vector2.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. /**************************************************************************/
  2. /* vector2.h */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #ifndef VECTOR2_H
  31. #define VECTOR2_H
  32. #include "core/error/error_macros.h"
  33. #include "core/math/math_funcs.h"
  34. class String;
  35. struct Vector2i;
  36. struct [[nodiscard]] Vector2 {
  37. static const int AXIS_COUNT = 2;
  38. enum Axis {
  39. AXIS_X,
  40. AXIS_Y,
  41. };
  42. union {
  43. struct {
  44. union {
  45. real_t x;
  46. real_t width;
  47. };
  48. union {
  49. real_t y;
  50. real_t height;
  51. };
  52. };
  53. real_t coord[2] = { 0 };
  54. };
  55. _FORCE_INLINE_ real_t &operator[](int p_axis) {
  56. DEV_ASSERT((unsigned int)p_axis < 2);
  57. return coord[p_axis];
  58. }
  59. _FORCE_INLINE_ const real_t &operator[](int p_axis) const {
  60. DEV_ASSERT((unsigned int)p_axis < 2);
  61. return coord[p_axis];
  62. }
  63. _FORCE_INLINE_ Vector2::Axis min_axis_index() const {
  64. return x < y ? Vector2::AXIS_X : Vector2::AXIS_Y;
  65. }
  66. _FORCE_INLINE_ Vector2::Axis max_axis_index() const {
  67. return x < y ? Vector2::AXIS_Y : Vector2::AXIS_X;
  68. }
  69. void normalize();
  70. Vector2 normalized() const;
  71. bool is_normalized() const;
  72. real_t length() const;
  73. real_t length_squared() const;
  74. Vector2 limit_length(real_t p_len = 1.0) const;
  75. Vector2 min(const Vector2 &p_vector2) const {
  76. return Vector2(MIN(x, p_vector2.x), MIN(y, p_vector2.y));
  77. }
  78. Vector2 minf(real_t p_scalar) const {
  79. return Vector2(MIN(x, p_scalar), MIN(y, p_scalar));
  80. }
  81. Vector2 max(const Vector2 &p_vector2) const {
  82. return Vector2(MAX(x, p_vector2.x), MAX(y, p_vector2.y));
  83. }
  84. Vector2 maxf(real_t p_scalar) const {
  85. return Vector2(MAX(x, p_scalar), MAX(y, p_scalar));
  86. }
  87. real_t distance_to(const Vector2 &p_vector2) const;
  88. real_t distance_squared_to(const Vector2 &p_vector2) const;
  89. real_t angle_to(const Vector2 &p_vector2) const;
  90. real_t angle_to_point(const Vector2 &p_vector2) const;
  91. _FORCE_INLINE_ Vector2 direction_to(const Vector2 &p_to) const;
  92. real_t dot(const Vector2 &p_other) const;
  93. real_t cross(const Vector2 &p_other) const;
  94. Vector2 posmod(real_t p_mod) const;
  95. Vector2 posmodv(const Vector2 &p_modv) const;
  96. Vector2 project(const Vector2 &p_to) const;
  97. Vector2 plane_project(real_t p_d, const Vector2 &p_vec) const;
  98. _FORCE_INLINE_ Vector2 lerp(const Vector2 &p_to, real_t p_weight) const;
  99. _FORCE_INLINE_ Vector2 slerp(const Vector2 &p_to, real_t p_weight) const;
  100. _FORCE_INLINE_ Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const;
  101. _FORCE_INLINE_ Vector2 cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight, real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const;
  102. _FORCE_INLINE_ Vector2 bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, real_t p_t) const;
  103. _FORCE_INLINE_ Vector2 bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, real_t p_t) const;
  104. Vector2 move_toward(const Vector2 &p_to, real_t p_delta) const;
  105. Vector2 slide(const Vector2 &p_normal) const;
  106. Vector2 bounce(const Vector2 &p_normal) const;
  107. Vector2 reflect(const Vector2 &p_normal) const;
  108. bool is_equal_approx(const Vector2 &p_v) const;
  109. bool is_zero_approx() const;
  110. bool is_finite() const;
  111. Vector2 operator+(const Vector2 &p_v) const;
  112. void operator+=(const Vector2 &p_v);
  113. Vector2 operator-(const Vector2 &p_v) const;
  114. void operator-=(const Vector2 &p_v);
  115. Vector2 operator*(const Vector2 &p_v1) const;
  116. Vector2 operator*(real_t p_rvalue) const;
  117. void operator*=(real_t p_rvalue);
  118. void operator*=(const Vector2 &p_rvalue) { *this = *this * p_rvalue; }
  119. Vector2 operator/(const Vector2 &p_v1) const;
  120. Vector2 operator/(real_t p_rvalue) const;
  121. void operator/=(real_t p_rvalue);
  122. void operator/=(const Vector2 &p_rvalue) { *this = *this / p_rvalue; }
  123. Vector2 operator-() const;
  124. bool operator==(const Vector2 &p_vec2) const;
  125. bool operator!=(const Vector2 &p_vec2) const;
  126. bool operator<(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y < p_vec2.y) : (x < p_vec2.x); }
  127. bool operator>(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y > p_vec2.y) : (x > p_vec2.x); }
  128. bool operator<=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y <= p_vec2.y) : (x < p_vec2.x); }
  129. bool operator>=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y >= p_vec2.y) : (x > p_vec2.x); }
  130. real_t angle() const;
  131. static Vector2 from_angle(real_t p_angle);
  132. _FORCE_INLINE_ Vector2 abs() const {
  133. return Vector2(Math::abs(x), Math::abs(y));
  134. }
  135. Vector2 rotated(real_t p_by) const;
  136. Vector2 orthogonal() const {
  137. return Vector2(y, -x);
  138. }
  139. Vector2 sign() const;
  140. Vector2 floor() const;
  141. Vector2 ceil() const;
  142. Vector2 round() const;
  143. Vector2 snapped(const Vector2 &p_by) const;
  144. Vector2 snappedf(real_t p_by) const;
  145. Vector2 clamp(const Vector2 &p_min, const Vector2 &p_max) const;
  146. Vector2 clampf(real_t p_min, real_t p_max) const;
  147. real_t aspect() const { return width / height; }
  148. operator String() const;
  149. operator Vector2i() const;
  150. _FORCE_INLINE_ Vector2() {}
  151. _FORCE_INLINE_ Vector2(real_t p_x, real_t p_y) {
  152. x = p_x;
  153. y = p_y;
  154. }
  155. };
  156. _FORCE_INLINE_ Vector2 Vector2::plane_project(real_t p_d, const Vector2 &p_vec) const {
  157. return p_vec - *this * (dot(p_vec) - p_d);
  158. }
  159. _FORCE_INLINE_ Vector2 Vector2::operator+(const Vector2 &p_v) const {
  160. return Vector2(x + p_v.x, y + p_v.y);
  161. }
  162. _FORCE_INLINE_ void Vector2::operator+=(const Vector2 &p_v) {
  163. x += p_v.x;
  164. y += p_v.y;
  165. }
  166. _FORCE_INLINE_ Vector2 Vector2::operator-(const Vector2 &p_v) const {
  167. return Vector2(x - p_v.x, y - p_v.y);
  168. }
  169. _FORCE_INLINE_ void Vector2::operator-=(const Vector2 &p_v) {
  170. x -= p_v.x;
  171. y -= p_v.y;
  172. }
  173. _FORCE_INLINE_ Vector2 Vector2::operator*(const Vector2 &p_v1) const {
  174. return Vector2(x * p_v1.x, y * p_v1.y);
  175. }
  176. _FORCE_INLINE_ Vector2 Vector2::operator*(real_t p_rvalue) const {
  177. return Vector2(x * p_rvalue, y * p_rvalue);
  178. }
  179. _FORCE_INLINE_ void Vector2::operator*=(real_t p_rvalue) {
  180. x *= p_rvalue;
  181. y *= p_rvalue;
  182. }
  183. _FORCE_INLINE_ Vector2 Vector2::operator/(const Vector2 &p_v1) const {
  184. return Vector2(x / p_v1.x, y / p_v1.y);
  185. }
  186. _FORCE_INLINE_ Vector2 Vector2::operator/(real_t p_rvalue) const {
  187. return Vector2(x / p_rvalue, y / p_rvalue);
  188. }
  189. _FORCE_INLINE_ void Vector2::operator/=(real_t p_rvalue) {
  190. x /= p_rvalue;
  191. y /= p_rvalue;
  192. }
  193. _FORCE_INLINE_ Vector2 Vector2::operator-() const {
  194. return Vector2(-x, -y);
  195. }
  196. _FORCE_INLINE_ bool Vector2::operator==(const Vector2 &p_vec2) const {
  197. return x == p_vec2.x && y == p_vec2.y;
  198. }
  199. _FORCE_INLINE_ bool Vector2::operator!=(const Vector2 &p_vec2) const {
  200. return x != p_vec2.x || y != p_vec2.y;
  201. }
  202. Vector2 Vector2::lerp(const Vector2 &p_to, real_t p_weight) const {
  203. Vector2 res = *this;
  204. res.x = Math::lerp(res.x, p_to.x, p_weight);
  205. res.y = Math::lerp(res.y, p_to.y, p_weight);
  206. return res;
  207. }
  208. Vector2 Vector2::slerp(const Vector2 &p_to, real_t p_weight) const {
  209. real_t start_length_sq = length_squared();
  210. real_t end_length_sq = p_to.length_squared();
  211. if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) {
  212. // Zero length vectors have no angle, so the best we can do is either lerp or throw an error.
  213. return lerp(p_to, p_weight);
  214. }
  215. real_t start_length = Math::sqrt(start_length_sq);
  216. real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight);
  217. real_t angle = angle_to(p_to);
  218. return rotated(angle * p_weight) * (result_length / start_length);
  219. }
  220. Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const {
  221. Vector2 res = *this;
  222. res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight);
  223. res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight);
  224. return res;
  225. }
  226. Vector2 Vector2::cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight, real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const {
  227. Vector2 res = *this;
  228. res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
  229. res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
  230. return res;
  231. }
  232. Vector2 Vector2::bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, real_t p_t) const {
  233. Vector2 res = *this;
  234. res.x = Math::bezier_interpolate(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t);
  235. res.y = Math::bezier_interpolate(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t);
  236. return res;
  237. }
  238. Vector2 Vector2::bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, real_t p_t) const {
  239. Vector2 res = *this;
  240. res.x = Math::bezier_derivative(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t);
  241. res.y = Math::bezier_derivative(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t);
  242. return res;
  243. }
  244. Vector2 Vector2::direction_to(const Vector2 &p_to) const {
  245. Vector2 ret(p_to.x - x, p_to.y - y);
  246. ret.normalize();
  247. return ret;
  248. }
  249. // Multiplication operators required to workaround issues with LLVM using implicit conversion
  250. // to Vector2i instead for integers where it should not.
  251. _FORCE_INLINE_ Vector2 operator*(float p_scalar, const Vector2 &p_vec) {
  252. return p_vec * p_scalar;
  253. }
  254. _FORCE_INLINE_ Vector2 operator*(double p_scalar, const Vector2 &p_vec) {
  255. return p_vec * p_scalar;
  256. }
  257. _FORCE_INLINE_ Vector2 operator*(int32_t p_scalar, const Vector2 &p_vec) {
  258. return p_vec * p_scalar;
  259. }
  260. _FORCE_INLINE_ Vector2 operator*(int64_t p_scalar, const Vector2 &p_vec) {
  261. return p_vec * p_scalar;
  262. }
  263. typedef Vector2 Size2;
  264. typedef Vector2 Point2;
  265. #endif // VECTOR2_H