123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503 |
- /**************************************************************************/
- /* geometry_2d.h */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #ifndef GEOMETRY_2D_H
- #define GEOMETRY_2D_H
- #include "core/math/delaunay_2d.h"
- #include "core/math/math_funcs.h"
- #include "core/math/triangulate.h"
- #include "core/math/vector2.h"
- #include "core/math/vector2i.h"
- #include "core/math/vector3.h"
- #include "core/math/vector3i.h"
- #include "core/templates/vector.h"
- class Geometry2D {
- public:
- static real_t get_closest_points_between_segments(const Vector2 &p1, const Vector2 &q1, const Vector2 &p2, const Vector2 &q2, Vector2 &c1, Vector2 &c2) {
- Vector2 d1 = q1 - p1; // Direction vector of segment S1.
- Vector2 d2 = q2 - p2; // Direction vector of segment S2.
- Vector2 r = p1 - p2;
- real_t a = d1.dot(d1); // Squared length of segment S1, always nonnegative.
- real_t e = d2.dot(d2); // Squared length of segment S2, always nonnegative.
- real_t f = d2.dot(r);
- real_t s, t;
- // Check if either or both segments degenerate into points.
- if (a <= (real_t)CMP_EPSILON && e <= (real_t)CMP_EPSILON) {
- // Both segments degenerate into points.
- c1 = p1;
- c2 = p2;
- return Math::sqrt((c1 - c2).dot(c1 - c2));
- }
- if (a <= (real_t)CMP_EPSILON) {
- // First segment degenerates into a point.
- s = 0.0;
- t = f / e; // s = 0 => t = (b*s + f) / e = f / e
- t = CLAMP(t, 0.0f, 1.0f);
- } else {
- real_t c = d1.dot(r);
- if (e <= (real_t)CMP_EPSILON) {
- // Second segment degenerates into a point.
- t = 0.0;
- s = CLAMP(-c / a, 0.0f, 1.0f); // t = 0 => s = (b*t - c) / a = -c / a
- } else {
- // The general nondegenerate case starts here.
- real_t b = d1.dot(d2);
- real_t denom = a * e - b * b; // Always nonnegative.
- // If segments not parallel, compute closest point on L1 to L2 and
- // clamp to segment S1. Else pick arbitrary s (here 0).
- if (denom != 0.0f) {
- s = CLAMP((b * f - c * e) / denom, 0.0f, 1.0f);
- } else {
- s = 0.0;
- }
- // Compute point on L2 closest to S1(s) using
- // t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e
- t = (b * s + f) / e;
- //If t in [0,1] done. Else clamp t, recompute s for the new value
- // of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
- // and clamp s to [0, 1].
- if (t < 0.0f) {
- t = 0.0;
- s = CLAMP(-c / a, 0.0f, 1.0f);
- } else if (t > 1.0f) {
- t = 1.0;
- s = CLAMP((b - c) / a, 0.0f, 1.0f);
- }
- }
- }
- c1 = p1 + d1 * s;
- c2 = p2 + d2 * t;
- return Math::sqrt((c1 - c2).dot(c1 - c2));
- }
- static Vector2 get_closest_point_to_segment(const Vector2 &p_point, const Vector2 *p_segment) {
- Vector2 p = p_point - p_segment[0];
- Vector2 n = p_segment[1] - p_segment[0];
- real_t l2 = n.length_squared();
- if (l2 < 1e-20f) {
- return p_segment[0]; // Both points are the same, just give any.
- }
- real_t d = n.dot(p) / l2;
- if (d <= 0.0f) {
- return p_segment[0]; // Before first point.
- } else if (d >= 1.0f) {
- return p_segment[1]; // After first point.
- } else {
- return p_segment[0] + n * d; // Inside.
- }
- }
- static real_t get_distance_to_segment(const Vector2 &p_point, const Vector2 *p_segment) {
- return p_point.distance_to(get_closest_point_to_segment(p_point, p_segment));
- }
- static bool is_point_in_triangle(const Vector2 &s, const Vector2 &a, const Vector2 &b, const Vector2 &c) {
- Vector2 an = a - s;
- Vector2 bn = b - s;
- Vector2 cn = c - s;
- bool orientation = an.cross(bn) > 0;
- if ((bn.cross(cn) > 0) != orientation) {
- return false;
- }
- return (cn.cross(an) > 0) == orientation;
- }
- static Vector2 get_closest_point_to_segment_uncapped(const Vector2 &p_point, const Vector2 *p_segment) {
- Vector2 p = p_point - p_segment[0];
- Vector2 n = p_segment[1] - p_segment[0];
- real_t l2 = n.length_squared();
- if (l2 < 1e-20f) {
- return p_segment[0]; // Both points are the same, just give any.
- }
- real_t d = n.dot(p) / l2;
- return p_segment[0] + n * d; // Inside.
- }
- // Disable False Positives in MSVC compiler; we correctly check for 0 here to prevent a division by 0.
- // See: https://github.com/godotengine/godot/pull/44274
- #ifdef _MSC_VER
- #pragma warning(disable : 4723)
- #endif
- static bool line_intersects_line(const Vector2 &p_from_a, const Vector2 &p_dir_a, const Vector2 &p_from_b, const Vector2 &p_dir_b, Vector2 &r_result) {
- // See http://paulbourke.net/geometry/pointlineplane/
- const real_t denom = p_dir_b.y * p_dir_a.x - p_dir_b.x * p_dir_a.y;
- if (Math::is_zero_approx(denom)) { // Parallel?
- return false;
- }
- const Vector2 v = p_from_a - p_from_b;
- const real_t t = (p_dir_b.x * v.y - p_dir_b.y * v.x) / denom;
- r_result = p_from_a + t * p_dir_a;
- return true;
- }
- // Re-enable division by 0 warning
- #ifdef _MSC_VER
- #pragma warning(default : 4723)
- #endif
- static bool segment_intersects_segment(const Vector2 &p_from_a, const Vector2 &p_to_a, const Vector2 &p_from_b, const Vector2 &p_to_b, Vector2 *r_result) {
- Vector2 B = p_to_a - p_from_a;
- Vector2 C = p_from_b - p_from_a;
- Vector2 D = p_to_b - p_from_a;
- real_t ABlen = B.dot(B);
- if (ABlen <= 0) {
- return false;
- }
- Vector2 Bn = B / ABlen;
- C = Vector2(C.x * Bn.x + C.y * Bn.y, C.y * Bn.x - C.x * Bn.y);
- D = Vector2(D.x * Bn.x + D.y * Bn.y, D.y * Bn.x - D.x * Bn.y);
- // Fail if C x B and D x B have the same sign (segments don't intersect).
- if ((C.y < (real_t)-CMP_EPSILON && D.y < (real_t)-CMP_EPSILON) || (C.y > (real_t)CMP_EPSILON && D.y > (real_t)CMP_EPSILON)) {
- return false;
- }
- // Fail if segments are parallel or colinear.
- // (when A x B == zero, i.e (C - D) x B == zero, i.e C x B == D x B)
- if (Math::is_equal_approx(C.y, D.y)) {
- return false;
- }
- real_t ABpos = D.x + (C.x - D.x) * D.y / (D.y - C.y);
- // Fail if segment C-D crosses line A-B outside of segment A-B.
- if ((ABpos < 0) || (ABpos > 1)) {
- return false;
- }
- // Apply the discovered position to line A-B in the original coordinate system.
- if (r_result) {
- *r_result = p_from_a + B * ABpos;
- }
- return true;
- }
- static inline bool is_point_in_circle(const Vector2 &p_point, const Vector2 &p_circle_pos, real_t p_circle_radius) {
- return p_point.distance_squared_to(p_circle_pos) <= p_circle_radius * p_circle_radius;
- }
- static real_t segment_intersects_circle(const Vector2 &p_from, const Vector2 &p_to, const Vector2 &p_circle_pos, real_t p_circle_radius) {
- Vector2 line_vec = p_to - p_from;
- Vector2 vec_to_line = p_from - p_circle_pos;
- // Create a quadratic formula of the form ax^2 + bx + c = 0
- real_t a, b, c;
- a = line_vec.dot(line_vec);
- b = 2 * vec_to_line.dot(line_vec);
- c = vec_to_line.dot(vec_to_line) - p_circle_radius * p_circle_radius;
- // Solve for t.
- real_t sqrtterm = b * b - 4 * a * c;
- // If the term we intend to square root is less than 0 then the answer won't be real,
- // so it definitely won't be t in the range 0 to 1.
- if (sqrtterm < 0) {
- return -1;
- }
- // If we can assume that the line segment starts outside the circle (e.g. for continuous time collision detection)
- // then the following can be skipped and we can just return the equivalent of res1.
- sqrtterm = Math::sqrt(sqrtterm);
- real_t res1 = (-b - sqrtterm) / (2 * a);
- real_t res2 = (-b + sqrtterm) / (2 * a);
- if (res1 >= 0 && res1 <= 1) {
- return res1;
- }
- if (res2 >= 0 && res2 <= 1) {
- return res2;
- }
- return -1;
- }
- static bool segment_intersects_rect(const Vector2 &p_from, const Vector2 &p_to, const Rect2 &p_rect) {
- if (p_rect.has_point(p_from) || p_rect.has_point(p_to)) {
- return true;
- }
- const Vector2 rect_points[4] = {
- p_rect.position,
- p_rect.position + Vector2(p_rect.size.x, 0),
- p_rect.position + p_rect.size,
- p_rect.position + Vector2(0, p_rect.size.y)
- };
- // Check if any of the rect's edges intersect the segment.
- for (int i = 0; i < 4; i++) {
- if (segment_intersects_segment(p_from, p_to, rect_points[i], rect_points[(i + 1) % 4], nullptr)) {
- return true;
- }
- }
- return false;
- }
- enum PolyBooleanOperation {
- OPERATION_UNION,
- OPERATION_DIFFERENCE,
- OPERATION_INTERSECTION,
- OPERATION_XOR
- };
- enum PolyJoinType {
- JOIN_SQUARE,
- JOIN_ROUND,
- JOIN_MITER
- };
- enum PolyEndType {
- END_POLYGON,
- END_JOINED,
- END_BUTT,
- END_SQUARE,
- END_ROUND
- };
- static Vector<Vector<Point2>> merge_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
- return _polypaths_do_operation(OPERATION_UNION, p_polygon_a, p_polygon_b);
- }
- static Vector<Vector<Point2>> clip_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
- return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polygon_a, p_polygon_b);
- }
- static Vector<Vector<Point2>> intersect_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
- return _polypaths_do_operation(OPERATION_INTERSECTION, p_polygon_a, p_polygon_b);
- }
- static Vector<Vector<Point2>> exclude_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
- return _polypaths_do_operation(OPERATION_XOR, p_polygon_a, p_polygon_b);
- }
- static Vector<Vector<Point2>> clip_polyline_with_polygon(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
- return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polyline, p_polygon, true);
- }
- static Vector<Vector<Point2>> intersect_polyline_with_polygon(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
- return _polypaths_do_operation(OPERATION_INTERSECTION, p_polyline, p_polygon, true);
- }
- static Vector<Vector<Point2>> offset_polygon(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type) {
- return _polypath_offset(p_polygon, p_delta, p_join_type, END_POLYGON);
- }
- static Vector<Vector<Point2>> offset_polyline(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
- ERR_FAIL_COND_V_MSG(p_end_type == END_POLYGON, Vector<Vector<Point2>>(), "Attempt to offset a polyline like a polygon (use offset_polygon instead).");
- return _polypath_offset(p_polygon, p_delta, p_join_type, p_end_type);
- }
- static Vector<int> triangulate_delaunay(const Vector<Vector2> &p_points) {
- Vector<Delaunay2D::Triangle> tr = Delaunay2D::triangulate(p_points);
- Vector<int> triangles;
- triangles.resize(3 * tr.size());
- int *ptr = triangles.ptrw();
- for (int i = 0; i < tr.size(); i++) {
- *ptr++ = tr[i].points[0];
- *ptr++ = tr[i].points[1];
- *ptr++ = tr[i].points[2];
- }
- return triangles;
- }
- static Vector<int> triangulate_polygon(const Vector<Vector2> &p_polygon) {
- Vector<int> triangles;
- if (!Triangulate::triangulate(p_polygon, triangles)) {
- return Vector<int>(); //fail
- }
- return triangles;
- }
- // Assumes cartesian coordinate system with +x to the right, +y up.
- // If using screen coordinates (+x to the right, +y down) the result will need to be flipped.
- static bool is_polygon_clockwise(const Vector<Vector2> &p_polygon) {
- int c = p_polygon.size();
- if (c < 3) {
- return false;
- }
- const Vector2 *p = p_polygon.ptr();
- real_t sum = 0;
- for (int i = 0; i < c; i++) {
- const Vector2 &v1 = p[i];
- const Vector2 &v2 = p[(i + 1) % c];
- sum += (v2.x - v1.x) * (v2.y + v1.y);
- }
- return sum > 0.0f;
- }
- // Alternate implementation that should be faster.
- static bool is_point_in_polygon(const Vector2 &p_point, const Vector<Vector2> &p_polygon) {
- int c = p_polygon.size();
- if (c < 3) {
- return false;
- }
- const Vector2 *p = p_polygon.ptr();
- Vector2 further_away(-1e20, -1e20);
- Vector2 further_away_opposite(1e20, 1e20);
- for (int i = 0; i < c; i++) {
- further_away = further_away.max(p[i]);
- further_away_opposite = further_away_opposite.min(p[i]);
- }
- // Make point outside that won't intersect with points in segment from p_point.
- further_away += (further_away - further_away_opposite) * Vector2(1.221313, 1.512312);
- int intersections = 0;
- for (int i = 0; i < c; i++) {
- const Vector2 &v1 = p[i];
- const Vector2 &v2 = p[(i + 1) % c];
- Vector2 res;
- if (segment_intersects_segment(v1, v2, p_point, further_away, &res)) {
- intersections++;
- if (res.is_equal_approx(p_point)) {
- // Point is in one of the polygon edges.
- return true;
- }
- }
- }
- return (intersections & 1);
- }
- static bool is_segment_intersecting_polygon(const Vector2 &p_from, const Vector2 &p_to, const Vector<Vector2> &p_polygon) {
- int c = p_polygon.size();
- const Vector2 *p = p_polygon.ptr();
- for (int i = 0; i < c; i++) {
- const Vector2 &v1 = p[i];
- const Vector2 &v2 = p[(i + 1) % c];
- if (segment_intersects_segment(p_from, p_to, v1, v2, nullptr)) {
- return true;
- }
- }
- return false;
- }
- static real_t vec2_cross(const Point2 &O, const Point2 &A, const Point2 &B) {
- return (real_t)(A.x - O.x) * (B.y - O.y) - (real_t)(A.y - O.y) * (B.x - O.x);
- }
- // Returns a list of points on the convex hull in counter-clockwise order.
- // Note: the last point in the returned list is the same as the first one.
- static Vector<Point2> convex_hull(Vector<Point2> P) {
- int n = P.size(), k = 0;
- Vector<Point2> H;
- H.resize(2 * n);
- // Sort points lexicographically.
- P.sort();
- // Build lower hull.
- for (int i = 0; i < n; ++i) {
- while (k >= 2 && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) {
- k--;
- }
- H.write[k++] = P[i];
- }
- // Build upper hull.
- for (int i = n - 2, t = k + 1; i >= 0; i--) {
- while (k >= t && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) {
- k--;
- }
- H.write[k++] = P[i];
- }
- H.resize(k);
- return H;
- }
- static Vector<Point2i> bresenham_line(const Point2i &p_from, const Point2i &p_to) {
- Vector<Point2i> points;
- Vector2i delta = (p_to - p_from).abs() * 2;
- Vector2i step = (p_to - p_from).sign();
- Vector2i current = p_from;
- if (delta.x > delta.y) {
- int err = delta.x / 2;
- for (; current.x != p_to.x; current.x += step.x) {
- points.push_back(current);
- err -= delta.y;
- if (err < 0) {
- current.y += step.y;
- err += delta.x;
- }
- }
- } else {
- int err = delta.y / 2;
- for (; current.y != p_to.y; current.y += step.y) {
- points.push_back(current);
- err -= delta.x;
- if (err < 0) {
- current.x += step.x;
- err += delta.y;
- }
- }
- }
- points.push_back(current);
- return points;
- }
- static Vector<Vector<Vector2>> decompose_polygon_in_convex(const Vector<Point2> &polygon);
- static void make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size);
- static Vector<Vector3i> partial_pack_rects(const Vector<Vector2i> &p_sizes, const Size2i &p_atlas_size);
- private:
- static Vector<Vector<Point2>> _polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open = false);
- static Vector<Vector<Point2>> _polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type);
- };
- #endif // GEOMETRY_2D_H
|