mesh_storage.cpp 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459
  1. /**************************************************************************/
  2. /* mesh_storage.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "mesh_storage.h"
  31. using namespace RendererRD;
  32. MeshStorage *MeshStorage::singleton = nullptr;
  33. MeshStorage *MeshStorage::get_singleton() {
  34. return singleton;
  35. }
  36. MeshStorage::MeshStorage() {
  37. singleton = this;
  38. default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
  39. //default rd buffers
  40. {
  41. Vector<uint8_t> buffer;
  42. {
  43. buffer.resize(sizeof(float) * 3);
  44. {
  45. uint8_t *w = buffer.ptrw();
  46. float *fptr = reinterpret_cast<float *>(w);
  47. fptr[0] = 0.0;
  48. fptr[1] = 0.0;
  49. fptr[2] = 0.0;
  50. }
  51. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  52. }
  53. { //normal
  54. buffer.resize(sizeof(float) * 3);
  55. {
  56. uint8_t *w = buffer.ptrw();
  57. float *fptr = reinterpret_cast<float *>(w);
  58. fptr[0] = 1.0;
  59. fptr[1] = 0.0;
  60. fptr[2] = 0.0;
  61. }
  62. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  63. }
  64. { //tangent
  65. buffer.resize(sizeof(float) * 4);
  66. {
  67. uint8_t *w = buffer.ptrw();
  68. float *fptr = reinterpret_cast<float *>(w);
  69. fptr[0] = 1.0;
  70. fptr[1] = 0.0;
  71. fptr[2] = 0.0;
  72. fptr[3] = 0.0;
  73. }
  74. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  75. }
  76. { //color
  77. buffer.resize(sizeof(float) * 4);
  78. {
  79. uint8_t *w = buffer.ptrw();
  80. float *fptr = reinterpret_cast<float *>(w);
  81. fptr[0] = 1.0;
  82. fptr[1] = 1.0;
  83. fptr[2] = 1.0;
  84. fptr[3] = 1.0;
  85. }
  86. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  87. }
  88. { //tex uv 1
  89. buffer.resize(sizeof(float) * 2);
  90. {
  91. uint8_t *w = buffer.ptrw();
  92. float *fptr = reinterpret_cast<float *>(w);
  93. fptr[0] = 0.0;
  94. fptr[1] = 0.0;
  95. }
  96. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  97. }
  98. { //tex uv 2
  99. buffer.resize(sizeof(float) * 2);
  100. {
  101. uint8_t *w = buffer.ptrw();
  102. float *fptr = reinterpret_cast<float *>(w);
  103. fptr[0] = 0.0;
  104. fptr[1] = 0.0;
  105. }
  106. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  107. }
  108. for (int i = 0; i < RS::ARRAY_CUSTOM_COUNT; i++) {
  109. buffer.resize(sizeof(float) * 4);
  110. {
  111. uint8_t *w = buffer.ptrw();
  112. float *fptr = reinterpret_cast<float *>(w);
  113. fptr[0] = 0.0;
  114. fptr[1] = 0.0;
  115. fptr[2] = 0.0;
  116. fptr[3] = 0.0;
  117. }
  118. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_CUSTOM0 + i] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  119. }
  120. { //bones
  121. buffer.resize(sizeof(uint32_t) * 4);
  122. {
  123. uint8_t *w = buffer.ptrw();
  124. uint32_t *fptr = reinterpret_cast<uint32_t *>(w);
  125. fptr[0] = 0;
  126. fptr[1] = 0;
  127. fptr[2] = 0;
  128. fptr[3] = 0;
  129. }
  130. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  131. }
  132. { //weights
  133. buffer.resize(sizeof(float) * 4);
  134. {
  135. uint8_t *w = buffer.ptrw();
  136. float *fptr = reinterpret_cast<float *>(w);
  137. fptr[0] = 0.0;
  138. fptr[1] = 0.0;
  139. fptr[2] = 0.0;
  140. fptr[3] = 0.0;
  141. }
  142. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  143. }
  144. }
  145. {
  146. Vector<String> skeleton_modes;
  147. skeleton_modes.push_back("\n#define MODE_2D\n");
  148. skeleton_modes.push_back("");
  149. skeleton_shader.shader.initialize(skeleton_modes);
  150. skeleton_shader.version = skeleton_shader.shader.version_create();
  151. for (int i = 0; i < SkeletonShader::SHADER_MODE_MAX; i++) {
  152. skeleton_shader.version_shader[i] = skeleton_shader.shader.version_get_shader(skeleton_shader.version, i);
  153. skeleton_shader.pipeline[i] = RD::get_singleton()->compute_pipeline_create(skeleton_shader.version_shader[i]);
  154. }
  155. {
  156. Vector<RD::Uniform> uniforms;
  157. {
  158. RD::Uniform u;
  159. u.binding = 0;
  160. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  161. u.append_id(default_rd_storage_buffer);
  162. uniforms.push_back(u);
  163. }
  164. skeleton_shader.default_skeleton_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  165. }
  166. }
  167. }
  168. MeshStorage::~MeshStorage() {
  169. //def buffers
  170. for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
  171. RD::get_singleton()->free(mesh_default_rd_buffers[i]);
  172. }
  173. skeleton_shader.shader.version_free(skeleton_shader.version);
  174. RD::get_singleton()->free(default_rd_storage_buffer);
  175. singleton = nullptr;
  176. }
  177. bool MeshStorage::free(RID p_rid) {
  178. if (owns_mesh(p_rid)) {
  179. mesh_free(p_rid);
  180. return true;
  181. } else if (owns_mesh_instance(p_rid)) {
  182. mesh_instance_free(p_rid);
  183. return true;
  184. } else if (owns_multimesh(p_rid)) {
  185. multimesh_free(p_rid);
  186. return true;
  187. } else if (owns_skeleton(p_rid)) {
  188. skeleton_free(p_rid);
  189. return true;
  190. }
  191. return false;
  192. }
  193. /* MESH API */
  194. RID MeshStorage::mesh_allocate() {
  195. return mesh_owner.allocate_rid();
  196. }
  197. void MeshStorage::mesh_initialize(RID p_rid) {
  198. mesh_owner.initialize_rid(p_rid, Mesh());
  199. }
  200. void MeshStorage::mesh_free(RID p_rid) {
  201. mesh_clear(p_rid);
  202. mesh_set_shadow_mesh(p_rid, RID());
  203. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  204. ERR_FAIL_NULL(mesh);
  205. mesh->dependency.deleted_notify(p_rid);
  206. if (mesh->instances.size()) {
  207. ERR_PRINT("deleting mesh with active instances");
  208. }
  209. if (mesh->shadow_owners.size()) {
  210. for (Mesh *E : mesh->shadow_owners) {
  211. Mesh *shadow_owner = E;
  212. shadow_owner->shadow_mesh = RID();
  213. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  214. }
  215. }
  216. mesh_owner.free(p_rid);
  217. }
  218. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  219. ERR_FAIL_COND(p_blend_shape_count < 0);
  220. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  221. ERR_FAIL_NULL(mesh);
  222. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  223. mesh->blend_shape_count = p_blend_shape_count;
  224. }
  225. /// Returns stride
  226. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  227. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  228. ERR_FAIL_NULL(mesh);
  229. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  230. #ifdef DEBUG_ENABLED
  231. //do a validation, to catch errors first
  232. {
  233. uint32_t stride = 0;
  234. uint32_t attrib_stride = 0;
  235. uint32_t skin_stride = 0;
  236. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  237. if ((p_surface.format & (1ULL << i))) {
  238. switch (i) {
  239. case RS::ARRAY_VERTEX: {
  240. if ((p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) || (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  241. stride += sizeof(float) * 2;
  242. } else {
  243. stride += sizeof(float) * 3;
  244. }
  245. } break;
  246. case RS::ARRAY_NORMAL: {
  247. stride += sizeof(uint16_t) * 2;
  248. } break;
  249. case RS::ARRAY_TANGENT: {
  250. if (!(p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  251. stride += sizeof(uint16_t) * 2;
  252. }
  253. } break;
  254. case RS::ARRAY_COLOR: {
  255. attrib_stride += sizeof(uint32_t);
  256. } break;
  257. case RS::ARRAY_TEX_UV: {
  258. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  259. attrib_stride += sizeof(uint16_t) * 2;
  260. } else {
  261. attrib_stride += sizeof(float) * 2;
  262. }
  263. } break;
  264. case RS::ARRAY_TEX_UV2: {
  265. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  266. attrib_stride += sizeof(uint16_t) * 2;
  267. } else {
  268. attrib_stride += sizeof(float) * 2;
  269. }
  270. } break;
  271. case RS::ARRAY_CUSTOM0:
  272. case RS::ARRAY_CUSTOM1:
  273. case RS::ARRAY_CUSTOM2:
  274. case RS::ARRAY_CUSTOM3: {
  275. int idx = i - RS::ARRAY_CUSTOM0;
  276. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  277. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  278. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  279. attrib_stride += fmtsize[fmt];
  280. } break;
  281. case RS::ARRAY_WEIGHTS:
  282. case RS::ARRAY_BONES: {
  283. //uses a separate array
  284. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  285. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  286. } break;
  287. }
  288. }
  289. }
  290. int expected_size = stride * p_surface.vertex_count;
  291. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  292. int bs_expected_size = expected_size * mesh->blend_shape_count;
  293. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  294. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  295. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  296. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  297. expected_size = skin_stride * p_surface.vertex_count;
  298. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  299. }
  300. }
  301. #endif
  302. uint64_t surface_version = p_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  303. RS::SurfaceData new_surface = p_surface;
  304. #ifdef DISABLE_DEPRECATED
  305. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION, "Surface version provided (" + itos(int(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT)) + ") does not match current version (" + itos(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) + ")");
  306. #else
  307. if (surface_version != uint64_t(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION)) {
  308. RS::get_singleton()->fix_surface_compatibility(new_surface);
  309. surface_version = new_surface.format & (RS::ARRAY_FLAG_FORMAT_VERSION_MASK << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  310. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION,
  311. vformat("Surface version provided (%d) does not match current version (%d).",
  312. (surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK,
  313. (RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK));
  314. }
  315. #endif
  316. Mesh::Surface *s = memnew(Mesh::Surface);
  317. s->format = new_surface.format;
  318. s->primitive = new_surface.primitive;
  319. const bool use_as_storage = (new_surface.skin_data.size() || mesh->blend_shape_count > 0);
  320. const BitField<RD::BufferCreationBits> as_storage_flag = use_as_storage ? RD::BUFFER_CREATION_AS_STORAGE_BIT : 0;
  321. if (new_surface.vertex_data.size()) {
  322. // If we have an uncompressed surface that contains normals, but not tangents, we need to differentiate the array
  323. // from a compressed array in the shader. To do so, we allow the normal to read 4 components out of the buffer
  324. // But only give it 2 components per normal. So essentially, each vertex reads the next normal in normal.zw.
  325. // This allows us to avoid adding a shader permutation, and avoid passing dummy tangents. Since the stride is kept small
  326. // this should still be a net win for bandwidth.
  327. // If we do this, then the last normal will read past the end of the array. So we need to pad the array with dummy data.
  328. if (!(new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (new_surface.format & RS::ARRAY_FORMAT_NORMAL) && !(new_surface.format & RS::ARRAY_FORMAT_TANGENT)) {
  329. // Unfortunately, we need to copy the buffer, which is fine as doing a resize triggers a CoW anyway.
  330. Vector<uint8_t> new_vertex_data;
  331. new_vertex_data.resize_zeroed(new_surface.vertex_data.size() + sizeof(uint16_t) * 2);
  332. memcpy(new_vertex_data.ptrw(), new_surface.vertex_data.ptr(), new_surface.vertex_data.size());
  333. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(new_vertex_data.size(), new_vertex_data, as_storage_flag);
  334. s->vertex_buffer_size = new_vertex_data.size();
  335. } else {
  336. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.vertex_data.size(), new_surface.vertex_data, as_storage_flag);
  337. s->vertex_buffer_size = new_surface.vertex_data.size();
  338. }
  339. }
  340. if (new_surface.attribute_data.size()) {
  341. s->attribute_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.attribute_data.size(), new_surface.attribute_data);
  342. }
  343. if (new_surface.skin_data.size()) {
  344. s->skin_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.skin_data.size(), new_surface.skin_data, as_storage_flag);
  345. s->skin_buffer_size = new_surface.skin_data.size();
  346. }
  347. s->vertex_count = new_surface.vertex_count;
  348. if (new_surface.format & RS::ARRAY_FORMAT_BONES) {
  349. mesh->has_bone_weights = true;
  350. }
  351. if (new_surface.index_count) {
  352. bool is_index_16 = new_surface.vertex_count <= 65536 && new_surface.vertex_count > 0;
  353. s->index_buffer = RD::get_singleton()->index_buffer_create(new_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, new_surface.index_data, false);
  354. s->index_count = new_surface.index_count;
  355. s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
  356. if (new_surface.lods.size()) {
  357. s->lods = memnew_arr(Mesh::Surface::LOD, new_surface.lods.size());
  358. s->lod_count = new_surface.lods.size();
  359. for (int i = 0; i < new_surface.lods.size(); i++) {
  360. uint32_t indices = new_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  361. s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, new_surface.lods[i].index_data);
  362. s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
  363. s->lods[i].edge_length = new_surface.lods[i].edge_length;
  364. s->lods[i].index_count = indices;
  365. }
  366. }
  367. }
  368. ERR_FAIL_COND_MSG(!new_surface.index_count && !new_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  369. s->aabb = new_surface.aabb;
  370. s->bone_aabbs = new_surface.bone_aabbs; //only really useful for returning them.
  371. s->mesh_to_skeleton_xform = p_surface.mesh_to_skeleton_xform;
  372. s->uv_scale = new_surface.uv_scale;
  373. if (mesh->blend_shape_count > 0) {
  374. s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(new_surface.blend_shape_data.size(), new_surface.blend_shape_data);
  375. }
  376. if (use_as_storage) {
  377. Vector<RD::Uniform> uniforms;
  378. {
  379. RD::Uniform u;
  380. u.binding = 0;
  381. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  382. if (s->vertex_buffer.is_valid()) {
  383. u.append_id(s->vertex_buffer);
  384. } else {
  385. u.append_id(default_rd_storage_buffer);
  386. }
  387. uniforms.push_back(u);
  388. }
  389. {
  390. RD::Uniform u;
  391. u.binding = 1;
  392. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  393. if (s->skin_buffer.is_valid()) {
  394. u.append_id(s->skin_buffer);
  395. } else {
  396. u.append_id(default_rd_storage_buffer);
  397. }
  398. uniforms.push_back(u);
  399. }
  400. {
  401. RD::Uniform u;
  402. u.binding = 2;
  403. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  404. if (s->blend_shape_buffer.is_valid()) {
  405. u.append_id(s->blend_shape_buffer);
  406. } else {
  407. u.append_id(default_rd_storage_buffer);
  408. }
  409. uniforms.push_back(u);
  410. }
  411. s->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SURFACE);
  412. }
  413. if (mesh->surface_count == 0) {
  414. mesh->aabb = new_surface.aabb;
  415. } else {
  416. mesh->aabb.merge_with(new_surface.aabb);
  417. }
  418. mesh->skeleton_aabb_version = 0;
  419. s->material = new_surface.material;
  420. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  421. mesh->surfaces[mesh->surface_count] = s;
  422. mesh->surface_count++;
  423. for (MeshInstance *mi : mesh->instances) {
  424. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  425. }
  426. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  427. for (Mesh *E : mesh->shadow_owners) {
  428. Mesh *shadow_owner = E;
  429. shadow_owner->shadow_mesh = RID();
  430. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  431. }
  432. mesh->material_cache.clear();
  433. }
  434. void MeshStorage::_mesh_surface_clear(Mesh *p_mesh, int p_surface) {
  435. Mesh::Surface &s = *p_mesh->surfaces[p_surface];
  436. if (s.vertex_buffer.is_valid()) {
  437. RD::get_singleton()->free(s.vertex_buffer); // Clears arrays as dependency automatically, including all versions.
  438. }
  439. if (s.attribute_buffer.is_valid()) {
  440. RD::get_singleton()->free(s.attribute_buffer);
  441. }
  442. if (s.skin_buffer.is_valid()) {
  443. RD::get_singleton()->free(s.skin_buffer);
  444. }
  445. if (s.versions) {
  446. memfree(s.versions); // reallocs, so free with memfree.
  447. }
  448. if (s.index_buffer.is_valid()) {
  449. RD::get_singleton()->free(s.index_buffer);
  450. }
  451. if (s.lod_count) {
  452. for (uint32_t j = 0; j < s.lod_count; j++) {
  453. RD::get_singleton()->free(s.lods[j].index_buffer);
  454. }
  455. memdelete_arr(s.lods);
  456. }
  457. if (s.blend_shape_buffer.is_valid()) {
  458. RD::get_singleton()->free(s.blend_shape_buffer);
  459. }
  460. memdelete(p_mesh->surfaces[p_surface]);
  461. }
  462. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  463. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  464. ERR_FAIL_NULL_V(mesh, -1);
  465. return mesh->blend_shape_count;
  466. }
  467. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  468. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  469. ERR_FAIL_NULL(mesh);
  470. ERR_FAIL_INDEX((int)p_mode, 2);
  471. mesh->blend_shape_mode = p_mode;
  472. }
  473. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  474. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  475. ERR_FAIL_NULL_V(mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  476. return mesh->blend_shape_mode;
  477. }
  478. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  479. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  480. ERR_FAIL_NULL(mesh);
  481. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  482. ERR_FAIL_COND(p_data.is_empty());
  483. ERR_FAIL_COND(mesh->surfaces[p_surface]->vertex_buffer.is_null());
  484. uint64_t data_size = p_data.size();
  485. const uint8_t *r = p_data.ptr();
  486. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
  487. }
  488. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  489. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  490. ERR_FAIL_NULL(mesh);
  491. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  492. ERR_FAIL_COND(p_data.is_empty());
  493. ERR_FAIL_COND(mesh->surfaces[p_surface]->attribute_buffer.is_null());
  494. uint64_t data_size = p_data.size();
  495. const uint8_t *r = p_data.ptr();
  496. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->attribute_buffer, p_offset, data_size, r);
  497. }
  498. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  499. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  500. ERR_FAIL_NULL(mesh);
  501. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  502. ERR_FAIL_COND(p_data.is_empty());
  503. ERR_FAIL_COND(mesh->surfaces[p_surface]->skin_buffer.is_null());
  504. uint64_t data_size = p_data.size();
  505. const uint8_t *r = p_data.ptr();
  506. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->skin_buffer, p_offset, data_size, r);
  507. }
  508. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  509. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  510. ERR_FAIL_NULL(mesh);
  511. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  512. mesh->surfaces[p_surface]->material = p_material;
  513. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  514. mesh->material_cache.clear();
  515. }
  516. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  517. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  518. ERR_FAIL_NULL_V(mesh, RID());
  519. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  520. return mesh->surfaces[p_surface]->material;
  521. }
  522. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  523. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  524. ERR_FAIL_NULL_V(mesh, RS::SurfaceData());
  525. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  526. Mesh::Surface &s = *mesh->surfaces[p_surface];
  527. RS::SurfaceData sd;
  528. sd.format = s.format;
  529. if (s.vertex_buffer.is_valid()) {
  530. sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
  531. // When using an uncompressed buffer with normals, but without tangents, we have to trim the padding.
  532. if (!(s.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (s.format & RS::ARRAY_FORMAT_NORMAL) && !(s.format & RS::ARRAY_FORMAT_TANGENT)) {
  533. sd.vertex_data.resize(sd.vertex_data.size() - sizeof(uint16_t) * 2);
  534. }
  535. }
  536. if (s.attribute_buffer.is_valid()) {
  537. sd.attribute_data = RD::get_singleton()->buffer_get_data(s.attribute_buffer);
  538. }
  539. if (s.skin_buffer.is_valid()) {
  540. sd.skin_data = RD::get_singleton()->buffer_get_data(s.skin_buffer);
  541. }
  542. sd.vertex_count = s.vertex_count;
  543. sd.index_count = s.index_count;
  544. sd.primitive = s.primitive;
  545. if (sd.index_count) {
  546. sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
  547. }
  548. sd.aabb = s.aabb;
  549. sd.uv_scale = s.uv_scale;
  550. for (uint32_t i = 0; i < s.lod_count; i++) {
  551. RS::SurfaceData::LOD lod;
  552. lod.edge_length = s.lods[i].edge_length;
  553. lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
  554. sd.lods.push_back(lod);
  555. }
  556. sd.bone_aabbs = s.bone_aabbs;
  557. sd.mesh_to_skeleton_xform = s.mesh_to_skeleton_xform;
  558. if (s.blend_shape_buffer.is_valid()) {
  559. sd.blend_shape_data = RD::get_singleton()->buffer_get_data(s.blend_shape_buffer);
  560. }
  561. return sd;
  562. }
  563. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  564. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  565. ERR_FAIL_NULL_V(mesh, 0);
  566. return mesh->surface_count;
  567. }
  568. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  569. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  570. ERR_FAIL_NULL(mesh);
  571. mesh->custom_aabb = p_aabb;
  572. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  573. }
  574. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  575. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  576. ERR_FAIL_NULL_V(mesh, AABB());
  577. return mesh->custom_aabb;
  578. }
  579. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  580. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  581. ERR_FAIL_NULL_V(mesh, AABB());
  582. if (mesh->custom_aabb != AABB()) {
  583. return mesh->custom_aabb;
  584. }
  585. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  586. // A mesh can be shared by multiple skeletons and we need to avoid using the AABB from a different skeleton.
  587. if (!skeleton || skeleton->size == 0 || (mesh->skeleton_aabb_version == skeleton->version && mesh->skeleton_aabb_rid == p_skeleton)) {
  588. return mesh->aabb;
  589. }
  590. AABB aabb;
  591. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  592. AABB laabb;
  593. const Mesh::Surface &surface = *mesh->surfaces[i];
  594. if ((surface.format & RS::ARRAY_FORMAT_BONES) && surface.bone_aabbs.size()) {
  595. int bs = surface.bone_aabbs.size();
  596. const AABB *skbones = surface.bone_aabbs.ptr();
  597. int sbs = skeleton->size;
  598. ERR_CONTINUE(bs > sbs);
  599. const float *baseptr = skeleton->data.ptr();
  600. bool found_bone_aabb = false;
  601. if (skeleton->use_2d) {
  602. for (int j = 0; j < bs; j++) {
  603. if (skbones[j].size == Vector3(-1, -1, -1)) {
  604. continue; //bone is unused
  605. }
  606. const float *dataptr = baseptr + j * 8;
  607. Transform3D mtx;
  608. mtx.basis.rows[0][0] = dataptr[0];
  609. mtx.basis.rows[0][1] = dataptr[1];
  610. mtx.origin.x = dataptr[3];
  611. mtx.basis.rows[1][0] = dataptr[4];
  612. mtx.basis.rows[1][1] = dataptr[5];
  613. mtx.origin.y = dataptr[7];
  614. // Transform bounds to skeleton's space before applying animation data.
  615. AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]);
  616. baabb = mtx.xform(baabb);
  617. if (!found_bone_aabb) {
  618. laabb = baabb;
  619. found_bone_aabb = true;
  620. } else {
  621. laabb.merge_with(baabb);
  622. }
  623. }
  624. } else {
  625. for (int j = 0; j < bs; j++) {
  626. if (skbones[j].size == Vector3(-1, -1, -1)) {
  627. continue; //bone is unused
  628. }
  629. const float *dataptr = baseptr + j * 12;
  630. Transform3D mtx;
  631. mtx.basis.rows[0][0] = dataptr[0];
  632. mtx.basis.rows[0][1] = dataptr[1];
  633. mtx.basis.rows[0][2] = dataptr[2];
  634. mtx.origin.x = dataptr[3];
  635. mtx.basis.rows[1][0] = dataptr[4];
  636. mtx.basis.rows[1][1] = dataptr[5];
  637. mtx.basis.rows[1][2] = dataptr[6];
  638. mtx.origin.y = dataptr[7];
  639. mtx.basis.rows[2][0] = dataptr[8];
  640. mtx.basis.rows[2][1] = dataptr[9];
  641. mtx.basis.rows[2][2] = dataptr[10];
  642. mtx.origin.z = dataptr[11];
  643. // Transform bounds to skeleton's space before applying animation data.
  644. AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]);
  645. baabb = mtx.xform(baabb);
  646. if (!found_bone_aabb) {
  647. laabb = baabb;
  648. found_bone_aabb = true;
  649. } else {
  650. laabb.merge_with(baabb);
  651. }
  652. }
  653. }
  654. if (found_bone_aabb) {
  655. // Transform skeleton bounds back to mesh's space if any animated AABB applied.
  656. laabb = surface.mesh_to_skeleton_xform.affine_inverse().xform(laabb);
  657. }
  658. if (laabb.size == Vector3()) {
  659. laabb = surface.aabb;
  660. }
  661. } else {
  662. laabb = surface.aabb;
  663. }
  664. if (i == 0) {
  665. aabb = laabb;
  666. } else {
  667. aabb.merge_with(laabb);
  668. }
  669. }
  670. mesh->aabb = aabb;
  671. mesh->skeleton_aabb_version = skeleton->version;
  672. mesh->skeleton_aabb_rid = p_skeleton;
  673. return aabb;
  674. }
  675. void MeshStorage::mesh_set_path(RID p_mesh, const String &p_path) {
  676. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  677. ERR_FAIL_NULL(mesh);
  678. mesh->path = p_path;
  679. }
  680. String MeshStorage::mesh_get_path(RID p_mesh) const {
  681. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  682. ERR_FAIL_NULL_V(mesh, String());
  683. return mesh->path;
  684. }
  685. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  686. ERR_FAIL_COND_MSG(p_mesh == p_shadow_mesh, "Cannot set a mesh as its own shadow mesh.");
  687. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  688. ERR_FAIL_NULL(mesh);
  689. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  690. if (shadow_mesh) {
  691. shadow_mesh->shadow_owners.erase(mesh);
  692. }
  693. mesh->shadow_mesh = p_shadow_mesh;
  694. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  695. if (shadow_mesh) {
  696. shadow_mesh->shadow_owners.insert(mesh);
  697. }
  698. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  699. }
  700. void MeshStorage::mesh_clear(RID p_mesh) {
  701. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  702. ERR_FAIL_NULL(mesh);
  703. // Clear instance data before mesh data.
  704. for (MeshInstance *mi : mesh->instances) {
  705. _mesh_instance_clear(mi);
  706. }
  707. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  708. _mesh_surface_clear(mesh, i);
  709. }
  710. if (mesh->surfaces) {
  711. memfree(mesh->surfaces);
  712. }
  713. mesh->surfaces = nullptr;
  714. mesh->surface_count = 0;
  715. mesh->material_cache.clear();
  716. mesh->has_bone_weights = false;
  717. mesh->aabb = AABB();
  718. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  719. for (Mesh *E : mesh->shadow_owners) {
  720. Mesh *shadow_owner = E;
  721. shadow_owner->shadow_mesh = RID();
  722. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  723. }
  724. }
  725. void MeshStorage::mesh_surface_remove(RID p_mesh, int p_surface) {
  726. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  727. ERR_FAIL_NULL(mesh);
  728. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  729. // Clear instance data before mesh data.
  730. for (MeshInstance *mi : mesh->instances) {
  731. _mesh_instance_remove_surface(mi, p_surface);
  732. }
  733. _mesh_surface_clear(mesh, p_surface);
  734. if ((uint32_t)p_surface < mesh->surface_count - 1) {
  735. memmove(mesh->surfaces + p_surface, mesh->surfaces + p_surface + 1, sizeof(Mesh::Surface *) * (mesh->surface_count - (p_surface + 1)));
  736. }
  737. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count - 1));
  738. --mesh->surface_count;
  739. mesh->material_cache.clear();
  740. mesh->skeleton_aabb_version = 0;
  741. if (mesh->has_bone_weights) {
  742. mesh->has_bone_weights = false;
  743. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  744. if (mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) {
  745. mesh->has_bone_weights = true;
  746. break;
  747. }
  748. }
  749. }
  750. if (mesh->surface_count == 0) {
  751. mesh->aabb = AABB();
  752. } else {
  753. mesh->aabb = mesh->surfaces[0]->aabb;
  754. for (uint32_t i = 1; i < mesh->surface_count; i++) {
  755. mesh->aabb.merge_with(mesh->surfaces[i]->aabb);
  756. }
  757. }
  758. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  759. for (Mesh *E : mesh->shadow_owners) {
  760. Mesh *shadow_owner = E;
  761. shadow_owner->shadow_mesh = RID();
  762. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  763. }
  764. }
  765. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  766. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  767. ERR_FAIL_NULL_V(mesh, false);
  768. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  769. }
  770. Dependency *MeshStorage::mesh_get_dependency(RID p_mesh) const {
  771. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  772. ERR_FAIL_NULL_V(mesh, nullptr);
  773. return &mesh->dependency;
  774. }
  775. /* MESH INSTANCE */
  776. RID MeshStorage::mesh_instance_create(RID p_base) {
  777. Mesh *mesh = mesh_owner.get_or_null(p_base);
  778. ERR_FAIL_NULL_V(mesh, RID());
  779. RID rid = mesh_instance_owner.make_rid();
  780. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  781. mi->mesh = mesh;
  782. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  783. _mesh_instance_add_surface(mi, mesh, i);
  784. }
  785. mi->I = mesh->instances.push_back(mi);
  786. mi->dirty = true;
  787. return rid;
  788. }
  789. void MeshStorage::mesh_instance_free(RID p_rid) {
  790. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  791. _mesh_instance_clear(mi);
  792. mi->mesh->instances.erase(mi->I);
  793. mi->I = nullptr;
  794. mesh_instance_owner.free(p_rid);
  795. }
  796. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  797. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  798. if (mi->skeleton == p_skeleton) {
  799. return;
  800. }
  801. mi->skeleton = p_skeleton;
  802. mi->skeleton_version = 0;
  803. mi->dirty = true;
  804. }
  805. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  806. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  807. ERR_FAIL_NULL(mi);
  808. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  809. mi->blend_weights[p_shape] = p_weight;
  810. mi->weights_dirty = true;
  811. //will be eventually updated
  812. }
  813. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  814. while (mi->surfaces.size()) {
  815. _mesh_instance_remove_surface(mi, mi->surfaces.size() - 1);
  816. }
  817. mi->dirty = false;
  818. }
  819. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  820. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer.is_null()) {
  821. mi->blend_weights.resize(mesh->blend_shape_count);
  822. for (float &weight : mi->blend_weights) {
  823. weight = 0;
  824. }
  825. mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  826. mi->weights_dirty = true;
  827. }
  828. MeshInstance::Surface s;
  829. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  830. _mesh_instance_add_surface_buffer(mi, mesh, &s, p_surface, 0);
  831. }
  832. mi->surfaces.push_back(s);
  833. mi->dirty = true;
  834. }
  835. void MeshStorage::_mesh_instance_add_surface_buffer(MeshInstance *mi, Mesh *mesh, MeshInstance::Surface *s, uint32_t p_surface, uint32_t p_buffer_index) {
  836. s->vertex_buffer[p_buffer_index] = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), RD::BUFFER_CREATION_AS_STORAGE_BIT);
  837. Vector<RD::Uniform> uniforms;
  838. {
  839. RD::Uniform u;
  840. u.binding = 1;
  841. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  842. u.append_id(s->vertex_buffer[p_buffer_index]);
  843. uniforms.push_back(u);
  844. }
  845. {
  846. RD::Uniform u;
  847. u.binding = 2;
  848. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  849. if (mi->blend_weights_buffer.is_valid()) {
  850. u.append_id(mi->blend_weights_buffer);
  851. } else {
  852. u.append_id(default_rd_storage_buffer);
  853. }
  854. uniforms.push_back(u);
  855. }
  856. s->uniform_set[p_buffer_index] = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_INSTANCE);
  857. }
  858. void MeshStorage::_mesh_instance_remove_surface(MeshInstance *mi, int p_surface) {
  859. MeshInstance::Surface &surface = mi->surfaces[p_surface];
  860. if (surface.versions) {
  861. for (uint32_t j = 0; j < surface.version_count; j++) {
  862. RD::get_singleton()->free(surface.versions[j].vertex_array);
  863. }
  864. memfree(surface.versions);
  865. }
  866. for (uint32_t i = 0; i < 2; i++) {
  867. if (surface.vertex_buffer[i].is_valid()) {
  868. RD::get_singleton()->free(surface.vertex_buffer[i]);
  869. }
  870. }
  871. mi->surfaces.remove_at(p_surface);
  872. if (mi->surfaces.is_empty()) {
  873. if (mi->blend_weights_buffer.is_valid()) {
  874. RD::get_singleton()->free(mi->blend_weights_buffer);
  875. mi->blend_weights_buffer = RID();
  876. }
  877. mi->blend_weights.clear();
  878. mi->weights_dirty = false;
  879. mi->skeleton_version = 0;
  880. }
  881. mi->dirty = true;
  882. }
  883. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  884. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  885. bool needs_update = mi->dirty;
  886. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  887. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  888. needs_update = true;
  889. }
  890. if (mi->array_update_list.in_list()) {
  891. return;
  892. }
  893. if (!needs_update && mi->skeleton.is_valid()) {
  894. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  895. if (sk && sk->version != mi->skeleton_version) {
  896. needs_update = true;
  897. }
  898. }
  899. if (needs_update) {
  900. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  901. }
  902. }
  903. void MeshStorage::mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) {
  904. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  905. mi->canvas_item_transform_2d = p_transform;
  906. }
  907. void MeshStorage::update_mesh_instances() {
  908. while (dirty_mesh_instance_weights.first()) {
  909. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  910. if (mi->blend_weights_buffer.is_valid()) {
  911. RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  912. }
  913. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  914. mi->weights_dirty = false;
  915. }
  916. if (dirty_mesh_instance_arrays.first() == nullptr) {
  917. return; //nothing to do
  918. }
  919. //process skeletons and blend shapes
  920. uint64_t frame = RSG::rasterizer->get_frame_number();
  921. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0) || (RendererCompositorStorage::get_singleton()->get_num_compositor_effects_with_motion_vectors() > 0);
  922. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  923. while (dirty_mesh_instance_arrays.first()) {
  924. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  925. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  926. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  927. if (mi->surfaces[i].uniform_set[0].is_null() || mi->mesh->surfaces[i]->uniform_set.is_null()) {
  928. // Skip over mesh instances that don't require their own uniform buffers.
  929. continue;
  930. }
  931. mi->surfaces[i].previous_buffer = mi->surfaces[i].current_buffer;
  932. if (uses_motion_vectors && mi->surfaces[i].last_change && (frame - mi->surfaces[i].last_change) <= 2) {
  933. // Use a 2-frame tolerance so that stepped skeletal animations have correct motion vectors
  934. // (stepped animation is common for distant NPCs).
  935. uint32_t new_buffer_index = mi->surfaces[i].current_buffer ^ 1;
  936. if (mi->surfaces[i].uniform_set[new_buffer_index].is_null()) {
  937. // Create the new vertex buffer on demand where the result for the current frame will be stored.
  938. _mesh_instance_add_surface_buffer(mi, mi->mesh, &mi->surfaces[i], i, new_buffer_index);
  939. }
  940. mi->surfaces[i].current_buffer = new_buffer_index;
  941. }
  942. mi->surfaces[i].last_change = frame;
  943. RID mi_surface_uniform_set = mi->surfaces[i].uniform_set[mi->surfaces[i].current_buffer];
  944. if (mi_surface_uniform_set.is_null()) {
  945. continue;
  946. }
  947. bool array_is_2d = mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_2D_VERTICES;
  948. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, skeleton_shader.pipeline[array_is_2d ? SkeletonShader::SHADER_MODE_2D : SkeletonShader::SHADER_MODE_3D]);
  949. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi_surface_uniform_set, SkeletonShader::UNIFORM_SET_INSTANCE);
  950. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->mesh->surfaces[i]->uniform_set, SkeletonShader::UNIFORM_SET_SURFACE);
  951. if (sk && sk->uniform_set_mi.is_valid()) {
  952. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sk->uniform_set_mi, SkeletonShader::UNIFORM_SET_SKELETON);
  953. } else {
  954. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, skeleton_shader.default_skeleton_uniform_set, SkeletonShader::UNIFORM_SET_SKELETON);
  955. }
  956. SkeletonShader::PushConstant push_constant;
  957. push_constant.has_normal = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_NORMAL;
  958. push_constant.has_tangent = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_TANGENT;
  959. push_constant.has_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES);
  960. push_constant.has_blend_shape = mi->mesh->blend_shape_count > 0;
  961. push_constant.normal_tangent_stride = (push_constant.has_normal ? 1 : 0) + (push_constant.has_tangent ? 1 : 0);
  962. push_constant.vertex_count = mi->mesh->surfaces[i]->vertex_count;
  963. push_constant.vertex_stride = ((mi->mesh->surfaces[i]->vertex_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4) - push_constant.normal_tangent_stride;
  964. push_constant.skin_stride = (mi->mesh->surfaces[i]->skin_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  965. push_constant.skin_weight_offset = (mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? 4 : 2;
  966. Transform2D transform = Transform2D();
  967. if (sk && sk->use_2d) {
  968. transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
  969. }
  970. push_constant.skeleton_transform_x[0] = transform.columns[0][0];
  971. push_constant.skeleton_transform_x[1] = transform.columns[0][1];
  972. push_constant.skeleton_transform_y[0] = transform.columns[1][0];
  973. push_constant.skeleton_transform_y[1] = transform.columns[1][1];
  974. push_constant.skeleton_transform_offset[0] = transform.columns[2][0];
  975. push_constant.skeleton_transform_offset[1] = transform.columns[2][1];
  976. Transform2D inverse_transform = transform.affine_inverse();
  977. push_constant.inverse_transform_x[0] = inverse_transform.columns[0][0];
  978. push_constant.inverse_transform_x[1] = inverse_transform.columns[0][1];
  979. push_constant.inverse_transform_y[0] = inverse_transform.columns[1][0];
  980. push_constant.inverse_transform_y[1] = inverse_transform.columns[1][1];
  981. push_constant.inverse_transform_offset[0] = inverse_transform.columns[2][0];
  982. push_constant.inverse_transform_offset[1] = inverse_transform.columns[2][1];
  983. push_constant.blend_shape_count = mi->mesh->blend_shape_count;
  984. push_constant.normalized_blend_shapes = mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED;
  985. push_constant.pad1 = 0;
  986. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SkeletonShader::PushConstant));
  987. //dispatch without barrier, so all is done at the same time
  988. RD::get_singleton()->compute_list_dispatch_threads(compute_list, push_constant.vertex_count, 1, 1);
  989. }
  990. mi->dirty = false;
  991. if (sk) {
  992. mi->skeleton_version = sk->version;
  993. }
  994. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  995. }
  996. RD::get_singleton()->compute_list_end();
  997. }
  998. RD::VertexFormatID MeshStorage::_mesh_surface_generate_vertex_format(uint64_t p_surface_format, uint64_t p_input_mask, bool p_instanced_surface, bool p_input_motion_vectors, uint32_t &r_position_stride) {
  999. Vector<RD::VertexAttribute> attributes;
  1000. uint32_t normal_tangent_stride = 0;
  1001. uint32_t attribute_stride = 0;
  1002. uint32_t skin_stride = 0;
  1003. r_position_stride = 0;
  1004. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  1005. RD::VertexAttribute vd;
  1006. vd.location = i;
  1007. if (!(p_surface_format & (1ULL << i))) {
  1008. vd.stride = 0;
  1009. switch (i) {
  1010. case RS::ARRAY_VERTEX:
  1011. case RS::ARRAY_NORMAL:
  1012. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  1013. break;
  1014. case RS::ARRAY_TEX_UV:
  1015. case RS::ARRAY_TEX_UV2:
  1016. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1017. break;
  1018. case RS::ARRAY_BONES:
  1019. vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
  1020. break;
  1021. case RS::ARRAY_TANGENT:
  1022. case RS::ARRAY_COLOR:
  1023. case RS::ARRAY_CUSTOM0:
  1024. case RS::ARRAY_CUSTOM1:
  1025. case RS::ARRAY_CUSTOM2:
  1026. case RS::ARRAY_CUSTOM3:
  1027. case RS::ARRAY_WEIGHTS:
  1028. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  1029. break;
  1030. default:
  1031. DEV_ASSERT(false && "Unknown vertex format element.");
  1032. break;
  1033. }
  1034. } else {
  1035. // Mark that it needs a stride set (default uses 0).
  1036. vd.stride = 1;
  1037. switch (i) {
  1038. case RS::ARRAY_VERTEX: {
  1039. vd.offset = r_position_stride;
  1040. if (p_surface_format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  1041. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1042. r_position_stride = sizeof(float) * 2;
  1043. } else {
  1044. if (!p_instanced_surface && (p_surface_format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  1045. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1046. r_position_stride = sizeof(uint16_t) * 4;
  1047. } else {
  1048. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  1049. r_position_stride = sizeof(float) * 3;
  1050. }
  1051. }
  1052. } break;
  1053. case RS::ARRAY_NORMAL: {
  1054. vd.offset = 0;
  1055. if (!p_instanced_surface && (p_surface_format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  1056. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1057. normal_tangent_stride += sizeof(uint16_t) * 2;
  1058. } else {
  1059. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1060. // A small trick here: if we are uncompressed and we have normals, but no tangents. We need
  1061. // the shader to think there are 4 components to "axis_tangent_attrib". So we give a size of 4,
  1062. // but a stride based on only having 2 elements.
  1063. if (!(p_surface_format & RS::ARRAY_FORMAT_TANGENT)) {
  1064. normal_tangent_stride += sizeof(uint16_t) * 2;
  1065. } else {
  1066. normal_tangent_stride += sizeof(uint16_t) * 4;
  1067. }
  1068. }
  1069. } break;
  1070. case RS::ARRAY_TANGENT: {
  1071. vd.stride = 0;
  1072. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  1073. } break;
  1074. case RS::ARRAY_COLOR: {
  1075. vd.offset = attribute_stride;
  1076. vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  1077. attribute_stride += sizeof(int8_t) * 4;
  1078. } break;
  1079. case RS::ARRAY_TEX_UV: {
  1080. vd.offset = attribute_stride;
  1081. if (p_surface_format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  1082. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1083. attribute_stride += sizeof(uint16_t) * 2;
  1084. } else {
  1085. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1086. attribute_stride += sizeof(float) * 2;
  1087. }
  1088. } break;
  1089. case RS::ARRAY_TEX_UV2: {
  1090. vd.offset = attribute_stride;
  1091. if (p_surface_format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  1092. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1093. attribute_stride += sizeof(uint16_t) * 2;
  1094. } else {
  1095. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1096. attribute_stride += sizeof(float) * 2;
  1097. }
  1098. } break;
  1099. case RS::ARRAY_CUSTOM0:
  1100. case RS::ARRAY_CUSTOM1:
  1101. case RS::ARRAY_CUSTOM2:
  1102. case RS::ARRAY_CUSTOM3: {
  1103. vd.offset = attribute_stride;
  1104. int idx = i - RS::ARRAY_CUSTOM0;
  1105. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  1106. uint32_t fmt = (p_surface_format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  1107. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  1108. const RD::DataFormat fmtrd[RS::ARRAY_CUSTOM_MAX] = { RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::DATA_FORMAT_R8G8B8A8_SNORM, RD::DATA_FORMAT_R16G16_SFLOAT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::DATA_FORMAT_R32_SFLOAT, RD::DATA_FORMAT_R32G32_SFLOAT, RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::DATA_FORMAT_R32G32B32A32_SFLOAT };
  1109. vd.format = fmtrd[fmt];
  1110. attribute_stride += fmtsize[fmt];
  1111. } break;
  1112. case RS::ARRAY_BONES: {
  1113. vd.offset = skin_stride;
  1114. vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
  1115. skin_stride += sizeof(int16_t) * 4;
  1116. } break;
  1117. case RS::ARRAY_WEIGHTS: {
  1118. vd.offset = skin_stride;
  1119. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1120. skin_stride += sizeof(int16_t) * 4;
  1121. } break;
  1122. }
  1123. }
  1124. if (!(p_input_mask & (1ULL << i))) {
  1125. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  1126. }
  1127. attributes.push_back(vd);
  1128. if (p_input_motion_vectors) {
  1129. // Since the previous vertex, normal and tangent can't be part of the vertex format but they are required when
  1130. // motion vectors are enabled, we opt to push a copy of the vertex attribute with a different location.
  1131. switch (i) {
  1132. case RS::ARRAY_VERTEX: {
  1133. vd.location = ATTRIBUTE_LOCATION_PREV_VERTEX;
  1134. } break;
  1135. case RS::ARRAY_NORMAL: {
  1136. vd.location = ATTRIBUTE_LOCATION_PREV_NORMAL;
  1137. } break;
  1138. case RS::ARRAY_TANGENT: {
  1139. vd.location = ATTRIBUTE_LOCATION_PREV_TANGENT;
  1140. } break;
  1141. }
  1142. if (int(vd.location) != i) {
  1143. attributes.push_back(vd);
  1144. }
  1145. }
  1146. }
  1147. // Update final stride.
  1148. for (int i = 0; i < attributes.size(); i++) {
  1149. if (attributes[i].stride == 0) {
  1150. // Default location.
  1151. continue;
  1152. }
  1153. int loc = attributes[i].location;
  1154. if (loc == RS::ARRAY_VERTEX || loc == ATTRIBUTE_LOCATION_PREV_VERTEX) {
  1155. attributes.write[i].stride = r_position_stride;
  1156. } else if ((loc < RS::ARRAY_COLOR) || ((loc >= ATTRIBUTE_LOCATION_PREV_NORMAL) && (loc <= ATTRIBUTE_LOCATION_PREV_TANGENT))) {
  1157. attributes.write[i].stride = normal_tangent_stride;
  1158. } else if (loc < RS::ARRAY_BONES) {
  1159. attributes.write[i].stride = attribute_stride;
  1160. } else {
  1161. attributes.write[i].stride = skin_stride;
  1162. }
  1163. }
  1164. return RD::get_singleton()->vertex_format_create(attributes);
  1165. }
  1166. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint64_t p_input_mask, bool p_input_motion_vectors, MeshInstance::Surface *mis, uint32_t p_current_buffer, uint32_t p_previous_buffer) {
  1167. uint32_t position_stride = 0;
  1168. v.vertex_format = _mesh_surface_generate_vertex_format(s->format, p_input_mask, mis != nullptr, p_input_motion_vectors, position_stride);
  1169. Vector<RID> buffers;
  1170. Vector<uint64_t> offsets;
  1171. RID buffer;
  1172. uint64_t offset = 0;
  1173. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  1174. offset = 0;
  1175. if (!(s->format & (1ULL << i))) {
  1176. // Not supplied by surface, use default buffers.
  1177. buffer = mesh_default_rd_buffers[i];
  1178. } else {
  1179. // Supplied by surface, use buffer.
  1180. switch (i) {
  1181. case RS::ARRAY_VERTEX:
  1182. case RS::ARRAY_NORMAL:
  1183. offset = i == RS::ARRAY_NORMAL ? position_stride * s->vertex_count : 0;
  1184. buffer = mis != nullptr ? mis->vertex_buffer[p_current_buffer] : s->vertex_buffer;
  1185. break;
  1186. case RS::ARRAY_TANGENT:
  1187. buffer = mesh_default_rd_buffers[i];
  1188. break;
  1189. case RS::ARRAY_COLOR:
  1190. case RS::ARRAY_TEX_UV:
  1191. case RS::ARRAY_TEX_UV2:
  1192. case RS::ARRAY_CUSTOM0:
  1193. case RS::ARRAY_CUSTOM1:
  1194. case RS::ARRAY_CUSTOM2:
  1195. case RS::ARRAY_CUSTOM3:
  1196. buffer = s->attribute_buffer;
  1197. break;
  1198. case RS::ARRAY_BONES:
  1199. case RS::ARRAY_WEIGHTS:
  1200. buffer = s->skin_buffer;
  1201. break;
  1202. }
  1203. }
  1204. if (!(p_input_mask & (1ULL << i))) {
  1205. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  1206. }
  1207. buffers.push_back(buffer);
  1208. offsets.push_back(offset);
  1209. if (p_input_motion_vectors) {
  1210. // Push the buffer for motion vector inputs.
  1211. if (i == RS::ARRAY_VERTEX || i == RS::ARRAY_NORMAL || i == RS::ARRAY_TANGENT) {
  1212. if (mis && buffer != mesh_default_rd_buffers[i]) {
  1213. buffers.push_back(mis->vertex_buffer[p_previous_buffer]);
  1214. } else {
  1215. buffers.push_back(buffer);
  1216. }
  1217. offsets.push_back(offset);
  1218. }
  1219. }
  1220. }
  1221. v.input_mask = p_input_mask;
  1222. v.current_buffer = p_current_buffer;
  1223. v.previous_buffer = p_previous_buffer;
  1224. v.input_motion_vectors = p_input_motion_vectors;
  1225. v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers, offsets);
  1226. }
  1227. ////////////////// MULTIMESH
  1228. RID MeshStorage::_multimesh_allocate() {
  1229. return multimesh_owner.allocate_rid();
  1230. }
  1231. void MeshStorage::_multimesh_initialize(RID p_rid) {
  1232. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  1233. }
  1234. void MeshStorage::_multimesh_free(RID p_rid) {
  1235. // Remove from interpolator.
  1236. _interpolation_data.notify_free_multimesh(p_rid);
  1237. _update_dirty_multimeshes();
  1238. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  1239. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  1240. multimesh->dependency.deleted_notify(p_rid);
  1241. multimesh_owner.free(p_rid);
  1242. }
  1243. void MeshStorage::_multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data, bool p_use_indirect) {
  1244. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1245. ERR_FAIL_NULL(multimesh);
  1246. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1247. return;
  1248. }
  1249. if (multimesh->buffer.is_valid()) {
  1250. RD::get_singleton()->free(multimesh->buffer);
  1251. multimesh->buffer = RID();
  1252. multimesh->uniform_set_2d = RID(); //cleared by dependency
  1253. multimesh->uniform_set_3d = RID(); //cleared by dependency
  1254. }
  1255. if (multimesh->data_cache_dirty_regions) {
  1256. memdelete_arr(multimesh->data_cache_dirty_regions);
  1257. multimesh->data_cache_dirty_regions = nullptr;
  1258. multimesh->data_cache_dirty_region_count = 0;
  1259. }
  1260. if (multimesh->previous_data_cache_dirty_regions) {
  1261. memdelete_arr(multimesh->previous_data_cache_dirty_regions);
  1262. multimesh->previous_data_cache_dirty_regions = nullptr;
  1263. multimesh->previous_data_cache_dirty_region_count = 0;
  1264. }
  1265. multimesh->instances = p_instances;
  1266. multimesh->xform_format = p_transform_format;
  1267. multimesh->uses_colors = p_use_colors;
  1268. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1269. multimesh->uses_custom_data = p_use_custom_data;
  1270. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
  1271. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
  1272. multimesh->buffer_set = false;
  1273. multimesh->indirect = p_use_indirect;
  1274. multimesh->command_buffer = RID();
  1275. //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
  1276. multimesh->data_cache = Vector<float>();
  1277. multimesh->aabb = AABB();
  1278. multimesh->aabb_dirty = false;
  1279. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1280. multimesh->motion_vectors_current_offset = 0;
  1281. multimesh->motion_vectors_previous_offset = 0;
  1282. multimesh->motion_vectors_last_change = -1;
  1283. multimesh->motion_vectors_enabled = false;
  1284. if (multimesh->instances) {
  1285. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1286. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1287. }
  1288. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1289. }
  1290. void MeshStorage::_multimesh_enable_motion_vectors(MultiMesh *multimesh) {
  1291. if (multimesh->motion_vectors_enabled) {
  1292. return;
  1293. }
  1294. multimesh->motion_vectors_enabled = true;
  1295. multimesh->motion_vectors_current_offset = 0;
  1296. multimesh->motion_vectors_previous_offset = 0;
  1297. multimesh->motion_vectors_last_change = -1;
  1298. if (!multimesh->data_cache.is_empty()) {
  1299. multimesh->data_cache.append_array(multimesh->data_cache);
  1300. }
  1301. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1302. uint32_t new_buffer_size = buffer_size * 2;
  1303. RID new_buffer = RD::get_singleton()->storage_buffer_create(new_buffer_size);
  1304. if (multimesh->buffer_set && multimesh->data_cache.is_empty()) {
  1305. // If the buffer was set but there's no data cached in the CPU, we copy the buffer directly on the GPU.
  1306. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, 0, buffer_size);
  1307. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, buffer_size, buffer_size);
  1308. } else if (!multimesh->data_cache.is_empty()) {
  1309. // Simply upload the data cached in the CPU, which should already be doubled in size.
  1310. ERR_FAIL_COND(multimesh->data_cache.size() * sizeof(float) != size_t(new_buffer_size));
  1311. RD::get_singleton()->buffer_update(new_buffer, 0, new_buffer_size, multimesh->data_cache.ptr());
  1312. }
  1313. if (multimesh->buffer.is_valid()) {
  1314. RD::get_singleton()->free(multimesh->buffer);
  1315. }
  1316. multimesh->buffer = new_buffer;
  1317. multimesh->uniform_set_3d = RID(); // Cleared by dependency.
  1318. // Invalidate any references to the buffer that was released and the uniform set that was pointing to it.
  1319. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1320. }
  1321. void MeshStorage::_multimesh_get_motion_vectors_offsets(RID p_multimesh, uint32_t &r_current_offset, uint32_t &r_prev_offset) {
  1322. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1323. ERR_FAIL_NULL(multimesh);
  1324. r_current_offset = multimesh->motion_vectors_current_offset;
  1325. if (!_multimesh_uses_motion_vectors(multimesh)) {
  1326. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1327. }
  1328. r_prev_offset = multimesh->motion_vectors_previous_offset;
  1329. }
  1330. bool MeshStorage::_multimesh_uses_motion_vectors_offsets(RID p_multimesh) {
  1331. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1332. ERR_FAIL_NULL_V(multimesh, false);
  1333. return _multimesh_uses_motion_vectors(multimesh);
  1334. }
  1335. int MeshStorage::_multimesh_get_instance_count(RID p_multimesh) const {
  1336. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1337. ERR_FAIL_NULL_V(multimesh, 0);
  1338. return multimesh->instances;
  1339. }
  1340. void MeshStorage::_multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1341. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1342. ERR_FAIL_NULL(multimesh);
  1343. if (multimesh->mesh == p_mesh) {
  1344. return;
  1345. }
  1346. multimesh->mesh = p_mesh;
  1347. if (multimesh->indirect) {
  1348. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  1349. ERR_FAIL_NULL(mesh);
  1350. if (mesh->surface_count > 0) {
  1351. if (multimesh->command_buffer.is_valid()) {
  1352. RD::get_singleton()->free(multimesh->command_buffer);
  1353. }
  1354. Vector<uint8_t> newVector;
  1355. newVector.resize_zeroed(sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE * mesh->surface_count);
  1356. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  1357. uint32_t count = mesh_surface_get_vertices_drawn_count(mesh->surfaces[i]);
  1358. newVector.set(i * sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE, static_cast<uint8_t>(count));
  1359. newVector.set(i * sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE + 1, static_cast<uint8_t>(count >> 8));
  1360. newVector.set(i * sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE + 2, static_cast<uint8_t>(count >> 16));
  1361. newVector.set(i * sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE + 3, static_cast<uint8_t>(count >> 24));
  1362. }
  1363. RID newBuffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE * mesh->surface_count, newVector, RD::STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT);
  1364. multimesh->command_buffer = newBuffer;
  1365. }
  1366. }
  1367. if (multimesh->instances == 0) {
  1368. return;
  1369. }
  1370. if (multimesh->data_cache.size()) {
  1371. //we have a data cache, just mark it dirt
  1372. _multimesh_mark_all_dirty(multimesh, false, true);
  1373. } else if (multimesh->instances) {
  1374. //need to re-create AABB unfortunately, calling this has a penalty
  1375. if (multimesh->buffer_set) {
  1376. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1377. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1378. const float *data = reinterpret_cast<const float *>(r);
  1379. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1380. }
  1381. }
  1382. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1383. }
  1384. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1385. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1386. if (multimesh->data_cache.size() > 0) {
  1387. return; //already local
  1388. }
  1389. // this means that the user wants to load/save individual elements,
  1390. // for this, the data must reside on CPU, so just copy it there.
  1391. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache;
  1392. if (multimesh->motion_vectors_enabled) {
  1393. buffer_size *= 2;
  1394. }
  1395. multimesh->data_cache.resize(buffer_size);
  1396. {
  1397. float *w = multimesh->data_cache.ptrw();
  1398. if (multimesh->buffer_set) {
  1399. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1400. {
  1401. const uint8_t *r = buffer.ptr();
  1402. memcpy(w, r, buffer.size());
  1403. }
  1404. } else {
  1405. memset(w, 0, buffer_size * sizeof(float));
  1406. }
  1407. }
  1408. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
  1409. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1410. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1411. multimesh->data_cache_dirty_region_count = 0;
  1412. multimesh->previous_data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1413. memset(multimesh->previous_data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1414. multimesh->previous_data_cache_dirty_region_count = 0;
  1415. }
  1416. void MeshStorage::_multimesh_update_motion_vectors_data_cache(MultiMesh *multimesh) {
  1417. ERR_FAIL_COND(multimesh->data_cache.is_empty());
  1418. if (!multimesh->motion_vectors_enabled) {
  1419. return;
  1420. }
  1421. uint32_t frame = RSG::rasterizer->get_frame_number();
  1422. if (multimesh->motion_vectors_last_change != frame) {
  1423. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1424. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1425. multimesh->motion_vectors_last_change = frame;
  1426. if (multimesh->previous_data_cache_dirty_region_count > 0) {
  1427. uint8_t *data = (uint8_t *)multimesh->data_cache.ptrw();
  1428. uint32_t current_ofs = multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1429. uint32_t previous_ofs = multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float);
  1430. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1431. uint32_t visible_region_count = visible_instances == 0 ? 0 : Math::division_round_up(visible_instances, (uint32_t)MULTIMESH_DIRTY_REGION_SIZE);
  1432. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1433. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1434. for (uint32_t i = 0; i < visible_region_count; i++) {
  1435. if (multimesh->previous_data_cache_dirty_regions[i]) {
  1436. uint32_t offset = i * region_size;
  1437. memcpy(data + current_ofs + offset, data + previous_ofs + offset, MIN(region_size, size - offset));
  1438. }
  1439. }
  1440. }
  1441. }
  1442. }
  1443. bool MeshStorage::_multimesh_uses_motion_vectors(MultiMesh *multimesh) {
  1444. return (RSG::rasterizer->get_frame_number() - multimesh->motion_vectors_last_change) < 2;
  1445. }
  1446. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1447. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1448. #ifdef DEBUG_ENABLED
  1449. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
  1450. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1451. #endif
  1452. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1453. multimesh->data_cache_dirty_regions[region_index] = true;
  1454. multimesh->data_cache_dirty_region_count++;
  1455. }
  1456. if (p_aabb) {
  1457. multimesh->aabb_dirty = true;
  1458. }
  1459. if (!multimesh->dirty) {
  1460. multimesh->dirty_list = multimesh_dirty_list;
  1461. multimesh_dirty_list = multimesh;
  1462. multimesh->dirty = true;
  1463. }
  1464. }
  1465. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1466. if (p_data) {
  1467. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
  1468. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1469. if (!multimesh->data_cache_dirty_regions[i]) {
  1470. multimesh->data_cache_dirty_regions[i] = true;
  1471. multimesh->data_cache_dirty_region_count++;
  1472. }
  1473. }
  1474. }
  1475. if (p_aabb) {
  1476. multimesh->aabb_dirty = true;
  1477. }
  1478. if (!multimesh->dirty) {
  1479. multimesh->dirty_list = multimesh_dirty_list;
  1480. multimesh_dirty_list = multimesh;
  1481. multimesh->dirty = true;
  1482. }
  1483. }
  1484. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1485. ERR_FAIL_COND(multimesh->mesh.is_null());
  1486. if (multimesh->custom_aabb != AABB()) {
  1487. return;
  1488. }
  1489. AABB aabb;
  1490. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1491. for (int i = 0; i < p_instances; i++) {
  1492. const float *data = p_data + multimesh->stride_cache * i;
  1493. Transform3D t;
  1494. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1495. t.basis.rows[0][0] = data[0];
  1496. t.basis.rows[0][1] = data[1];
  1497. t.basis.rows[0][2] = data[2];
  1498. t.origin.x = data[3];
  1499. t.basis.rows[1][0] = data[4];
  1500. t.basis.rows[1][1] = data[5];
  1501. t.basis.rows[1][2] = data[6];
  1502. t.origin.y = data[7];
  1503. t.basis.rows[2][0] = data[8];
  1504. t.basis.rows[2][1] = data[9];
  1505. t.basis.rows[2][2] = data[10];
  1506. t.origin.z = data[11];
  1507. } else {
  1508. t.basis.rows[0][0] = data[0];
  1509. t.basis.rows[0][1] = data[1];
  1510. t.origin.x = data[3];
  1511. t.basis.rows[1][0] = data[4];
  1512. t.basis.rows[1][1] = data[5];
  1513. t.origin.y = data[7];
  1514. }
  1515. if (i == 0) {
  1516. aabb = t.xform(mesh_aabb);
  1517. } else {
  1518. aabb.merge_with(t.xform(mesh_aabb));
  1519. }
  1520. }
  1521. multimesh->aabb = aabb;
  1522. }
  1523. void MeshStorage::_multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1524. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1525. ERR_FAIL_NULL(multimesh);
  1526. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1527. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1528. _multimesh_make_local(multimesh);
  1529. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0) || (RendererCompositorStorage::get_singleton()->get_num_compositor_effects_with_motion_vectors() > 0);
  1530. if (uses_motion_vectors) {
  1531. _multimesh_enable_motion_vectors(multimesh);
  1532. }
  1533. _multimesh_update_motion_vectors_data_cache(multimesh);
  1534. {
  1535. float *w = multimesh->data_cache.ptrw();
  1536. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1537. dataptr[0] = p_transform.basis.rows[0][0];
  1538. dataptr[1] = p_transform.basis.rows[0][1];
  1539. dataptr[2] = p_transform.basis.rows[0][2];
  1540. dataptr[3] = p_transform.origin.x;
  1541. dataptr[4] = p_transform.basis.rows[1][0];
  1542. dataptr[5] = p_transform.basis.rows[1][1];
  1543. dataptr[6] = p_transform.basis.rows[1][2];
  1544. dataptr[7] = p_transform.origin.y;
  1545. dataptr[8] = p_transform.basis.rows[2][0];
  1546. dataptr[9] = p_transform.basis.rows[2][1];
  1547. dataptr[10] = p_transform.basis.rows[2][2];
  1548. dataptr[11] = p_transform.origin.z;
  1549. }
  1550. _multimesh_mark_dirty(multimesh, p_index, true);
  1551. }
  1552. void MeshStorage::_multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1553. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1554. ERR_FAIL_NULL(multimesh);
  1555. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1556. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1557. _multimesh_make_local(multimesh);
  1558. _multimesh_update_motion_vectors_data_cache(multimesh);
  1559. {
  1560. float *w = multimesh->data_cache.ptrw();
  1561. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1562. dataptr[0] = p_transform.columns[0][0];
  1563. dataptr[1] = p_transform.columns[1][0];
  1564. dataptr[2] = 0;
  1565. dataptr[3] = p_transform.columns[2][0];
  1566. dataptr[4] = p_transform.columns[0][1];
  1567. dataptr[5] = p_transform.columns[1][1];
  1568. dataptr[6] = 0;
  1569. dataptr[7] = p_transform.columns[2][1];
  1570. }
  1571. _multimesh_mark_dirty(multimesh, p_index, true);
  1572. }
  1573. void MeshStorage::_multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1574. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1575. ERR_FAIL_NULL(multimesh);
  1576. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1577. ERR_FAIL_COND(!multimesh->uses_colors);
  1578. _multimesh_make_local(multimesh);
  1579. _multimesh_update_motion_vectors_data_cache(multimesh);
  1580. {
  1581. float *w = multimesh->data_cache.ptrw();
  1582. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1583. dataptr[0] = p_color.r;
  1584. dataptr[1] = p_color.g;
  1585. dataptr[2] = p_color.b;
  1586. dataptr[3] = p_color.a;
  1587. }
  1588. _multimesh_mark_dirty(multimesh, p_index, false);
  1589. }
  1590. void MeshStorage::_multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1591. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1592. ERR_FAIL_NULL(multimesh);
  1593. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1594. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1595. _multimesh_make_local(multimesh);
  1596. _multimesh_update_motion_vectors_data_cache(multimesh);
  1597. {
  1598. float *w = multimesh->data_cache.ptrw();
  1599. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1600. dataptr[0] = p_color.r;
  1601. dataptr[1] = p_color.g;
  1602. dataptr[2] = p_color.b;
  1603. dataptr[3] = p_color.a;
  1604. }
  1605. _multimesh_mark_dirty(multimesh, p_index, false);
  1606. }
  1607. RID MeshStorage::_multimesh_get_mesh(RID p_multimesh) const {
  1608. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1609. ERR_FAIL_NULL_V(multimesh, RID());
  1610. return multimesh->mesh;
  1611. }
  1612. Dependency *MeshStorage::multimesh_get_dependency(RID p_multimesh) const {
  1613. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1614. ERR_FAIL_NULL_V(multimesh, nullptr);
  1615. return &multimesh->dependency;
  1616. }
  1617. Transform3D MeshStorage::_multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1618. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1619. ERR_FAIL_NULL_V(multimesh, Transform3D());
  1620. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1621. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1622. _multimesh_make_local(multimesh);
  1623. Transform3D t;
  1624. {
  1625. const float *r = multimesh->data_cache.ptr();
  1626. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1627. t.basis.rows[0][0] = dataptr[0];
  1628. t.basis.rows[0][1] = dataptr[1];
  1629. t.basis.rows[0][2] = dataptr[2];
  1630. t.origin.x = dataptr[3];
  1631. t.basis.rows[1][0] = dataptr[4];
  1632. t.basis.rows[1][1] = dataptr[5];
  1633. t.basis.rows[1][2] = dataptr[6];
  1634. t.origin.y = dataptr[7];
  1635. t.basis.rows[2][0] = dataptr[8];
  1636. t.basis.rows[2][1] = dataptr[9];
  1637. t.basis.rows[2][2] = dataptr[10];
  1638. t.origin.z = dataptr[11];
  1639. }
  1640. return t;
  1641. }
  1642. Transform2D MeshStorage::_multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1643. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1644. ERR_FAIL_NULL_V(multimesh, Transform2D());
  1645. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1646. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1647. _multimesh_make_local(multimesh);
  1648. Transform2D t;
  1649. {
  1650. const float *r = multimesh->data_cache.ptr();
  1651. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1652. t.columns[0][0] = dataptr[0];
  1653. t.columns[1][0] = dataptr[1];
  1654. t.columns[2][0] = dataptr[3];
  1655. t.columns[0][1] = dataptr[4];
  1656. t.columns[1][1] = dataptr[5];
  1657. t.columns[2][1] = dataptr[7];
  1658. }
  1659. return t;
  1660. }
  1661. Color MeshStorage::_multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1662. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1663. ERR_FAIL_NULL_V(multimesh, Color());
  1664. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1665. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1666. _multimesh_make_local(multimesh);
  1667. Color c;
  1668. {
  1669. const float *r = multimesh->data_cache.ptr();
  1670. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1671. c.r = dataptr[0];
  1672. c.g = dataptr[1];
  1673. c.b = dataptr[2];
  1674. c.a = dataptr[3];
  1675. }
  1676. return c;
  1677. }
  1678. Color MeshStorage::_multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1679. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1680. ERR_FAIL_NULL_V(multimesh, Color());
  1681. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1682. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1683. _multimesh_make_local(multimesh);
  1684. Color c;
  1685. {
  1686. const float *r = multimesh->data_cache.ptr();
  1687. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1688. c.r = dataptr[0];
  1689. c.g = dataptr[1];
  1690. c.b = dataptr[2];
  1691. c.a = dataptr[3];
  1692. }
  1693. return c;
  1694. }
  1695. void MeshStorage::_multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1696. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1697. ERR_FAIL_NULL(multimesh);
  1698. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1699. bool used_motion_vectors = multimesh->motion_vectors_enabled;
  1700. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0) || (RendererCompositorStorage::get_singleton()->get_num_compositor_effects_with_motion_vectors() > 0);
  1701. if (uses_motion_vectors) {
  1702. _multimesh_enable_motion_vectors(multimesh);
  1703. }
  1704. if (multimesh->motion_vectors_enabled) {
  1705. uint32_t frame = RSG::rasterizer->get_frame_number();
  1706. if (multimesh->motion_vectors_last_change != frame) {
  1707. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1708. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1709. multimesh->motion_vectors_last_change = frame;
  1710. }
  1711. }
  1712. {
  1713. const float *r = p_buffer.ptr();
  1714. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1715. if (multimesh->motion_vectors_enabled && !used_motion_vectors) {
  1716. // Motion vectors were just enabled, and the other half of the buffer will be empty.
  1717. // Need to ensure that both halves are filled for correct operation.
  1718. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1719. }
  1720. multimesh->buffer_set = true;
  1721. }
  1722. if (multimesh->data_cache.size()) {
  1723. float *cache_data = multimesh->data_cache.ptrw();
  1724. memcpy(cache_data + (multimesh->motion_vectors_current_offset * multimesh->stride_cache), p_buffer.ptr(), p_buffer.size() * sizeof(float));
  1725. _multimesh_mark_all_dirty(multimesh, true, true); //update AABB
  1726. } else if (multimesh->mesh.is_valid()) {
  1727. //if we have a mesh set, we need to re-generate the AABB from the new data
  1728. const float *data = p_buffer.ptr();
  1729. if (multimesh->custom_aabb == AABB()) {
  1730. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1731. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1732. }
  1733. }
  1734. }
  1735. RID MeshStorage::_multimesh_get_command_buffer_rd_rid(RID p_multimesh) const {
  1736. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1737. ERR_FAIL_NULL_V(multimesh, RID());
  1738. return multimesh->command_buffer;
  1739. }
  1740. RID MeshStorage::_multimesh_get_buffer_rd_rid(RID p_multimesh) const {
  1741. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1742. ERR_FAIL_NULL_V(multimesh, RID());
  1743. return multimesh->buffer;
  1744. }
  1745. Vector<float> MeshStorage::_multimesh_get_buffer(RID p_multimesh) const {
  1746. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1747. ERR_FAIL_NULL_V(multimesh, Vector<float>());
  1748. if (multimesh->buffer.is_null()) {
  1749. return Vector<float>();
  1750. } else {
  1751. Vector<float> ret;
  1752. ret.resize(multimesh->instances * multimesh->stride_cache);
  1753. float *w = ret.ptrw();
  1754. if (multimesh->data_cache.size()) {
  1755. const uint8_t *r = (uint8_t *)multimesh->data_cache.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1756. memcpy(w, r, ret.size() * sizeof(float));
  1757. } else {
  1758. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1759. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1760. memcpy(w, r, ret.size() * sizeof(float));
  1761. }
  1762. return ret;
  1763. }
  1764. }
  1765. void MeshStorage::_multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1766. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1767. ERR_FAIL_NULL(multimesh);
  1768. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1769. if (multimesh->visible_instances == p_visible) {
  1770. return;
  1771. }
  1772. if (multimesh->data_cache.size()) {
  1773. // There is a data cache, but we may need to update some sections.
  1774. _multimesh_mark_all_dirty(multimesh, false, true);
  1775. int start = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1776. for (int i = start; i < p_visible; i++) {
  1777. _multimesh_mark_dirty(multimesh, i, true);
  1778. }
  1779. }
  1780. multimesh->visible_instances = p_visible;
  1781. if (multimesh->indirect) { //we have to update the command buffer for the instance counts, in each stride this will be the second integer.
  1782. Mesh *mesh = mesh_owner.get_or_null(multimesh->mesh);
  1783. if (mesh != nullptr) {
  1784. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  1785. RD::get_singleton()->buffer_update(multimesh->command_buffer, (i * sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE) + sizeof(uint32_t), sizeof(uint32_t), &p_visible);
  1786. }
  1787. }
  1788. }
  1789. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1790. }
  1791. int MeshStorage::_multimesh_get_visible_instances(RID p_multimesh) const {
  1792. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1793. ERR_FAIL_NULL_V(multimesh, 0);
  1794. return multimesh->visible_instances;
  1795. }
  1796. void MeshStorage::_multimesh_set_custom_aabb(RID p_multimesh, const AABB &p_aabb) {
  1797. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1798. ERR_FAIL_NULL(multimesh);
  1799. multimesh->custom_aabb = p_aabb;
  1800. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1801. }
  1802. AABB MeshStorage::_multimesh_get_custom_aabb(RID p_multimesh) const {
  1803. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1804. ERR_FAIL_NULL_V(multimesh, AABB());
  1805. return multimesh->custom_aabb;
  1806. }
  1807. AABB MeshStorage::_multimesh_get_aabb(RID p_multimesh) {
  1808. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1809. ERR_FAIL_NULL_V(multimesh, AABB());
  1810. if (multimesh->custom_aabb != AABB()) {
  1811. return multimesh->custom_aabb;
  1812. }
  1813. if (multimesh->aabb_dirty) {
  1814. _update_dirty_multimeshes();
  1815. }
  1816. return multimesh->aabb;
  1817. }
  1818. MeshStorage::MultiMeshInterpolator *MeshStorage::_multimesh_get_interpolator(RID p_multimesh) const {
  1819. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1820. ERR_FAIL_NULL_V_MSG(multimesh, nullptr, "Multimesh not found: " + itos(p_multimesh.get_id()));
  1821. return &multimesh->interpolator;
  1822. }
  1823. void MeshStorage::_update_dirty_multimeshes() {
  1824. while (multimesh_dirty_list) {
  1825. MultiMesh *multimesh = multimesh_dirty_list;
  1826. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1827. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1828. uint32_t buffer_offset = multimesh->motion_vectors_current_offset * multimesh->stride_cache;
  1829. const float *data = multimesh->data_cache.ptr() + buffer_offset;
  1830. uint32_t total_dirty_regions = multimesh->data_cache_dirty_region_count + multimesh->previous_data_cache_dirty_region_count;
  1831. if (total_dirty_regions != 0) {
  1832. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, (int)MULTIMESH_DIRTY_REGION_SIZE);
  1833. uint32_t visible_region_count = visible_instances == 0 ? 0 : Math::division_round_up(visible_instances, (uint32_t)MULTIMESH_DIRTY_REGION_SIZE);
  1834. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1835. if (total_dirty_regions > 32 || total_dirty_regions > visible_region_count / 2) {
  1836. //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1837. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float), MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data);
  1838. } else {
  1839. //not that many regions? update them all
  1840. for (uint32_t i = 0; i < visible_region_count; i++) {
  1841. if (multimesh->data_cache_dirty_regions[i] || multimesh->previous_data_cache_dirty_regions[i]) {
  1842. uint32_t offset = i * region_size;
  1843. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1844. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1845. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float) + offset, MIN(region_size, size - offset), &data[region_start_index]);
  1846. }
  1847. }
  1848. }
  1849. memcpy(multimesh->previous_data_cache_dirty_regions, multimesh->data_cache_dirty_regions, data_cache_dirty_region_count * sizeof(bool));
  1850. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1851. multimesh->previous_data_cache_dirty_region_count = multimesh->data_cache_dirty_region_count;
  1852. multimesh->data_cache_dirty_region_count = 0;
  1853. }
  1854. if (multimesh->aabb_dirty) {
  1855. //aabb is dirty..
  1856. multimesh->aabb_dirty = false;
  1857. if (multimesh->custom_aabb == AABB()) {
  1858. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1859. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1860. }
  1861. }
  1862. }
  1863. multimesh_dirty_list = multimesh->dirty_list;
  1864. multimesh->dirty_list = nullptr;
  1865. multimesh->dirty = false;
  1866. }
  1867. multimesh_dirty_list = nullptr;
  1868. }
  1869. /* SKELETON API */
  1870. RID MeshStorage::skeleton_allocate() {
  1871. return skeleton_owner.allocate_rid();
  1872. }
  1873. void MeshStorage::skeleton_initialize(RID p_rid) {
  1874. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1875. }
  1876. void MeshStorage::skeleton_free(RID p_rid) {
  1877. _update_dirty_skeletons();
  1878. skeleton_allocate_data(p_rid, 0);
  1879. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1880. skeleton->dependency.deleted_notify(p_rid);
  1881. skeleton_owner.free(p_rid);
  1882. }
  1883. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1884. if (!skeleton->dirty) {
  1885. skeleton->dirty = true;
  1886. skeleton->dirty_list = skeleton_dirty_list;
  1887. skeleton_dirty_list = skeleton;
  1888. }
  1889. }
  1890. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1891. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1892. ERR_FAIL_NULL(skeleton);
  1893. ERR_FAIL_COND(p_bones < 0);
  1894. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1895. return;
  1896. }
  1897. skeleton->size = p_bones;
  1898. skeleton->use_2d = p_2d_skeleton;
  1899. skeleton->uniform_set_3d = RID();
  1900. if (skeleton->buffer.is_valid()) {
  1901. RD::get_singleton()->free(skeleton->buffer);
  1902. skeleton->buffer = RID();
  1903. skeleton->data.clear();
  1904. skeleton->uniform_set_mi = RID();
  1905. }
  1906. if (skeleton->size) {
  1907. skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
  1908. skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
  1909. memset(skeleton->data.ptr(), 0, skeleton->data.size() * sizeof(float));
  1910. _skeleton_make_dirty(skeleton);
  1911. {
  1912. Vector<RD::Uniform> uniforms;
  1913. {
  1914. RD::Uniform u;
  1915. u.binding = 0;
  1916. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1917. u.append_id(skeleton->buffer);
  1918. uniforms.push_back(u);
  1919. }
  1920. skeleton->uniform_set_mi = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  1921. }
  1922. }
  1923. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1924. }
  1925. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1926. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1927. ERR_FAIL_NULL_V(skeleton, 0);
  1928. return skeleton->size;
  1929. }
  1930. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1931. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1932. ERR_FAIL_NULL(skeleton);
  1933. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1934. ERR_FAIL_COND(skeleton->use_2d);
  1935. float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1936. dataptr[0] = p_transform.basis.rows[0][0];
  1937. dataptr[1] = p_transform.basis.rows[0][1];
  1938. dataptr[2] = p_transform.basis.rows[0][2];
  1939. dataptr[3] = p_transform.origin.x;
  1940. dataptr[4] = p_transform.basis.rows[1][0];
  1941. dataptr[5] = p_transform.basis.rows[1][1];
  1942. dataptr[6] = p_transform.basis.rows[1][2];
  1943. dataptr[7] = p_transform.origin.y;
  1944. dataptr[8] = p_transform.basis.rows[2][0];
  1945. dataptr[9] = p_transform.basis.rows[2][1];
  1946. dataptr[10] = p_transform.basis.rows[2][2];
  1947. dataptr[11] = p_transform.origin.z;
  1948. _skeleton_make_dirty(skeleton);
  1949. }
  1950. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1951. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1952. ERR_FAIL_NULL_V(skeleton, Transform3D());
  1953. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1954. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1955. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1956. Transform3D t;
  1957. t.basis.rows[0][0] = dataptr[0];
  1958. t.basis.rows[0][1] = dataptr[1];
  1959. t.basis.rows[0][2] = dataptr[2];
  1960. t.origin.x = dataptr[3];
  1961. t.basis.rows[1][0] = dataptr[4];
  1962. t.basis.rows[1][1] = dataptr[5];
  1963. t.basis.rows[1][2] = dataptr[6];
  1964. t.origin.y = dataptr[7];
  1965. t.basis.rows[2][0] = dataptr[8];
  1966. t.basis.rows[2][1] = dataptr[9];
  1967. t.basis.rows[2][2] = dataptr[10];
  1968. t.origin.z = dataptr[11];
  1969. return t;
  1970. }
  1971. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1972. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1973. ERR_FAIL_NULL(skeleton);
  1974. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1975. ERR_FAIL_COND(!skeleton->use_2d);
  1976. float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1977. dataptr[0] = p_transform.columns[0][0];
  1978. dataptr[1] = p_transform.columns[1][0];
  1979. dataptr[2] = 0;
  1980. dataptr[3] = p_transform.columns[2][0];
  1981. dataptr[4] = p_transform.columns[0][1];
  1982. dataptr[5] = p_transform.columns[1][1];
  1983. dataptr[6] = 0;
  1984. dataptr[7] = p_transform.columns[2][1];
  1985. _skeleton_make_dirty(skeleton);
  1986. }
  1987. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1988. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1989. ERR_FAIL_NULL_V(skeleton, Transform2D());
  1990. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1991. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1992. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1993. Transform2D t;
  1994. t.columns[0][0] = dataptr[0];
  1995. t.columns[1][0] = dataptr[1];
  1996. t.columns[2][0] = dataptr[3];
  1997. t.columns[0][1] = dataptr[4];
  1998. t.columns[1][1] = dataptr[5];
  1999. t.columns[2][1] = dataptr[7];
  2000. return t;
  2001. }
  2002. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  2003. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  2004. ERR_FAIL_NULL(skeleton);
  2005. ERR_FAIL_COND(!skeleton->use_2d);
  2006. skeleton->base_transform_2d = p_base_transform;
  2007. }
  2008. void MeshStorage::_update_dirty_skeletons() {
  2009. while (skeleton_dirty_list) {
  2010. Skeleton *skeleton = skeleton_dirty_list;
  2011. if (skeleton->size) {
  2012. RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr());
  2013. }
  2014. skeleton_dirty_list = skeleton->dirty_list;
  2015. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  2016. skeleton->version++;
  2017. skeleton->dirty = false;
  2018. skeleton->dirty_list = nullptr;
  2019. }
  2020. skeleton_dirty_list = nullptr;
  2021. }
  2022. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  2023. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  2024. ERR_FAIL_NULL(skeleton);
  2025. p_instance->update_dependency(&skeleton->dependency);
  2026. }