aabb.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396
  1. /*************************************************************************/
  2. /* aabb.h */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #ifndef AABB_H
  31. #define AABB_H
  32. #include "core/math/math_defs.h"
  33. #include "core/math/plane.h"
  34. #include "core/math/vector3.h"
  35. /**
  36. * AABB / AABB (Axis Aligned Bounding Box)
  37. * This is implemented by a point (position) and the box size
  38. */
  39. class AABB {
  40. public:
  41. Vector3 position;
  42. Vector3 size;
  43. real_t get_area() const; /// get area
  44. _FORCE_INLINE_ bool has_no_area() const {
  45. return (size.x <= 0 || size.y <= 0 || size.z <= 0);
  46. }
  47. _FORCE_INLINE_ bool has_no_surface() const {
  48. return (size.x <= 0 && size.y <= 0 && size.z <= 0);
  49. }
  50. const Vector3 &get_position() const { return position; }
  51. void set_position(const Vector3 &p_pos) { position = p_pos; }
  52. const Vector3 &get_size() const { return size; }
  53. void set_size(const Vector3 &p_size) { size = p_size; }
  54. bool operator==(const AABB &p_rval) const;
  55. bool operator!=(const AABB &p_rval) const;
  56. bool is_equal_approx(const AABB &p_aabb) const;
  57. _FORCE_INLINE_ bool intersects(const AABB &p_aabb) const; /// Both AABBs overlap
  58. _FORCE_INLINE_ bool intersects_inclusive(const AABB &p_aabb) const; /// Both AABBs (or their faces) overlap
  59. _FORCE_INLINE_ bool encloses(const AABB &p_aabb) const; /// p_aabb is completely inside this
  60. AABB merge(const AABB &p_with) const;
  61. void merge_with(const AABB &p_aabb); ///merge with another AABB
  62. AABB intersection(const AABB &p_aabb) const; ///get box where two intersect, empty if no intersection occurs
  63. bool intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_clip = NULL, Vector3 *r_normal = NULL) const;
  64. bool intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, Vector3 *r_clip = NULL, Vector3 *r_normal = NULL) const;
  65. _FORCE_INLINE_ bool smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const;
  66. _FORCE_INLINE_ bool intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const;
  67. _FORCE_INLINE_ bool inside_convex_shape(const Plane *p_planes, int p_plane_count) const;
  68. bool intersects_plane(const Plane &p_plane) const;
  69. _FORCE_INLINE_ bool has_point(const Vector3 &p_point) const;
  70. _FORCE_INLINE_ Vector3 get_support(const Vector3 &p_normal) const;
  71. Vector3 get_longest_axis() const;
  72. int get_longest_axis_index() const;
  73. _FORCE_INLINE_ real_t get_longest_axis_size() const;
  74. Vector3 get_shortest_axis() const;
  75. int get_shortest_axis_index() const;
  76. _FORCE_INLINE_ real_t get_shortest_axis_size() const;
  77. AABB grow(real_t p_by) const;
  78. _FORCE_INLINE_ void grow_by(real_t p_amount);
  79. void get_edge(int p_edge, Vector3 &r_from, Vector3 &r_to) const;
  80. _FORCE_INLINE_ Vector3 get_endpoint(int p_point) const;
  81. AABB expand(const Vector3 &p_vector) const;
  82. _FORCE_INLINE_ void project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const;
  83. _FORCE_INLINE_ void expand_to(const Vector3 &p_vector); /** expand to contain a point if necessary */
  84. _FORCE_INLINE_ AABB abs() const {
  85. return AABB(Vector3(position.x + MIN(size.x, 0), position.y + MIN(size.y, 0), position.z + MIN(size.z, 0)), size.abs());
  86. }
  87. operator String() const;
  88. _FORCE_INLINE_ AABB() {}
  89. inline AABB(const Vector3 &p_pos, const Vector3 &p_size) :
  90. position(p_pos),
  91. size(p_size) {
  92. }
  93. };
  94. inline bool AABB::intersects(const AABB &p_aabb) const {
  95. if (position.x >= (p_aabb.position.x + p_aabb.size.x))
  96. return false;
  97. if ((position.x + size.x) <= p_aabb.position.x)
  98. return false;
  99. if (position.y >= (p_aabb.position.y + p_aabb.size.y))
  100. return false;
  101. if ((position.y + size.y) <= p_aabb.position.y)
  102. return false;
  103. if (position.z >= (p_aabb.position.z + p_aabb.size.z))
  104. return false;
  105. if ((position.z + size.z) <= p_aabb.position.z)
  106. return false;
  107. return true;
  108. }
  109. inline bool AABB::intersects_inclusive(const AABB &p_aabb) const {
  110. if (position.x > (p_aabb.position.x + p_aabb.size.x))
  111. return false;
  112. if ((position.x + size.x) < p_aabb.position.x)
  113. return false;
  114. if (position.y > (p_aabb.position.y + p_aabb.size.y))
  115. return false;
  116. if ((position.y + size.y) < p_aabb.position.y)
  117. return false;
  118. if (position.z > (p_aabb.position.z + p_aabb.size.z))
  119. return false;
  120. if ((position.z + size.z) < p_aabb.position.z)
  121. return false;
  122. return true;
  123. }
  124. inline bool AABB::encloses(const AABB &p_aabb) const {
  125. Vector3 src_min = position;
  126. Vector3 src_max = position + size;
  127. Vector3 dst_min = p_aabb.position;
  128. Vector3 dst_max = p_aabb.position + p_aabb.size;
  129. return (
  130. (src_min.x <= dst_min.x) &&
  131. (src_max.x > dst_max.x) &&
  132. (src_min.y <= dst_min.y) &&
  133. (src_max.y > dst_max.y) &&
  134. (src_min.z <= dst_min.z) &&
  135. (src_max.z > dst_max.z));
  136. }
  137. Vector3 AABB::get_support(const Vector3 &p_normal) const {
  138. Vector3 half_extents = size * 0.5;
  139. Vector3 ofs = position + half_extents;
  140. return Vector3(
  141. (p_normal.x > 0) ? -half_extents.x : half_extents.x,
  142. (p_normal.y > 0) ? -half_extents.y : half_extents.y,
  143. (p_normal.z > 0) ? -half_extents.z : half_extents.z) +
  144. ofs;
  145. }
  146. Vector3 AABB::get_endpoint(int p_point) const {
  147. switch (p_point) {
  148. case 0: return Vector3(position.x, position.y, position.z);
  149. case 1: return Vector3(position.x, position.y, position.z + size.z);
  150. case 2: return Vector3(position.x, position.y + size.y, position.z);
  151. case 3: return Vector3(position.x, position.y + size.y, position.z + size.z);
  152. case 4: return Vector3(position.x + size.x, position.y, position.z);
  153. case 5: return Vector3(position.x + size.x, position.y, position.z + size.z);
  154. case 6: return Vector3(position.x + size.x, position.y + size.y, position.z);
  155. case 7: return Vector3(position.x + size.x, position.y + size.y, position.z + size.z);
  156. };
  157. ERR_FAIL_V(Vector3());
  158. }
  159. bool AABB::intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const {
  160. Vector3 half_extents = size * 0.5;
  161. Vector3 ofs = position + half_extents;
  162. for (int i = 0; i < p_plane_count; i++) {
  163. const Plane &p = p_planes[i];
  164. Vector3 point(
  165. (p.normal.x > 0) ? -half_extents.x : half_extents.x,
  166. (p.normal.y > 0) ? -half_extents.y : half_extents.y,
  167. (p.normal.z > 0) ? -half_extents.z : half_extents.z);
  168. point += ofs;
  169. if (p.is_point_over(point))
  170. return false;
  171. }
  172. // Make sure all points in the shape aren't fully separated from the AABB on
  173. // each axis.
  174. int bad_point_counts_positive[3] = { 0 };
  175. int bad_point_counts_negative[3] = { 0 };
  176. for (int k = 0; k < 3; k++) {
  177. for (int i = 0; i < p_point_count; i++) {
  178. if (p_points[i].coord[k] > ofs.coord[k] + half_extents.coord[k]) {
  179. bad_point_counts_positive[k]++;
  180. }
  181. if (p_points[i].coord[k] < ofs.coord[k] - half_extents.coord[k]) {
  182. bad_point_counts_negative[k]++;
  183. }
  184. }
  185. if (bad_point_counts_negative[k] == p_point_count) {
  186. return false;
  187. }
  188. if (bad_point_counts_positive[k] == p_point_count) {
  189. return false;
  190. }
  191. }
  192. return true;
  193. }
  194. bool AABB::inside_convex_shape(const Plane *p_planes, int p_plane_count) const {
  195. Vector3 half_extents = size * 0.5;
  196. Vector3 ofs = position + half_extents;
  197. for (int i = 0; i < p_plane_count; i++) {
  198. const Plane &p = p_planes[i];
  199. Vector3 point(
  200. (p.normal.x < 0) ? -half_extents.x : half_extents.x,
  201. (p.normal.y < 0) ? -half_extents.y : half_extents.y,
  202. (p.normal.z < 0) ? -half_extents.z : half_extents.z);
  203. point += ofs;
  204. if (p.is_point_over(point))
  205. return false;
  206. }
  207. return true;
  208. }
  209. bool AABB::has_point(const Vector3 &p_point) const {
  210. if (p_point.x < position.x)
  211. return false;
  212. if (p_point.y < position.y)
  213. return false;
  214. if (p_point.z < position.z)
  215. return false;
  216. if (p_point.x > position.x + size.x)
  217. return false;
  218. if (p_point.y > position.y + size.y)
  219. return false;
  220. if (p_point.z > position.z + size.z)
  221. return false;
  222. return true;
  223. }
  224. inline void AABB::expand_to(const Vector3 &p_vector) {
  225. Vector3 begin = position;
  226. Vector3 end = position + size;
  227. if (p_vector.x < begin.x)
  228. begin.x = p_vector.x;
  229. if (p_vector.y < begin.y)
  230. begin.y = p_vector.y;
  231. if (p_vector.z < begin.z)
  232. begin.z = p_vector.z;
  233. if (p_vector.x > end.x)
  234. end.x = p_vector.x;
  235. if (p_vector.y > end.y)
  236. end.y = p_vector.y;
  237. if (p_vector.z > end.z)
  238. end.z = p_vector.z;
  239. position = begin;
  240. size = end - begin;
  241. }
  242. void AABB::project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const {
  243. Vector3 half_extents(size.x * 0.5, size.y * 0.5, size.z * 0.5);
  244. Vector3 center(position.x + half_extents.x, position.y + half_extents.y, position.z + half_extents.z);
  245. real_t length = p_plane.normal.abs().dot(half_extents);
  246. real_t distance = p_plane.distance_to(center);
  247. r_min = distance - length;
  248. r_max = distance + length;
  249. }
  250. inline real_t AABB::get_longest_axis_size() const {
  251. real_t max_size = size.x;
  252. if (size.y > max_size) {
  253. max_size = size.y;
  254. }
  255. if (size.z > max_size) {
  256. max_size = size.z;
  257. }
  258. return max_size;
  259. }
  260. inline real_t AABB::get_shortest_axis_size() const {
  261. real_t max_size = size.x;
  262. if (size.y < max_size) {
  263. max_size = size.y;
  264. }
  265. if (size.z < max_size) {
  266. max_size = size.z;
  267. }
  268. return max_size;
  269. }
  270. bool AABB::smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t t0, real_t t1) const {
  271. real_t divx = 1.0 / p_dir.x;
  272. real_t divy = 1.0 / p_dir.y;
  273. real_t divz = 1.0 / p_dir.z;
  274. Vector3 upbound = position + size;
  275. real_t tmin, tmax, tymin, tymax, tzmin, tzmax;
  276. if (p_dir.x >= 0) {
  277. tmin = (position.x - p_from.x) * divx;
  278. tmax = (upbound.x - p_from.x) * divx;
  279. } else {
  280. tmin = (upbound.x - p_from.x) * divx;
  281. tmax = (position.x - p_from.x) * divx;
  282. }
  283. if (p_dir.y >= 0) {
  284. tymin = (position.y - p_from.y) * divy;
  285. tymax = (upbound.y - p_from.y) * divy;
  286. } else {
  287. tymin = (upbound.y - p_from.y) * divy;
  288. tymax = (position.y - p_from.y) * divy;
  289. }
  290. if ((tmin > tymax) || (tymin > tmax))
  291. return false;
  292. if (tymin > tmin)
  293. tmin = tymin;
  294. if (tymax < tmax)
  295. tmax = tymax;
  296. if (p_dir.z >= 0) {
  297. tzmin = (position.z - p_from.z) * divz;
  298. tzmax = (upbound.z - p_from.z) * divz;
  299. } else {
  300. tzmin = (upbound.z - p_from.z) * divz;
  301. tzmax = (position.z - p_from.z) * divz;
  302. }
  303. if ((tmin > tzmax) || (tzmin > tmax))
  304. return false;
  305. if (tzmin > tmin)
  306. tmin = tzmin;
  307. if (tzmax < tmax)
  308. tmax = tzmax;
  309. return ((tmin < t1) && (tmax > t0));
  310. }
  311. void AABB::grow_by(real_t p_amount) {
  312. position.x -= p_amount;
  313. position.y -= p_amount;
  314. position.z -= p_amount;
  315. size.x += 2.0 * p_amount;
  316. size.y += 2.0 * p_amount;
  317. size.z += 2.0 * p_amount;
  318. }
  319. #endif // AABB_H