123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442 |
- /**************************************************************************/
- /* godot_hinge_joint_3d.cpp */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- /*
- Adapted to Godot from the Bullet library.
- */
- /*
- Bullet Continuous Collision Detection and Physics Library
- Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
- This software is provided 'as-is', without any express or implied warranty.
- In no event will the authors be held liable for any damages arising from the use of this software.
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it freely,
- subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
- */
- #include "godot_hinge_joint_3d.h"
- GodotHingeJoint3D::GodotHingeJoint3D(GodotBody3D *rbA, GodotBody3D *rbB, const Transform3D &frameA, const Transform3D &frameB) :
- GodotJoint3D(_arr, 2) {
- A = rbA;
- B = rbB;
- m_rbAFrame = frameA;
- m_rbBFrame = frameB;
- // flip axis
- m_rbBFrame.basis[0][2] *= real_t(-1.);
- m_rbBFrame.basis[1][2] *= real_t(-1.);
- m_rbBFrame.basis[2][2] *= real_t(-1.);
- A->add_constraint(this, 0);
- B->add_constraint(this, 1);
- }
- GodotHingeJoint3D::GodotHingeJoint3D(GodotBody3D *rbA, GodotBody3D *rbB, const Vector3 &pivotInA, const Vector3 &pivotInB,
- const Vector3 &axisInA, const Vector3 &axisInB) :
- GodotJoint3D(_arr, 2) {
- A = rbA;
- B = rbB;
- m_rbAFrame.origin = pivotInA;
- // since no frame is given, assume this to be zero angle and just pick rb transform axis
- Vector3 rbAxisA1 = rbA->get_transform().basis.get_column(0);
- Vector3 rbAxisA2;
- real_t projection = axisInA.dot(rbAxisA1);
- if (projection >= 1.0f - CMP_EPSILON) {
- rbAxisA1 = -rbA->get_transform().basis.get_column(2);
- rbAxisA2 = rbA->get_transform().basis.get_column(1);
- } else if (projection <= -1.0f + CMP_EPSILON) {
- rbAxisA1 = rbA->get_transform().basis.get_column(2);
- rbAxisA2 = rbA->get_transform().basis.get_column(1);
- } else {
- rbAxisA2 = axisInA.cross(rbAxisA1);
- rbAxisA1 = rbAxisA2.cross(axisInA);
- }
- m_rbAFrame.basis = Basis(rbAxisA1.x, rbAxisA2.x, axisInA.x,
- rbAxisA1.y, rbAxisA2.y, axisInA.y,
- rbAxisA1.z, rbAxisA2.z, axisInA.z);
- Quaternion rotationArc = Quaternion(axisInA, axisInB);
- Vector3 rbAxisB1 = rotationArc.xform(rbAxisA1);
- Vector3 rbAxisB2 = axisInB.cross(rbAxisB1);
- m_rbBFrame.origin = pivotInB;
- m_rbBFrame.basis = Basis(rbAxisB1.x, rbAxisB2.x, -axisInB.x,
- rbAxisB1.y, rbAxisB2.y, -axisInB.y,
- rbAxisB1.z, rbAxisB2.z, -axisInB.z);
- A->add_constraint(this, 0);
- B->add_constraint(this, 1);
- }
- bool GodotHingeJoint3D::setup(real_t p_step) {
- dynamic_A = (A->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC);
- dynamic_B = (B->get_mode() > PhysicsServer3D::BODY_MODE_KINEMATIC);
- if (!dynamic_A && !dynamic_B) {
- return false;
- }
- m_appliedImpulse = real_t(0.);
- if (!m_angularOnly) {
- Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin);
- Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin);
- Vector3 relPos = pivotBInW - pivotAInW;
- Vector3 normal[3];
- if (Math::is_zero_approx(relPos.length_squared())) {
- normal[0] = Vector3(real_t(1.0), 0, 0);
- } else {
- normal[0] = relPos.normalized();
- }
- plane_space(normal[0], normal[1], normal[2]);
- for (int i = 0; i < 3; i++) {
- memnew_placement(
- &m_jac[i],
- GodotJacobianEntry3D(
- A->get_principal_inertia_axes().transposed(),
- B->get_principal_inertia_axes().transposed(),
- pivotAInW - A->get_transform().origin - A->get_center_of_mass(),
- pivotBInW - B->get_transform().origin - B->get_center_of_mass(),
- normal[i],
- A->get_inv_inertia(),
- A->get_inv_mass(),
- B->get_inv_inertia(),
- B->get_inv_mass()));
- }
- }
- //calculate two perpendicular jointAxis, orthogonal to hingeAxis
- //these two jointAxis require equal angular velocities for both bodies
- //this is unused for now, it's a todo
- Vector3 jointAxis0local;
- Vector3 jointAxis1local;
- plane_space(m_rbAFrame.basis.get_column(2), jointAxis0local, jointAxis1local);
- Vector3 jointAxis0 = A->get_transform().basis.xform(jointAxis0local);
- Vector3 jointAxis1 = A->get_transform().basis.xform(jointAxis1local);
- Vector3 hingeAxisWorld = A->get_transform().basis.xform(m_rbAFrame.basis.get_column(2));
- memnew_placement(
- &m_jacAng[0],
- GodotJacobianEntry3D(
- jointAxis0,
- A->get_principal_inertia_axes().transposed(),
- B->get_principal_inertia_axes().transposed(),
- A->get_inv_inertia(),
- B->get_inv_inertia()));
- memnew_placement(
- &m_jacAng[1],
- GodotJacobianEntry3D(
- jointAxis1,
- A->get_principal_inertia_axes().transposed(),
- B->get_principal_inertia_axes().transposed(),
- A->get_inv_inertia(),
- B->get_inv_inertia()));
- memnew_placement(
- &m_jacAng[2],
- GodotJacobianEntry3D(
- hingeAxisWorld,
- A->get_principal_inertia_axes().transposed(),
- B->get_principal_inertia_axes().transposed(),
- A->get_inv_inertia(),
- B->get_inv_inertia()));
- // Compute limit information
- real_t hingeAngle = get_hinge_angle();
- //set bias, sign, clear accumulator
- m_correction = real_t(0.);
- m_limitSign = real_t(0.);
- m_solveLimit = false;
- m_accLimitImpulse = real_t(0.);
- if (m_useLimit && m_lowerLimit <= m_upperLimit) {
- if (hingeAngle <= m_lowerLimit) {
- m_correction = (m_lowerLimit - hingeAngle);
- m_limitSign = 1.0f;
- m_solveLimit = true;
- } else if (hingeAngle >= m_upperLimit) {
- m_correction = m_upperLimit - hingeAngle;
- m_limitSign = -1.0f;
- m_solveLimit = true;
- }
- }
- //Compute K = J*W*J' for hinge axis
- Vector3 axisA = A->get_transform().basis.xform(m_rbAFrame.basis.get_column(2));
- m_kHinge = 1.0f / (A->compute_angular_impulse_denominator(axisA) + B->compute_angular_impulse_denominator(axisA));
- return true;
- }
- void GodotHingeJoint3D::solve(real_t p_step) {
- Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin);
- Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin);
- //real_t tau = real_t(0.3);
- //linear part
- if (!m_angularOnly) {
- Vector3 rel_pos1 = pivotAInW - A->get_transform().origin;
- Vector3 rel_pos2 = pivotBInW - B->get_transform().origin;
- Vector3 vel1 = A->get_velocity_in_local_point(rel_pos1);
- Vector3 vel2 = B->get_velocity_in_local_point(rel_pos2);
- Vector3 vel = vel1 - vel2;
- for (int i = 0; i < 3; i++) {
- const Vector3 &normal = m_jac[i].m_linearJointAxis;
- real_t jacDiagABInv = real_t(1.) / m_jac[i].getDiagonal();
- real_t rel_vel;
- rel_vel = normal.dot(vel);
- //positional error (zeroth order error)
- real_t depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
- real_t impulse = depth * tau / p_step * jacDiagABInv - rel_vel * jacDiagABInv;
- m_appliedImpulse += impulse;
- Vector3 impulse_vector = normal * impulse;
- if (dynamic_A) {
- A->apply_impulse(impulse_vector, pivotAInW - A->get_transform().origin);
- }
- if (dynamic_B) {
- B->apply_impulse(-impulse_vector, pivotBInW - B->get_transform().origin);
- }
- }
- }
- {
- ///solve angular part
- // get axes in world space
- Vector3 axisA = A->get_transform().basis.xform(m_rbAFrame.basis.get_column(2));
- Vector3 axisB = B->get_transform().basis.xform(m_rbBFrame.basis.get_column(2));
- const Vector3 &angVelA = A->get_angular_velocity();
- const Vector3 &angVelB = B->get_angular_velocity();
- Vector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA);
- Vector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB);
- Vector3 angAorthog = angVelA - angVelAroundHingeAxisA;
- Vector3 angBorthog = angVelB - angVelAroundHingeAxisB;
- Vector3 velrelOrthog = angAorthog - angBorthog;
- {
- //solve orthogonal angular velocity correction
- real_t relaxation = real_t(1.);
- real_t len = velrelOrthog.length();
- if (len > real_t(0.00001)) {
- Vector3 normal = velrelOrthog.normalized();
- real_t denom = A->compute_angular_impulse_denominator(normal) +
- B->compute_angular_impulse_denominator(normal);
- // scale for mass and relaxation
- velrelOrthog *= (real_t(1.) / denom) * m_relaxationFactor;
- }
- //solve angular positional correction
- Vector3 angularError = -axisA.cross(axisB) * (real_t(1.) / p_step);
- real_t len2 = angularError.length();
- if (len2 > real_t(0.00001)) {
- Vector3 normal2 = angularError.normalized();
- real_t denom2 = A->compute_angular_impulse_denominator(normal2) +
- B->compute_angular_impulse_denominator(normal2);
- angularError *= (real_t(1.) / denom2) * relaxation;
- }
- if (dynamic_A) {
- A->apply_torque_impulse(-velrelOrthog + angularError);
- }
- if (dynamic_B) {
- B->apply_torque_impulse(velrelOrthog - angularError);
- }
- // solve limit
- if (m_solveLimit) {
- real_t amplitude = ((angVelB - angVelA).dot(axisA) * m_relaxationFactor + m_correction * (real_t(1.) / p_step) * m_biasFactor) * m_limitSign;
- real_t impulseMag = amplitude * m_kHinge;
- // Clamp the accumulated impulse
- real_t temp = m_accLimitImpulse;
- m_accLimitImpulse = MAX(m_accLimitImpulse + impulseMag, real_t(0));
- impulseMag = m_accLimitImpulse - temp;
- Vector3 impulse = axisA * impulseMag * m_limitSign;
- if (dynamic_A) {
- A->apply_torque_impulse(impulse);
- }
- if (dynamic_B) {
- B->apply_torque_impulse(-impulse);
- }
- }
- }
- //apply motor
- if (m_enableAngularMotor) {
- //todo: add limits too
- Vector3 angularLimit(0, 0, 0);
- Vector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB;
- real_t projRelVel = velrel.dot(axisA);
- real_t desiredMotorVel = m_motorTargetVelocity;
- real_t motor_relvel = desiredMotorVel - projRelVel;
- real_t unclippedMotorImpulse = m_kHinge * motor_relvel;
- //todo: should clip against accumulated impulse
- real_t clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse;
- clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse;
- Vector3 motorImp = clippedMotorImpulse * axisA;
- if (dynamic_A) {
- A->apply_torque_impulse(motorImp + angularLimit);
- }
- if (dynamic_B) {
- B->apply_torque_impulse(-motorImp - angularLimit);
- }
- }
- }
- }
- /*
- void HingeJointSW::updateRHS(real_t timeStep)
- {
- (void)timeStep;
- }
- */
- real_t GodotHingeJoint3D::get_hinge_angle() {
- const Vector3 refAxis0 = A->get_transform().basis.xform(m_rbAFrame.basis.get_column(0));
- const Vector3 refAxis1 = A->get_transform().basis.xform(m_rbAFrame.basis.get_column(1));
- const Vector3 swingAxis = B->get_transform().basis.xform(m_rbBFrame.basis.get_column(1));
- return atan2fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
- }
- void GodotHingeJoint3D::set_param(PhysicsServer3D::HingeJointParam p_param, real_t p_value) {
- switch (p_param) {
- case PhysicsServer3D::HINGE_JOINT_BIAS:
- tau = p_value;
- break;
- case PhysicsServer3D::HINGE_JOINT_LIMIT_UPPER:
- m_upperLimit = p_value;
- break;
- case PhysicsServer3D::HINGE_JOINT_LIMIT_LOWER:
- m_lowerLimit = p_value;
- break;
- case PhysicsServer3D::HINGE_JOINT_LIMIT_BIAS:
- m_biasFactor = p_value;
- break;
- case PhysicsServer3D::HINGE_JOINT_LIMIT_SOFTNESS:
- m_limitSoftness = p_value;
- break;
- case PhysicsServer3D::HINGE_JOINT_LIMIT_RELAXATION:
- m_relaxationFactor = p_value;
- break;
- case PhysicsServer3D::HINGE_JOINT_MOTOR_TARGET_VELOCITY:
- m_motorTargetVelocity = p_value;
- break;
- case PhysicsServer3D::HINGE_JOINT_MOTOR_MAX_IMPULSE:
- m_maxMotorImpulse = p_value;
- break;
- case PhysicsServer3D::HINGE_JOINT_MAX:
- break; // Can't happen, but silences warning
- }
- }
- real_t GodotHingeJoint3D::get_param(PhysicsServer3D::HingeJointParam p_param) const {
- switch (p_param) {
- case PhysicsServer3D::HINGE_JOINT_BIAS:
- return tau;
- case PhysicsServer3D::HINGE_JOINT_LIMIT_UPPER:
- return m_upperLimit;
- case PhysicsServer3D::HINGE_JOINT_LIMIT_LOWER:
- return m_lowerLimit;
- case PhysicsServer3D::HINGE_JOINT_LIMIT_BIAS:
- return m_biasFactor;
- case PhysicsServer3D::HINGE_JOINT_LIMIT_SOFTNESS:
- return m_limitSoftness;
- case PhysicsServer3D::HINGE_JOINT_LIMIT_RELAXATION:
- return m_relaxationFactor;
- case PhysicsServer3D::HINGE_JOINT_MOTOR_TARGET_VELOCITY:
- return m_motorTargetVelocity;
- case PhysicsServer3D::HINGE_JOINT_MOTOR_MAX_IMPULSE:
- return m_maxMotorImpulse;
- case PhysicsServer3D::HINGE_JOINT_MAX:
- break; // Can't happen, but silences warning
- }
- return 0;
- }
- void GodotHingeJoint3D::set_flag(PhysicsServer3D::HingeJointFlag p_flag, bool p_value) {
- switch (p_flag) {
- case PhysicsServer3D::HINGE_JOINT_FLAG_USE_LIMIT:
- m_useLimit = p_value;
- break;
- case PhysicsServer3D::HINGE_JOINT_FLAG_ENABLE_MOTOR:
- m_enableAngularMotor = p_value;
- break;
- case PhysicsServer3D::HINGE_JOINT_FLAG_MAX:
- break; // Can't happen, but silences warning
- }
- }
- bool GodotHingeJoint3D::get_flag(PhysicsServer3D::HingeJointFlag p_flag) const {
- switch (p_flag) {
- case PhysicsServer3D::HINGE_JOINT_FLAG_USE_LIMIT:
- return m_useLimit;
- case PhysicsServer3D::HINGE_JOINT_FLAG_ENABLE_MOTOR:
- return m_enableAngularMotor;
- case PhysicsServer3D::HINGE_JOINT_FLAG_MAX:
- break; // Can't happen, but silences warning
- }
- return false;
- }
|