir = normalize(mat3(bake_params.env_transform) * ray_dir);
- vec2 st = vec2(atan(sky_dir.x, sky_dir.z), acos(sky_dir.y));
- if (st.x < 0.0) {
- st.x += PI * 2.0;
- }
- return textureLod(sampler2D(environment, linear_sampler), st / vec2(PI * 2.0, PI), 0.0).rgb;
- }
- vec3 trace_indirect_light(vec3 p_position, vec3 p_ray_dir, inout uint r_noise, float p_texel_size) {
- // The lower limit considers the case where the lightmapper might have bounces disabled but light probes are requested.
- vec3 position = p_position;
- vec3 ray_dir = p_ray_dir;
- uint max_depth = max(bake_params.bounces, 1);
- vec3 throughput = vec3(1.0);
- vec3 light = vec3(0.0);
- for (uint depth = 0; depth < max_depth; depth++) {
- uint tidx;
- vec3 barycentric;
- uint trace_result = trace_ray_closest_hit_triangle(position + ray_dir * bake_params.bias, position + ray_dir * length(bake_params.world_size), tidx, barycentric);
- if (trace_result == RAY_FRONT) {
- Vertex vert0 = vertices.data[triangles.data[tidx].indices.x];
- Vertex vert1 = vertices.data[triangles.data[tidx].indices.y];
- Vertex vert2 = vertices.data[triangles.data[tidx].indices.z];
- vec3 uvw = vec3(barycentric.x * vert0.uv + barycentric.y * vert1.uv + barycentric.z * vert2.uv, float(triangles.data[tidx].slice));
- position = barycentric.x * vert0.position + barycentric.y * vert1.position + barycentric.z * vert2.position;
- vec3 norm0 = vec3(vert0.normal_xy, vert0.normal_z);
- vec3 norm1 = vec3(vert1.normal_xy, vert1.normal_z);
- vec3 norm2 = vec3(vert2.normal_xy, vert2.normal_z);
- vec3 normal = barycentric.x * norm0 + barycentric.y * norm1 + barycentric.z * norm2;
- vec3 direct_light = vec3(0.0f);
- #ifdef USE_LIGHT_TEXTURE_FOR_BOUNCES
- direct_light += textureLod(sampler2DArray(source_light, linear_sampler), uvw, 0.0).rgb;
- #else
- // Trace the lights directly. Significantly more expensive but more accurate in scenarios
- // where the lightmap texture isn't reliable.
- for (uint i = 0; i < bake_params.light_count; i++) {
- vec3 light;
- vec3 light_dir;
- trace_direct_light(position, normal, i, false, light, light_dir, r_noise, p_texel_size);
- direct_light += light * lights.data[i].indirect_energy;
- }
- direct_light *= bake_params.exposure_normalization;
- #endif
- vec3 albedo = textureLod(sampler2DArray(albedo_tex, linear_sampler), uvw, 0).rgb;
- vec3 emissive = textureLod(sampler2DArray(emission_tex, linear_sampler), uvw, 0).rgb;
- emissive *= bake_params.exposure_normalization;
- light += throughput * emissive;
- throughput *= albedo;
- light += throughput * direct_light * bake_params.bounce_indirect_energy;
- // Use Russian Roulette to determine a probability to terminate the bounce earlier as an optimization.
- // <https://computergraphics.stackexchange.com/questions/2316/is-russian-roulette-really-the-answer>
- float p = max(max(throughput.x, throughput.y), throughput.z);
- if (randomize(r_noise) > p) {
- break;
- }
- // Boost the throughput from the probability of the ray being terminated early.
- throughput *= 1.0 / p;
- // Generate a new ray direction for the next bounce from this surface's normal.
- ray_dir = generate_ray_dir_from_normal(normal, r_noise);
- } else if (trace_result == RAY_MISS) {
- // Look for the environment color and stop bouncing.
- light += throughput * trace_environment_color(ray_dir);
- break;
- } else {
- // Ignore any other trace results.
- break;
- }
- }
- return light;
- }
- #endif
- void main() {
- // Check if invocation is out of bounds.
- #ifdef MODE_LIGHT_PROBES
- int probe_index = int(gl_GlobalInvocationID.x);
- if (probe_index >= params.probe_count) {
- return;
- }
- #else
- ivec2 atlas_pos = ivec2(gl_GlobalInvocationID.xy) + params.region_ofs;
- if (any(greaterThanEqual(atlas_pos, bake_params.atlas_size))) {
- return;
- }
- #endif
- #ifdef MODE_DIRECT_LIGHT
- vec3 normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
- if (length(normal) < 0.5) {
- return; //empty texel, no process
- }
- vec3 position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
- vec4 neighbor_position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos + ivec2(1, 0), params.atlas_slice), 0).xyzw;
- if (neighbor_position.w < 0.001) {
- // Empty texel, try again.
- neighbor_position.xyz = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos + ivec2(-1, 0), params.atlas_slice), 0).xyz;
- }
- float texel_size_world_space = distance(position, neighbor_position.xyz);
- vec3 light_for_texture = vec3(0.0);
- vec3 light_for_bounces = vec3(0.0);
- #ifdef USE_SH_LIGHTMAPS
- vec4 sh_accum[4] = vec4[](
- vec4(0.0, 0.0, 0.0, 1.0),
- vec4(0.0, 0.0, 0.0, 1.0),
- vec4(0.0, 0.0, 0.0, 1.0),
- vec4(0.0, 0.0, 0.0, 1.0));
- #endif
- // Use atlas position and a prime number as the seed.
- uint noise = random_seed(ivec3(atlas_pos, 43573547));
- for (uint i = 0; i < bake_params.light_count; i++) {
- vec3 light;
- vec3 light_dir;
- trace_direct_light(position, normal, i, true, light, light_dir, noise, texel_size_world_space);
- if (lights.data[i].static_bake) {
- light_for_texture += light;
- #ifdef USE_SH_LIGHTMAPS
- // These coefficients include the factored out SH evaluation, diffuse convolution, and final application, as well as the BRDF 1/PI and the spherical monte carlo factor.
- // LO: 1/(2*sqrtPI) * 1/(2*sqrtPI) * PI * PI * 1/PI = 0.25
- // L1: sqrt(3/(4*pi)) * sqrt(3/(4*pi)) * (PI*2/3) * (2 * PI) * 1/PI = 1.0
- // Note: This only works because we aren't scaling, rotating, or combing harmonics, we are just directing applying them in the shader.
- float c[4] = float[](
- 0.25, //l0
- light_dir.y, //l1n1
- light_dir.z, //l1n0
- light_dir.x //l1p1
- );
- for (uint j = 0; j < 4; j++) {
- sh_accum[j].rgb += light * c[j] * bake_params.exposure_normalization;
- }
- #endif
- }
- light_for_bounces += light * lights.data[i].indirect_energy;
- }
- light_for_bounces *= bake_params.exposure_normalization;
- imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice), vec4(light_for_bounces, 1.0));
- #ifdef USE_SH_LIGHTMAPS
- // Keep for adding at the end.
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 0), sh_accum[0]);
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 1), sh_accum[1]);
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 2), sh_accum[2]);
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 3), sh_accum[3]);
- #else
- light_for_texture *= bake_params.exposure_normalization;
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice), vec4(light_for_texture, 1.0));
- #endif
- #endif
- #ifdef MODE_BOUNCE_LIGHT
- #ifdef USE_SH_LIGHTMAPS
- vec4 sh_accum[4] = vec4[](
- vec4(0.0, 0.0, 0.0, 1.0),
- vec4(0.0, 0.0, 0.0, 1.0),
- vec4(0.0, 0.0, 0.0, 1.0),
- vec4(0.0, 0.0, 0.0, 1.0));
- #else
- vec3 light_accum = vec3(0.0);
- #endif
- // Retrieve starting normal and position.
- vec3 normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
- if (length(normal) < 0.5) {
- // The pixel is empty, skip processing it.
- return;
- }
- vec3 position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
- int neighbor_offset = atlas_pos.x < bake_params.atlas_size.x - 1 ? 1 : -1;
- vec3 neighbor_position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos + ivec2(neighbor_offset, 0), params.atlas_slice), 0).xyz;
- float texel_size_world_space = distance(position, neighbor_position);
- uint noise = random_seed(ivec3(params.ray_from, atlas_pos));
- for (uint i = params.ray_from; i < params.ray_to; i++) {
- vec3 ray_dir = generate_ray_dir_from_normal(normal, noise);
- vec3 light = trace_indirect_light(position, ray_dir, noise, texel_size_world_space);
- #ifdef USE_SH_LIGHTMAPS
- // These coefficients include the factored out SH evaluation, diffuse convolution, and final application, as well as the BRDF 1/PI and the spherical monte carlo factor.
- // LO: 1/(2*sqrtPI) * 1/(2*sqrtPI) * PI * PI * 1/PI = 0.25
- // L1: sqrt(3/(4*pi)) * sqrt(3/(4*pi)) * (PI*2/3) * (2 * PI) * 1/PI = 1.0
- // Note: This only works because we aren't scaling, rotating, or combing harmonics, we are just directing applying them in the shader.
- float c[4] = float[](
- 0.25, //l0
- ray_dir.y, //l1n1
- ray_dir.z, //l1n0
- ray_dir.x //l1p1
- );
- for (uint j = 0; j < 4; j++) {
- sh_accum[j].rgb += light * c[j];
- }
- #else
- light_accum += light;
- #endif
- }
- // Add the averaged result to the accumulated light texture.
- #ifdef USE_SH_LIGHTMAPS
- for (int i = 0; i < 4; i++) {
- vec4 accum = imageLoad(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + i));
- accum.rgb += sh_accum[i].rgb / float(params.ray_count);
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + i), accum);
- }
- #else
- vec4 accum = imageLoad(accum_light, ivec3(atlas_pos, params.atlas_slice));
- accum.rgb += light_accum / float(params.ray_count);
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice), accum);
- #endif
- #endif
- #ifdef MODE_UNOCCLUDE
- //texel_size = 0.5;
- //compute tangents
- vec4 position_alpha = imageLoad(position, ivec3(atlas_pos, params.atlas_slice));
- if (position_alpha.a < 0.5) {
- return;
- }
- vec3 vertex_pos = position_alpha.xyz;
- vec4 normal_tsize = imageLoad(unocclude, ivec3(atlas_pos, params.atlas_slice));
- vec3 face_normal = normal_tsize.xyz;
- float texel_size = normal_tsize.w;
- vec3 v0 = abs(face_normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
- vec3 tangent = normalize(cross(v0, face_normal));
- vec3 bitangent = normalize(cross(tangent, face_normal));
- vec3 base_pos = vertex_pos + face_normal * bake_params.bias; // Raise a bit.
- vec3 rays[4] = vec3[](tangent, bitangent, -tangent, -bitangent);
- float min_d = 1e20;
- for (int i = 0; i < 4; i++) {
- vec3 ray_to = base_pos + rays[i] * texel_size;
- float d;
- vec3 norm;
- if (trace_ray_closest_hit_distance(base_pos, ray_to, d, norm) == RAY_BACK) {
- if (d < min_d) {
- // This bias needs to be greater than the regular bias, because otherwise later, rays will go the other side when pointing back.
- vertex_pos = base_pos + rays[i] * d + norm * bake_params.bias * 10.0;
- min_d = d;
- }
- }
- }
- position_alpha.xyz = vertex_pos;
- imageStore(position, ivec3(atlas_pos, params.atlas_slice), position_alpha);
- #endif
- #ifdef MODE_LIGHT_PROBES
- vec3 position = probe_positions.data[probe_index].xyz;
- vec4 probe_sh_accum[9] = vec4[](
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0));
- uint noise = random_seed(ivec3(params.ray_from, probe_index, 49502741 /* some prime */));
- for (uint i = params.ray_from; i < params.ray_to; i++) {
- vec3 ray_dir = generate_sphere_uniform_direction(noise);
- vec3 light = trace_indirect_light(position, ray_dir, noise, 0.0);
- float c[9] = float[](
- 0.282095, //l0
- 0.488603 * ray_dir.y, //l1n1
- 0.488603 * ray_dir.z, //l1n0
- 0.488603 * ray_dir.x, //l1p1
- 1.092548 * ray_dir.x * ray_dir.y, //l2n2
- 1.092548 * ray_dir.y * ray_dir.z, //l2n1
- //0.315392 * (ray_dir.x * ray_dir.x + ray_dir.y * ray_dir.y + 2.0 * ray_dir.z * ray_dir.z), //l20
- 0.315392 * (3.0 * ray_dir.z * ray_dir.z - 1.0), //l20
- 1.092548 * ray_dir.x * ray_dir.z, //l2p1
- 0.546274 * (ray_dir.x * ray_dir.x - ray_dir.y * ray_dir.y) //l2p2
- );
- for (uint j = 0; j < 9; j++) {
- probe_sh_accum[j].rgb += light * c[j];
- }
- }
- if (params.ray_from > 0) {
- for (uint j = 0; j < 9; j++) { //accum from existing
- probe_sh_accum[j] += light_probes.data[probe_index * 9 + j];
- }
- }
- if (params.ray_to == params.ray_count) {
- for (uint j = 0; j < 9; j++) { //accum from existing
- probe_sh_accum[j] *= 4.0 / float(params.ray_count);
- }
- }
- for (uint j = 0; j < 9; j++) { //accum from existing
- light_probes.data[probe_index * 9 + j] = probe_sh_accum[j];
- }
- #endif
- #ifdef MODE_DILATE
- vec4 c = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0);
- //sides first, as they are closer
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 0), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, 1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 0), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, -1), params.atlas_slice), 0);
- //endpoints second
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, -1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, -1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 1), params.atlas_slice), 0);
- //far sides third
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 0), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, 2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 0), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, -2), params.atlas_slice), 0);
- //far-mid endpoints
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, -1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, -1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, -2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, -2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 2), params.atlas_slice), 0);
- //far endpoints
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, -2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, -2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 2), params.atlas_slice), 0);
- imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice), c);
- #endif
- #ifdef MODE_DENOISE
- // Joint Non-local means (JNLM) denoiser.
- //
- // Based on YoctoImageDenoiser's JNLM implementation with corrections from "Nonlinearly Weighted First-order Regression for Denoising Monte Carlo Renderings".
- //
- // <https://github.com/ManuelPrandini/YoctoImageDenoiser/blob/06e19489dd64e47792acffde536393802ba48607/libs/yocto_extension/yocto_extension.cpp#L207>
- // <https://benedikt-bitterli.me/nfor/nfor.pdf>
- //
- // MIT License
- //
- // Copyright (c) 2020 ManuelPrandini
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- //
- // Most of the constants below have been hand-picked to fit the common scenarios lightmaps
- // are generated with, but they can be altered freely to experiment and achieve better results.
- // Half the size of the patch window around each pixel that is weighted to compute the denoised pixel.
- // A value of 1 represents a 3x3 window, a value of 2 a 5x5 window, etc.
- const int HALF_PATCH_WINDOW = 3;
- // Half the size of the search window around each pixel that is denoised and weighted to compute the denoised pixel.
- const int HALF_SEARCH_WINDOW = denoise_params.half_search_window;
- // For all of the following sigma values, smaller values will give less weight to pixels that have a bigger distance
- // in the feature being evaluated. Therefore, smaller values are likely to cause more noise to appear, but will also
- // cause less features to be erased in the process.
- // Controls how much the spatial distance of the pixels influences the denoising weight.
- const float SIGMA_SPATIAL = denoise_params.spatial_bandwidth;
- // Controls how much the light color distance of the pixels influences the denoising weight.
- const float SIGMA_LIGHT = denoise_params.light_bandwidth;
- // Controls how much the albedo color distance of the pixels influences the denoising weight.
- const float SIGMA_ALBEDO = denoise_params.albedo_bandwidth;
- // Controls how much the normal vector distance of the pixels influences the denoising weight.
- const float SIGMA_NORMAL = denoise_params.normal_bandwidth;
- // Strength of the filter. The original paper recommends values around 10 to 15 times the Sigma parameter.
- const float FILTER_VALUE = denoise_params.filter_strength * SIGMA_LIGHT;
- // Formula constants.
- const int PATCH_WINDOW_DIMENSION = (HALF_PATCH_WINDOW * 2 + 1);
- const int PATCH_WINDOW_DIMENSION_SQUARE = (PATCH_WINDOW_DIMENSION * PATCH_WINDOW_DIMENSION);
- const float TWO_SIGMA_SPATIAL_SQUARE = 2.0f * SIGMA_SPATIAL * SIGMA_SPATIAL;
- const float TWO_SIGMA_LIGHT_SQUARE = 2.0f * SIGMA_LIGHT * SIGMA_LIGHT;
- const float TWO_SIGMA_ALBEDO_SQUARE = 2.0f * SIGMA_ALBEDO * SIGMA_ALBEDO;
- const float TWO_SIGMA_NORMAL_SQUARE = 2.0f * SIGMA_NORMAL * SIGMA_NORMAL;
- const float FILTER_SQUARE_TWO_SIGMA_LIGHT_SQUARE = FILTER_VALUE * FILTER_VALUE * TWO_SIGMA_LIGHT_SQUARE;
- const float EPSILON = 1e-6f;
- #ifdef USE_SH_LIGHTMAPS
- const uint slice_count = 4;
- const uint slice_base = params.atlas_slice * slice_count;
- #else
- const uint slice_count = 1;
- const uint slice_base = params.atlas_slice;
- #endif
- for (uint i = 0; i < slice_count; i++) {
- uint lightmap_slice = slice_base + i;
- vec3 denoised_rgb = vec3(0.0f);
- vec4 input_light = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, lightmap_slice), 0);
- vec3 input_albedo = texelFetch(sampler2DArray(albedo_tex, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).rgb;
- vec3 input_normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
- if (length(input_normal) > EPSILON) {
- // Compute the denoised pixel if the normal is valid.
- float sum_weights = 0.0f;
- vec3 input_rgb = input_light.rgb;
- for (int search_y = -HALF_SEARCH_WINDOW; search_y <= HALF_SEARCH_WINDOW; search_y++) {
- for (int search_x = -HALF_SEARCH_WINDOW; search_x <= HALF_SEARCH_WINDOW; search_x++) {
- ivec2 search_pos = atlas_pos + ivec2(search_x, search_y);
- vec3 search_rgb = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(search_pos, lightmap_slice), 0).rgb;
- vec3 search_albedo = texelFetch(sampler2DArray(albedo_tex, linear_sampler), ivec3(search_pos, params.atlas_slice), 0).rgb;
- vec3 search_normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(search_pos, params.atlas_slice), 0).xyz;
- float patch_square_dist = 0.0f;
- for (int offset_y = -HALF_PATCH_WINDOW; offset_y <= HALF_PATCH_WINDOW; offset_y++) {
- for (int offset_x = -HALF_PATCH_WINDOW; offset_x <= HALF_PATCH_WINDOW; offset_x++) {
- ivec2 offset_input_pos = atlas_pos + ivec2(offset_x, offset_y);
- ivec2 offset_search_pos = search_pos + ivec2(offset_x, offset_y);
- vec3 offset_input_rgb = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(offset_input_pos, lightmap_slice), 0).rgb;
- vec3 offset_search_rgb = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(offset_search_pos, lightmap_slice), 0).rgb;
- vec3 offset_delta_rgb = offset_input_rgb - offset_search_rgb;
- patch_square_dist += dot(offset_delta_rgb, offset_delta_rgb) - TWO_SIGMA_LIGHT_SQUARE;
- }
- }
- patch_square_dist = max(0.0f, patch_square_dist / (3.0f * PATCH_WINDOW_DIMENSION_SQUARE));
- float weight = 1.0f;
- // Ignore weight if search position is out of bounds.
- weight *= step(0, search_pos.x) * step(search_pos.x, bake_params.atlas_size.x - 1);
- weight *= step(0, search_pos.y) * step(search_pos.y, bake_params.atlas_size.y - 1);
- // Ignore weight if normal is zero length.
- weight *= step(EPSILON, length(search_normal));
- // Weight with pixel distance.
- vec2 pixel_delta = vec2(search_x, search_y);
- float pixel_square_dist = dot(pixel_delta, pixel_delta);
- weight *= exp(-pixel_square_dist / TWO_SIGMA_SPATIAL_SQUARE);
- // Weight with patch.
- weight *= exp(-patch_square_dist / FILTER_SQUARE_TWO_SIGMA_LIGHT_SQUARE);
- // Weight with albedo.
- vec3 albedo_delta = input_albedo - search_albedo;
- float albedo_square_dist = dot(albedo_delta, albedo_delta);
- weight *= exp(-albedo_square_dist / TWO_SIGMA_ALBEDO_SQUARE);
- // Weight with normal.
- vec3 normal_delta = input_normal - search_normal;
- float normal_square_dist = dot(normal_delta, normal_delta);
- weight *= exp(-normal_square_dist / TWO_SIGMA_NORMAL_SQUARE);
- denoised_rgb += weight * search_rgb;
- sum_weights += weight;
- }
- }
- denoised_rgb /= sum_weights;
- } else {
- // Ignore pixels where the normal is empty, just copy the light color.
- denoised_rgb = input_light.rgb;
- }
- imageStore(dest_light, ivec3(atlas_pos, lightmap_slice), vec4(denoised_rgb, input_light.a));
- }
- #endif
- #ifdef MODE_PACK_L1_COEFFS
- vec4 base_coeff = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice * 4), 0);
- for (int i = 1; i < 4; i++) {
- vec4 c = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice * 4 + i), 0);
- if (abs(base_coeff.r) > 0.0) {
- c.r /= (base_coeff.r * 8);
- }
- if (abs(base_coeff.g) > 0.0) {
- c.g /= (base_coeff.g * 8);
- }
- if (abs(base_coeff.b) > 0.0) {
- c.b /= (base_coeff.b * 8);
- }
- c.rgb += vec3(0.5);
- c.rgb = clamp(c.rgb, vec3(0.0), vec3(1.0));
- imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice * 4 + i), c);
- }
- #endif
- }
|