123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640 |
- /* ******************************************************************
- * FSE : Finite State Entropy codec
- * Public Prototypes declaration
- * Copyright (c) Meta Platforms, Inc. and affiliates.
- *
- * You can contact the author at :
- * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
- *
- * This source code is licensed under both the BSD-style license (found in the
- * LICENSE file in the root directory of this source tree) and the GPLv2 (found
- * in the COPYING file in the root directory of this source tree).
- * You may select, at your option, one of the above-listed licenses.
- ****************************************************************** */
- #if defined (__cplusplus)
- extern "C" {
- #endif
- #ifndef FSE_H
- #define FSE_H
- /*-*****************************************
- * Dependencies
- ******************************************/
- #include "zstd_deps.h" /* size_t, ptrdiff_t */
- /*-*****************************************
- * FSE_PUBLIC_API : control library symbols visibility
- ******************************************/
- #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
- # define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
- #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
- # define FSE_PUBLIC_API __declspec(dllexport)
- #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
- # define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
- #else
- # define FSE_PUBLIC_API
- #endif
- /*------ Version ------*/
- #define FSE_VERSION_MAJOR 0
- #define FSE_VERSION_MINOR 9
- #define FSE_VERSION_RELEASE 0
- #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
- #define FSE_QUOTE(str) #str
- #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
- #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
- #define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
- FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */
- /*-*****************************************
- * Tool functions
- ******************************************/
- FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */
- /* Error Management */
- FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
- FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */
- /*-*****************************************
- * FSE detailed API
- ******************************************/
- /*!
- FSE_compress() does the following:
- 1. count symbol occurrence from source[] into table count[] (see hist.h)
- 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
- 3. save normalized counters to memory buffer using writeNCount()
- 4. build encoding table 'CTable' from normalized counters
- 5. encode the data stream using encoding table 'CTable'
- FSE_decompress() does the following:
- 1. read normalized counters with readNCount()
- 2. build decoding table 'DTable' from normalized counters
- 3. decode the data stream using decoding table 'DTable'
- The following API allows targeting specific sub-functions for advanced tasks.
- For example, it's possible to compress several blocks using the same 'CTable',
- or to save and provide normalized distribution using external method.
- */
- /* *** COMPRESSION *** */
- /*! FSE_optimalTableLog():
- dynamically downsize 'tableLog' when conditions are met.
- It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
- @return : recommended tableLog (necessarily <= 'maxTableLog') */
- FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
- /*! FSE_normalizeCount():
- normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
- 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
- useLowProbCount is a boolean parameter which trades off compressed size for
- faster header decoding. When it is set to 1, the compressed data will be slightly
- smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be
- faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0
- is a good default, since header deserialization makes a big speed difference.
- Otherwise, useLowProbCount=1 is a good default, since the speed difference is small.
- @return : tableLog,
- or an errorCode, which can be tested using FSE_isError() */
- FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
- const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount);
- /*! FSE_NCountWriteBound():
- Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
- Typically useful for allocation purpose. */
- FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
- /*! FSE_writeNCount():
- Compactly save 'normalizedCounter' into 'buffer'.
- @return : size of the compressed table,
- or an errorCode, which can be tested using FSE_isError(). */
- FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
- const short* normalizedCounter,
- unsigned maxSymbolValue, unsigned tableLog);
- /*! Constructor and Destructor of FSE_CTable.
- Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
- typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
- /*! FSE_buildCTable():
- Builds `ct`, which must be already allocated, using FSE_createCTable().
- @return : 0, or an errorCode, which can be tested using FSE_isError() */
- FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
- /*! FSE_compress_usingCTable():
- Compress `src` using `ct` into `dst` which must be already allocated.
- @return : size of compressed data (<= `dstCapacity`),
- or 0 if compressed data could not fit into `dst`,
- or an errorCode, which can be tested using FSE_isError() */
- FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
- /*!
- Tutorial :
- ----------
- The first step is to count all symbols. FSE_count() does this job very fast.
- Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
- 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
- maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
- FSE_count() will return the number of occurrence of the most frequent symbol.
- This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
- If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
- The next step is to normalize the frequencies.
- FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
- It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
- You can use 'tableLog'==0 to mean "use default tableLog value".
- If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
- which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
- The result of FSE_normalizeCount() will be saved into a table,
- called 'normalizedCounter', which is a table of signed short.
- 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
- The return value is tableLog if everything proceeded as expected.
- It is 0 if there is a single symbol within distribution.
- If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
- 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
- 'buffer' must be already allocated.
- For guaranteed success, buffer size must be at least FSE_headerBound().
- The result of the function is the number of bytes written into 'buffer'.
- If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
- 'normalizedCounter' can then be used to create the compression table 'CTable'.
- The space required by 'CTable' must be already allocated, using FSE_createCTable().
- You can then use FSE_buildCTable() to fill 'CTable'.
- If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
- 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
- Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
- The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
- If it returns '0', compressed data could not fit into 'dst'.
- If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
- */
- /* *** DECOMPRESSION *** */
- /*! FSE_readNCount():
- Read compactly saved 'normalizedCounter' from 'rBuffer'.
- @return : size read from 'rBuffer',
- or an errorCode, which can be tested using FSE_isError().
- maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
- FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
- unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
- const void* rBuffer, size_t rBuffSize);
- /*! FSE_readNCount_bmi2():
- * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise.
- */
- FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter,
- unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
- const void* rBuffer, size_t rBuffSize, int bmi2);
- typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
- /*!
- Tutorial :
- ----------
- (Note : these functions only decompress FSE-compressed blocks.
- If block is uncompressed, use memcpy() instead
- If block is a single repeated byte, use memset() instead )
- The first step is to obtain the normalized frequencies of symbols.
- This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
- 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
- In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
- or size the table to handle worst case situations (typically 256).
- FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
- The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
- Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
- If there is an error, the function will return an error code, which can be tested using FSE_isError().
- The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
- This is performed by the function FSE_buildDTable().
- The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
- If there is an error, the function will return an error code, which can be tested using FSE_isError().
- `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
- `cSrcSize` must be strictly correct, otherwise decompression will fail.
- FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
- If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
- */
- #endif /* FSE_H */
- #if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
- #define FSE_H_FSE_STATIC_LINKING_ONLY
- /* *** Dependency *** */
- #include "bitstream.h"
- /* *****************************************
- * Static allocation
- *******************************************/
- /* FSE buffer bounds */
- #define FSE_NCOUNTBOUND 512
- #define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */)
- #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
- /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
- #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2))
- #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<(maxTableLog)))
- /* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
- #define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
- #define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
- /* *****************************************
- * FSE advanced API
- ***************************************** */
- unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
- /**< same as FSE_optimalTableLog(), which used `minus==2` */
- size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
- /**< build a fake FSE_CTable, designed to compress always the same symbolValue */
- /* FSE_buildCTable_wksp() :
- * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
- * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`.
- * See FSE_buildCTable_wksp() for breakdown of workspace usage.
- */
- #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (((maxSymbolValue + 2) + (1ull << (tableLog)))/2 + sizeof(U64)/sizeof(U32) /* additional 8 bytes for potential table overwrite */)
- #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog))
- size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
- #define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8)
- #define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned))
- FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
- /**< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */
- #define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + 1 + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1)
- #define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned))
- size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2);
- /**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)`.
- * Set bmi2 to 1 if your CPU supports BMI2 or 0 if it doesn't */
- typedef enum {
- FSE_repeat_none, /**< Cannot use the previous table */
- FSE_repeat_check, /**< Can use the previous table but it must be checked */
- FSE_repeat_valid /**< Can use the previous table and it is assumed to be valid */
- } FSE_repeat;
- /* *****************************************
- * FSE symbol compression API
- *******************************************/
- /*!
- This API consists of small unitary functions, which highly benefit from being inlined.
- Hence their body are included in next section.
- */
- typedef struct {
- ptrdiff_t value;
- const void* stateTable;
- const void* symbolTT;
- unsigned stateLog;
- } FSE_CState_t;
- static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
- static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
- static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
- /**<
- These functions are inner components of FSE_compress_usingCTable().
- They allow the creation of custom streams, mixing multiple tables and bit sources.
- A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
- So the first symbol you will encode is the last you will decode, like a LIFO stack.
- You will need a few variables to track your CStream. They are :
- FSE_CTable ct; // Provided by FSE_buildCTable()
- BIT_CStream_t bitStream; // bitStream tracking structure
- FSE_CState_t state; // State tracking structure (can have several)
- The first thing to do is to init bitStream and state.
- size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
- FSE_initCState(&state, ct);
- Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
- You can then encode your input data, byte after byte.
- FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
- Remember decoding will be done in reverse direction.
- FSE_encodeByte(&bitStream, &state, symbol);
- At any time, you can also add any bit sequence.
- Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
- BIT_addBits(&bitStream, bitField, nbBits);
- The above methods don't commit data to memory, they just store it into local register, for speed.
- Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
- Writing data to memory is a manual operation, performed by the flushBits function.
- BIT_flushBits(&bitStream);
- Your last FSE encoding operation shall be to flush your last state value(s).
- FSE_flushState(&bitStream, &state);
- Finally, you must close the bitStream.
- The function returns the size of CStream in bytes.
- If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
- If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
- size_t size = BIT_closeCStream(&bitStream);
- */
- /* *****************************************
- * FSE symbol decompression API
- *******************************************/
- typedef struct {
- size_t state;
- const void* table; /* precise table may vary, depending on U16 */
- } FSE_DState_t;
- static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
- static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
- static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
- /**<
- Let's now decompose FSE_decompress_usingDTable() into its unitary components.
- You will decode FSE-encoded symbols from the bitStream,
- and also any other bitFields you put in, **in reverse order**.
- You will need a few variables to track your bitStream. They are :
- BIT_DStream_t DStream; // Stream context
- FSE_DState_t DState; // State context. Multiple ones are possible
- FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
- The first thing to do is to init the bitStream.
- errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
- You should then retrieve your initial state(s)
- (in reverse flushing order if you have several ones) :
- errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
- You can then decode your data, symbol after symbol.
- For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
- Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
- unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
- You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
- Note : maximum allowed nbBits is 25, for 32-bits compatibility
- size_t bitField = BIT_readBits(&DStream, nbBits);
- All above operations only read from local register (which size depends on size_t).
- Refueling the register from memory is manually performed by the reload method.
- endSignal = FSE_reloadDStream(&DStream);
- BIT_reloadDStream() result tells if there is still some more data to read from DStream.
- BIT_DStream_unfinished : there is still some data left into the DStream.
- BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
- BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
- BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
- When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
- to properly detect the exact end of stream.
- After each decoded symbol, check if DStream is fully consumed using this simple test :
- BIT_reloadDStream(&DStream) >= BIT_DStream_completed
- When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
- Checking if DStream has reached its end is performed by :
- BIT_endOfDStream(&DStream);
- Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
- FSE_endOfDState(&DState);
- */
- /* *****************************************
- * FSE unsafe API
- *******************************************/
- static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
- /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
- /* *****************************************
- * Implementation of inlined functions
- *******************************************/
- typedef struct {
- int deltaFindState;
- U32 deltaNbBits;
- } FSE_symbolCompressionTransform; /* total 8 bytes */
- MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
- {
- const void* ptr = ct;
- const U16* u16ptr = (const U16*) ptr;
- const U32 tableLog = MEM_read16(ptr);
- statePtr->value = (ptrdiff_t)1<<tableLog;
- statePtr->stateTable = u16ptr+2;
- statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1);
- statePtr->stateLog = tableLog;
- }
- /*! FSE_initCState2() :
- * Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
- * uses the smallest state value possible, saving the cost of this symbol */
- MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
- {
- FSE_initCState(statePtr, ct);
- { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
- const U16* stateTable = (const U16*)(statePtr->stateTable);
- U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
- statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
- statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
- }
- }
- MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol)
- {
- FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
- const U16* const stateTable = (const U16*)(statePtr->stateTable);
- U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
- BIT_addBits(bitC, statePtr->value, nbBitsOut);
- statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
- }
- MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
- {
- BIT_addBits(bitC, statePtr->value, statePtr->stateLog);
- BIT_flushBits(bitC);
- }
- /* FSE_getMaxNbBits() :
- * Approximate maximum cost of a symbol, in bits.
- * Fractional get rounded up (i.e. a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
- * note 1 : assume symbolValue is valid (<= maxSymbolValue)
- * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
- MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
- {
- const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
- return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
- }
- /* FSE_bitCost() :
- * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
- * note 1 : assume symbolValue is valid (<= maxSymbolValue)
- * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
- MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
- {
- const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
- U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
- U32 const threshold = (minNbBits+1) << 16;
- assert(tableLog < 16);
- assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */
- { U32 const tableSize = 1 << tableLog;
- U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
- U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */
- U32 const bitMultiplier = 1 << accuracyLog;
- assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
- assert(normalizedDeltaFromThreshold <= bitMultiplier);
- return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
- }
- }
- /* ====== Decompression ====== */
- typedef struct {
- U16 tableLog;
- U16 fastMode;
- } FSE_DTableHeader; /* sizeof U32 */
- typedef struct
- {
- unsigned short newState;
- unsigned char symbol;
- unsigned char nbBits;
- } FSE_decode_t; /* size == U32 */
- MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
- {
- const void* ptr = dt;
- const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
- DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
- BIT_reloadDStream(bitD);
- DStatePtr->table = dt + 1;
- }
- MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
- {
- FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
- return DInfo.symbol;
- }
- MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
- {
- FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
- U32 const nbBits = DInfo.nbBits;
- size_t const lowBits = BIT_readBits(bitD, nbBits);
- DStatePtr->state = DInfo.newState + lowBits;
- }
- MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
- {
- FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
- U32 const nbBits = DInfo.nbBits;
- BYTE const symbol = DInfo.symbol;
- size_t const lowBits = BIT_readBits(bitD, nbBits);
- DStatePtr->state = DInfo.newState + lowBits;
- return symbol;
- }
- /*! FSE_decodeSymbolFast() :
- unsafe, only works if no symbol has a probability > 50% */
- MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
- {
- FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
- U32 const nbBits = DInfo.nbBits;
- BYTE const symbol = DInfo.symbol;
- size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
- DStatePtr->state = DInfo.newState + lowBits;
- return symbol;
- }
- MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
- {
- return DStatePtr->state == 0;
- }
- #ifndef FSE_COMMONDEFS_ONLY
- /* **************************************************************
- * Tuning parameters
- ****************************************************************/
- /*!MEMORY_USAGE :
- * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
- * Increasing memory usage improves compression ratio
- * Reduced memory usage can improve speed, due to cache effect
- * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
- #ifndef FSE_MAX_MEMORY_USAGE
- # define FSE_MAX_MEMORY_USAGE 14
- #endif
- #ifndef FSE_DEFAULT_MEMORY_USAGE
- # define FSE_DEFAULT_MEMORY_USAGE 13
- #endif
- #if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE)
- # error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE"
- #endif
- /*!FSE_MAX_SYMBOL_VALUE :
- * Maximum symbol value authorized.
- * Required for proper stack allocation */
- #ifndef FSE_MAX_SYMBOL_VALUE
- # define FSE_MAX_SYMBOL_VALUE 255
- #endif
- /* **************************************************************
- * template functions type & suffix
- ****************************************************************/
- #define FSE_FUNCTION_TYPE BYTE
- #define FSE_FUNCTION_EXTENSION
- #define FSE_DECODE_TYPE FSE_decode_t
- #endif /* !FSE_COMMONDEFS_ONLY */
- /* ***************************************************************
- * Constants
- *****************************************************************/
- #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
- #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
- #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
- #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
- #define FSE_MIN_TABLELOG 5
- #define FSE_TABLELOG_ABSOLUTE_MAX 15
- #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
- # error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
- #endif
- #define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3)
- #endif /* FSE_STATIC_LINKING_ONLY */
- #if defined (__cplusplus)
- }
- #endif
|